Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Hum Mol Genet ; 33(3): 211-223, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-37819629

ABSTRACT

Duchenne muscular dystrophy (DMD) is a progressive disabling X-linked recessive disorder that causes gradual and irreversible loss of muscle, resulting in early death. The corticosteroids prednisone/prednisolone and deflazacort are used to treat DMD as the standard of care; however, only deflazacort is FDA approved for DMD. The novel atypical corticosteroid vamorolone is being investigated for treatment of DMD. We compared the pharmaceutical properties as well as the efficacy and safety of the three corticosteroids across multiple doses in the B10-mdx DMD mouse model. Pharmacokinetic studies in the mouse and evaluation of p-glycoprotein (P-gP) efflux in a cellular system demonstrated that vamorolone is not a strong P-gp substrate resulting in measurable central nervous system (CNS) exposure in the mouse. In contrast, deflazacort and prednisolone are strong P-gp substrates. All three corticosteroids showed efficacy, but also side effects at efficacious doses. After dosing mdx mice for two weeks, all three corticosteroids induced changes in gene expression in the liver and the muscle, but prednisolone and vamorolone induced more changes in the brain than did deflazacort. Both prednisolone and vamorolone induced depression-like behavior. All three corticosteroids reduced endogenous corticosterone levels, increased glucose levels, and reduced osteocalcin levels. Using micro-computed tomography, femur bone density was decreased, reaching significance with prednisolone. The results of these studies indicate that efficacious doses of vamorolone, are associated with similar side effects as seen with other corticosteroids. Further, because vamorolone is not a strong P-gp substrate, vamorolone distributes into the CNS increasing the potential CNS side-effects.


Subject(s)
Muscular Dystrophy, Duchenne , Prednisolone , Pregnadienediols , Pregnenediones , Animals , Mice , Prednisolone/therapeutic use , X-Ray Microtomography , Mice, Inbred mdx , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/genetics , Corticosterone/therapeutic use , Pharmaceutical Preparations
2.
Am J Hum Genet ; 110(3): 531-547, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36809767

ABSTRACT

Familial dysautonomia (FD) is a rare neurodegenerative disease caused by a splicing mutation in elongator acetyltransferase complex subunit 1 (ELP1). This mutation leads to the skipping of exon 20 and a tissue-specific reduction of ELP1, mainly in the central and peripheral nervous systems. FD is a complex neurological disorder accompanied by severe gait ataxia and retinal degeneration. There is currently no effective treatment to restore ELP1 production in individuals with FD, and the disease is ultimately fatal. After identifying kinetin as a small molecule able to correct the ELP1 splicing defect, we worked on its optimization to generate novel splicing modulator compounds (SMCs) that can be used in individuals with FD. Here, we optimize the potency, efficacy, and bio-distribution of second-generation kinetin derivatives to develop an oral treatment for FD that can efficiently pass the blood-brain barrier and correct the ELP1 splicing defect in the nervous system. We demonstrate that the novel compound PTC258 efficiently restores correct ELP1 splicing in mouse tissues, including brain, and most importantly, prevents the progressive neuronal degeneration that is characteristic of FD. Postnatal oral administration of PTC258 to the phenotypic mouse model TgFD9;Elp1Δ20/flox increases full-length ELP1 transcript in a dose-dependent manner and leads to a 2-fold increase in functional ELP1 in the brain. Remarkably, PTC258 treatment improves survival, gait ataxia, and retinal degeneration in the phenotypic FD mice. Our findings highlight the great therapeutic potential of this novel class of small molecules as an oral treatment for FD.


Subject(s)
Dysautonomia, Familial , Neurodegenerative Diseases , Retinal Degeneration , Mice , Animals , Dysautonomia, Familial/genetics , Kinetin , Gait Ataxia , Administration, Oral
3.
Mol Ther ; 32(10): 3331-3345, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39033321

ABSTRACT

Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a rare neurodevelopmental disorder caused by a mutation in the X-linked CDKL5 gene. CDKL5 is a serine/threonine kinase that is critical for axon outgrowth and dendritic morphogenesis as well as synapse formation, maturation, and maintenance. This disorder is characterized by early-onset epilepsy, hypotonia, and failure to reach cognitive and motor developmental milestones. Because the disease is monogenic, delivery of the CDKL5 gene to the brain of patients should provide clinical benefit. To this end, we designed a gene therapy vector, adeno-associated virus (AAV)9.Syn.hCDKL5, in which human CDKL5 gene expression is driven by the synapsin promoter. In biodistribution studies conducted in mice, intracerebroventricular (i.c.v.) injection resulted in broader, more optimal biodistribution than did intra-cisterna magna (i.c.m.) delivery. AAV9.Syn.hCDKL5 treatment increased phosphorylation of EB2, a bona fide CDKL5 substrate, demonstrating biological activity inĀ vivo. Our data provide proof of concept that i.c.v. delivery of AAV9.Syn.hCDKL5 to neonatal male Cdkl5 knockout mice reduces pathology and reduces aberrant behavior. Functional improvements were seen at doses of 3e11 to 5e11 vector genomes/g brain, which resulted in transfection of ≥50% of the neurons. Functional improvements were not seen at lower doses, suggesting a requirement for broad distribution for efficacy.


Subject(s)
Epileptic Syndromes , Genetic Therapy , Protein Serine-Threonine Kinases , Spasms, Infantile , Animals , Humans , Male , Mice , Brain/metabolism , Dependovirus/genetics , Disease Models, Animal , Epileptic Syndromes/therapy , Epileptic Syndromes/genetics , Gene Expression , Genetic Therapy/methods , Genetic Vectors/genetics , Genetic Vectors/administration & dosage , Mental Retardation, X-Linked/therapy , Mental Retardation, X-Linked/genetics , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Phosphorylation , Promoter Regions, Genetic , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Spasms, Infantile/therapy , Spasms, Infantile/genetics , Spasms, Infantile/metabolism , Synapsins/genetics , Synapsins/metabolism , Tissue Distribution
4.
Hum Mol Genet ; 31(1): 82-96, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34368854

ABSTRACT

Spinal muscular atrophy (SMA) is caused by the loss of the survival motor neuron 1 (SMN1) gene function. The related SMN2 gene partially compensates but produces insufficient levels of SMN protein due to alternative splicing of exon 7. Evrysdi™ (risdiplam), recently approved for the treatment of SMA, and related compounds promote exon 7 inclusion to generate full-length SMN2 mRNA and increase SMN protein levels. SMNΔ7 type I SMA mice survive without treatment for ~17Ā days. SMN2 mRNA splicing modulators increase survival of SMN∆7 mice with treatment initiated at postnatal day 3 (PND3). To define SMN requirements for adult mice, SMNΔ7 mice were dosed with an SMN2 mRNA splicing modifier from PND3 to PND40, then dosing was stopped. Mice not treated after PND40 showed progressive weight loss, necrosis, and muscle atrophy after ~20Ā days. Male mice presented a more severe phenotype than female mice. Mice dosed continuously did not show disease symptoms. The estimated half-life of SMN protein is 2Ā days indicating that the SMA phenotype reappeared after SMN protein levels returned to baseline. Although SMN protein levels decreased with age in mice and SMN protein levels were higher in brain than in muscle, our studies suggest that SMN protein is required throughout the life of the mouse and is especially essential in adult peripheral tissues including muscle. These studies indicate that drugs such as risdiplam will be optimally therapeutic when given as early as possible after diagnosis and potentially will be required for the life of an SMA patient.


Subject(s)
Muscular Atrophy, Spinal , Alternative Splicing , Animals , Disease Models, Animal , Disease Progression , Exons , Female , Humans , Male , Mice , Muscular Atrophy, Spinal/metabolism , RNA Splicing , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 1 Protein/metabolism , Survival of Motor Neuron 2 Protein
5.
Am J Hum Genet ; 104(4): 638-650, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30905397

ABSTRACT

Familial dysautonomia (FD) is a recessive neurodegenerative disease caused by a splice mutation in Elongator complex protein 1 (ELP1, also known as IKBKAP); this mutation leads to variable skipping of exon 20 and to a drastic reduction of ELP1 in the nervous system. Clinically, many of the debilitating aspects of the disease are related to a progressive loss of proprioception; this loss leads to severe gait ataxia, spinal deformities, and respiratory insufficiency due to neuromuscular incoordination. There is currently no effective treatment for FD, and the disease is ultimately fatal. The development of a drug that targets the underlying molecular defect provides hope that the drastic peripheral neurodegeneration characteristic of FD can be halted. We demonstrate herein that the FD mouse TgFD9;IkbkapΔ20/flox recapitulates the proprioceptive impairment observed in individuals with FD, and we provide the inĀ vivo evidence that postnatal correction, promoted by the small molecule kinetin, of the mutant ELP1 splicing can rescue neurological phenotypes in FD. Daily administration of kinetin starting at birth improves sensory-motor coordination and prevents the onset of spinal abnormalities by stopping the loss of proprioceptive neurons. These phenotypic improvements correlate with increased amounts of full-length ELP1 mRNA and protein in multiple tissues, including in the peripheral nervous system (PNS). Our results show that postnatal correction of the underlying ELP1 splicing defect can rescue devastating disease phenotypes and is therefore a viable therapeutic approach for persons with FD.


Subject(s)
Dysautonomia, Familial/therapy , Kinetin/therapeutic use , Proprioception , RNA Splicing , Transcriptional Elongation Factors/genetics , Alleles , Animals , Behavior, Animal , Cell Line , Crosses, Genetic , Disease Models, Animal , Dysautonomia, Familial/genetics , Exons , Fibroblasts , Genotype , Humans , Introns , Kinetin/genetics , Male , Mice , Mice, Inbred C57BL , Mutation , Neurons/metabolism , Phenotype
6.
Anal Biochem ; 656: 114876, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36058293

ABSTRACT

Paired box protein Pax-6 (oculothrombin) is a transcription factor that plays an important regulatory role in ocular, brain, and pancreatic development. Mutations of the PAX6 gene cause aniridia and Peters anomaly. Reduction in Pax-6 protein is also associated with ocular diseases such as dry eye. An electrochemiluminescence immunoassay method using the Meso Scale Discovery platform was developed to measure Pax-6 protein levels in corneal epithelial cells obtained by impression cytology. Impression cytology involves harvesting ocular epithelial cells by applying a polyethersulfone membrane patch briefly to the ocular surface using a commercially available EYEPRIM™ device. The epithelial cells that adhere to the membrane patch of the EYEPRIM™ device provide a biological sample which can be assayed for Pax-6 protein levels. Assay development identified an antibody pair capable of detecting purified recombinant Pax-6 protein produced in mammalian cells. The optimized assay has a dynamic range of 24Ā pgĀ mL-1 to 100,000Ā pgĀ mL-1 and a lower limit of quantification of 24Ā pgĀ mL-1. Assay selectivity was demonstrated using either HeLa or HEK293Ā cells transfected with inhibitory RNA. Finally, the method was validated by measuring Pax-6 protein levels in impression cytology acquired samples obtained using the EYEPRIM™ device from rabbit cornea.


Subject(s)
Homeodomain Proteins , Paired Box Transcription Factors , Animals , Eye Proteins/genetics , HEK293 Cells , Homeodomain Proteins/genetics , Humans , Immunoassay , Mammals/genetics , Mammals/metabolism , PAX6 Transcription Factor , Paired Box Transcription Factors/genetics , RNA , Rabbits , Repressor Proteins/genetics
7.
Xenobiotica ; 52(2): 152-164, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34846990

ABSTRACT

Emvododstat was identified as a potent inhibitor of dihydroorotate dehydrogenase and is now in clinical development for the treatment of acute myeloid leukaemia and COVID-19. The objective of this paper is to evaluate the metabolism, pharmacokinetics, and drug interaction potentials of emvododstat.Emvododstat showed high binding to plasma protein with minimal distribution into blood cells in mouse, rat, dog, monkey, and human whole blood.O-Demethylation followed by glucuronidation appeared to be the major metabolic pathway in rat, dog, monkey, and human hepatocytes. CYP2C8, 2C19, 2D6, and 3A4 were involved in O-desmethyl emvododstat metabolite formation. Both emvododstat and O-desmethyl emvododstat inhibited CYP2D6 activity and induced CYP expression to different extents inĀ vitro.Emvododstat and O-desmethyl emvododstat inhibited BCRP transporter activity but did not inhibit bile salt transporters and other efflux or uptake transporters. Neither emvododstat nor O-desmethyl emvododstat was a substrate for common efflux or uptake transporters investigated.Emvododstat is bioavailable in mice, rats, dogs, and monkeys following a single oral dose. The absorption was generally slow with the mean plasma Tmax ranging from 2 to 5 h; plasma exposure of O-desmethyl emvododstat was lower in rodents, but relatively higher in dogs and monkeys.


Subject(s)
COVID-19 , Microsomes, Liver , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Animals , Carbamates , Carbazoles , Dihydroorotate Dehydrogenase , Dogs , Drug Interactions , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Membrane Transport Proteins/metabolism , Mice , Microsomes, Liver/metabolism , Neoplasm Proteins/metabolism , Rats
8.
J Infect Dis ; 224(Supplement_1): S1-S21, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34111271

ABSTRACT

The NIH Virtual SARS-CoV-2 Antiviral Summit, held on 6 November 2020, was organized to provide an overview on the status and challenges in developing antiviral therapeutics for coronavirus disease 2019 (COVID-19), including combinations of antivirals. Scientific experts from the public and private sectors convened virtually during a live videocast to discuss severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) targets for drug discovery as well as the preclinical tools needed to develop and evaluate effective small-molecule antivirals. The goals of the Summit were to review the current state of the science, identify unmet research needs, share insights and lessons learned from treating other infectious diseases, identify opportunities for public-private partnerships, and assist the research community in designing and developing antiviral therapeutics. This report includes an overview of therapeutic approaches, individual panel summaries, and a summary of the discussions and perspectives on the challenges ahead for antiviral development.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , COVID-19/virology , Drug Development , Humans , National Institutes of Health (U.S.) , Peptide Hydrolases/metabolism , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use , United States , Virus Replication/drug effects
9.
Cancer Sci ; 111(12): 4336-4347, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33037737

ABSTRACT

Monomer tubulin polymerize into microtubules, which are highly dynamic and play a critical role in mitosis. Therefore, microtubule dynamics are an important target for anticancer drugs. The inhibition of tubulin polymerization or depolymerization was previously targeted and exhibited efficacy against solid tumors. The novel small molecule PTC596 directly binds tubulin, inhibits microtubule polymerization, downregulates MCL-1, and induces p53-independent apoptosis in acute myeloid leukemia cells. We herein investigated the efficacy of PTC-028, a structural analog of PTC596, for myelodysplastic syndrome (MDS). PTC-028 suppressed growth and induced apoptosis in MDS cell lines. The efficacy of PTC028 in primary MDS samples was confirmed using cell proliferation assays. PTC-028 synergized with hypomethylating agents, such as decitabine and azacitidine, to inhibit growth and induce apoptosis in MDS cells. Mechanistically, a treatment with PTC-028 induced G2/M arrest followed by apoptotic cell death. We also assessed the efficacy of PTC-028 in a xenograft mouse model of MDS using the MDS cell line, MDS-L, and the AkaBLI bioluminescence imaging system, which is composed of AkaLumine-HCl and Akaluc. PTC-028 prolonged the survival of mice in xenograft models. The present results suggest a chemotherapeutic strategy for MDS through the disruption of microtubule dynamics in combination with DNA hypomethylating agents.


Subject(s)
Benzimidazoles/pharmacology , Myelodysplastic Syndromes/drug therapy , Pyrazines/pharmacology , Tubulin Modulators/pharmacology , Animals , Antimetabolites, Antineoplastic/pharmacology , Apoptosis/drug effects , Apoptosis/genetics , Benzimidazoles/therapeutic use , Cell Line, Tumor , Cell Proliferation/drug effects , Decitabine/pharmacology , G2 Phase/drug effects , HL-60 Cells , Heterografts , Humans , Mice , Myelodysplastic Syndromes/genetics , Paclitaxel/pharmacology , Pyrazines/therapeutic use , Sequence Analysis, RNA/methods , Tubulin/drug effects , Tubulin Modulators/therapeutic use , Vincristine/pharmacology
10.
Br J Haematol ; 190(6): 877-890, 2020 09.
Article in English | MEDLINE | ID: mdl-32232850

ABSTRACT

Future progress in the treatment of multiple myeloma (MM) requires both the characterisation of key drivers of the disease and novel, innovative approaches to tackle these vulnerabilities. The present study focussed on the pre-clinical evaluation of a novel drug class, BMI-1 modulators, in MM. We demonstrate potent activity of PTC-028 and PTC596 in a comprehensive set of in vitro and in vivo models, including models of drug resistance and stromal support. Treatment of MM cells with PTC-028 and PTC596 downregulated BMI-1 protein levels, which was found to correlate with drug activity. Surprisingly, BMI-1 was dispensable for the activity of BMI-1 modulators and MM cell growth. Our data rather point to mitotic arrest accompanied by myeloid cell leukaemia-1 (MCL-1) loss as key anti-MM mechanisms and reveal impaired MYC and AKT signalling activity due to BMI-1 modulator treatment. Moreover, we observed a complete eradication of MM after PTC596 treatment in the 5TGM.1 in vivo model and define epigenetic compounds and B cell leukaemia/lymphoma 2 homology domain 3 (BH3) mimetics as promising combination partners. These results bring into question the postulated role of BMI-1 as an essential MM gene and confirm BMI-1 modulators as potent anti-mitotic agents with encouraging pre-clinical activity that supports their rapid translation into clinical trials.


Subject(s)
Antineoplastic Agents/pharmacology , Benzimidazoles/pharmacology , Mitosis/drug effects , Multiple Myeloma , Neoplasm Proteins/antagonists & inhibitors , Neoplasms, Experimental , Polycomb Repressive Complex 1/antagonists & inhibitors , Pyrazines/pharmacology , Animals , Female , Humans , Male , Mice , Multiple Myeloma/diet therapy , Multiple Myeloma/enzymology , Multiple Myeloma/pathology , Neoplasm Proteins/metabolism , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/enzymology , Neoplasms, Experimental/pathology , Polycomb Repressive Complex 1/metabolism , Xenograft Model Antitumor Assays
11.
RNA ; 23(4): 567-577, 2017 04.
Article in English | MEDLINE | ID: mdl-28096517

ABSTRACT

Nonsense mutations resulting in a premature stop codon in an open reading frame occur in critical tumor suppressor genes in a large number of the most common forms of cancers and are known to cause or contribute to the progression of disease. Low molecular weight compounds that induce readthrough of nonsense mutations offer a new means of treating patients with genetic disorders or cancers resulting from nonsense mutations. We have identified the nucleoside analog clitocine as a potent and efficacious suppressor of nonsense mutations. We determined that incorporation of clitocine into RNA during transcription is a prerequisite for its readthrough activity; the presence of clitocine in the third position of a premature stop codon directly induces readthrough. We demonstrate that clitocine can induce the production of p53 protein in cells harboring p53 nonsense-mutated alleles. In these cells, clitocine restored production of full-length and functional p53 as evidenced by induced transcriptional activation of downstream p53 target genes, progression of cells into apoptosis, and impeded growth of nonsense-containing human ovarian cancer tumors in xenograft tumor models. Thus, clitocine induces readthrough of nonsense mutations by a previously undescribed mechanism and represents a novel therapeutic modality to treat cancers and genetic diseases caused by nonsense mutations.


Subject(s)
Antimetabolites, Antineoplastic/pharmacology , Biomimetic Materials/pharmacology , Codon, Nonsense/drug effects , Furans/pharmacology , Nucleosides/pharmacology , Ovarian Neoplasms/drug therapy , Pyrimidine Nucleosides/pharmacology , Tumor Suppressor Protein p53/agonists , Animals , Antimetabolites, Antineoplastic/chemical synthesis , Antimetabolites, Antineoplastic/metabolism , Apoptosis/drug effects , Biomimetic Materials/chemical synthesis , Biomimetic Materials/metabolism , Cell Line, Tumor , Female , Furans/chemical synthesis , Furans/metabolism , Genes, Reporter , Humans , Luciferases/genetics , Luciferases/metabolism , Mice , Mice, Nude , Nucleosides/chemical synthesis , Nucleosides/metabolism , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Protein Biosynthesis , Pyrimidine Nucleosides/chemical synthesis , Pyrimidine Nucleosides/metabolism , Signal Transduction , Transcriptional Activation , Tumor Burden/drug effects , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Xenograft Model Antitumor Assays
12.
Hum Mol Genet ; 25(16): 3416-3431, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27329764

ABSTRACT

Choroideremia (CHM) is an X-linked chorioretinal dystrophy that is caused by mutations within a single gene, CHM Currently no effective treatment exists for these patients. Since over 30% of patients harbour nonsense mutations in CHM, nonsense suppression therapy using translational readthrough inducing drugs may provide functional rescue of REP1, thus attenuating progressive sight loss. Here, we employed two CHM model systems to systematically test the efficacy and safety of ataluren (PTC124) and its novel analog PTC-414: (1) the chmru848 zebrafish, the only nonsense mutation animal model of CHM harbouring a TAA nonsense mutation, and (2) a primary human fibroblast cell line from a CHM patient harbouring a TAG nonsense mutation. PTC124 or PTC-414 treatment of chmru848 embryos led to a Ć¢ĀˆĀ¼2.0-fold increase in survival, prevented the onset of retinal degeneration with reduced oxidative stress and apoptosis, increased rep1 protein by 23.1% (PTC124) and 17.2% (PTC-414) and restored biochemical function as confirmed through in vitro prenylation assays (98 Ā± 2% [PTC124] and 68 Ā± 5% [PTC-414]). In CHMY42X/y fibroblasts, there was a recovery of prenylation activity following treatment with either PTC124 (42 Ā± 5%) or PTC-414 (36 Ā± 11%), although an increase in REP1 protein was not detected in these cells, in contrast to the zebrafish model. This comprehensive study on the use of PTC124 and PTC-414 as successful nonsense suppression agents for the treatment of CHM highlights the translational potential of these drugs for inherited retinal disease.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Choroideremia/drug therapy , Retinal Degeneration/drug therapy , Animals , Apoptosis/drug effects , Choroideremia/genetics , Choroideremia/pathology , Codon, Nonsense , Disease Models, Animal , Fibroblasts/drug effects , Fibroblasts/pathology , Humans , Oxadiazoles/administration & dosage , Oxidative Stress/drug effects , Retina/drug effects , Retina/pathology , Retinal Degeneration/genetics , Retinal Degeneration/pathology , Zebrafish , Zebrafish Proteins
13.
Hum Mol Genet ; 25(5): 964-75, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26758873

ABSTRACT

Spinal muscular atrophy (SMA) is a genetic disease characterized by atrophy of muscle and loss of spinal motor neurons. SMA is caused by deletion or mutation of the survival motor neuron 1 (SMN1) gene, and the nearly identical SMN2 gene fails to generate adequate levels of functional SMN protein due to a splicing defect. Currently, several therapeutics targeted to increase SMN protein are in clinical trials. An outstanding issue in the field is whether initiating treatment in symptomatic older patients would confer a therapeutic benefit, an important consideration as the majority of patients with milder forms of SMA are diagnosed at an older age. An SMA mouse model that recapitulates the disease phenotype observed in adolescent and adult SMA patients is needed to address this important question. We demonstrate here that Δ7 mice, a model of severe SMA, treated with a suboptimal dose of an SMN2 splicing modifier show increased SMN protein, survive into adulthood and display SMA disease-relevant pathologies. Increasing the dose of the splicing modifier after the disease symptoms are apparent further mitigates SMA histopathological features in suboptimally dosed adult Δ7 mice. In addition, inhibiting myostatin using intramuscular injection of AAV1-follistatin ameliorates muscle atrophy in suboptimally dosed Δ7 mice. Taken together, we have developed a new murine model of symptomatic SMA in adolescents and adult mice that is induced pharmacologically from a more severe model and demonstrated efficacy of both SMN2 splicing modifiers and a myostatin inhibitor in mice at later disease stages.


Subject(s)
Follistatin/pharmacology , Immunologic Factors/pharmacology , Muscular Atrophy, Spinal/drug therapy , RNA Splicing/drug effects , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 2 Protein/agonists , Adolescent , Adult , Age of Onset , Animals , Dependovirus/genetics , Dependovirus/metabolism , Disease Models, Animal , Gene Deletion , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Mice , Motor Neurons/drug effects , Motor Neurons/metabolism , Motor Neurons/pathology , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/metabolism , Muscular Atrophy, Spinal/pathology , Myostatin/antagonists & inhibitors , Myostatin/genetics , Myostatin/metabolism , Phenotype , Survival of Motor Neuron 1 Protein/metabolism , Survival of Motor Neuron 2 Protein/genetics , Survival of Motor Neuron 2 Protein/metabolism
15.
Hum Mol Genet ; 25(10): 1885-1899, 2016 05 15.
Article in English | MEDLINE | ID: mdl-26931466

ABSTRACT

Spinal muscular atrophy (SMA) is caused by the loss or mutation of both copies of the survival motor neuron 1 (SMN1) gene. The related SMN2 gene is retained, but due to alternative splicing of exon 7, produces insufficient levels of the SMN protein. Here, we systematically characterize the pharmacokinetic and pharmacodynamics properties of the SMN splicing modifier SMN-C1. SMN-C1 is a low-molecular weight compound that promotes the inclusion of exon 7 and increases production of SMN protein in human cells and in two transgenic mouse models of SMA. Furthermore, increases in SMN protein levels in peripheral blood mononuclear cells and skin correlate with those in the central nervous system (CNS), indicating that a change of these levels in blood or skin can be used as a non-invasive surrogate to monitor increases of SMN protein levels in the CNS. Consistent with restored SMN function, SMN-C1 treatment increases the levels of spliceosomal and U7 small-nuclear RNAs and corrects RNA processing defects induced by SMN deficiency in the spinal cord of SMNΔ7 SMA mice. A 100% or greater increase in SMN protein in the CNS of SMNΔ7 SMA mice robustly improves the phenotype. Importantly, a Ć¢ĀˆĀ¼50% increase in SMN leads to long-term survival, but the SMA phenotype is only partially corrected, indicating that certain SMA disease manifestations may respond to treatment at lower doses. Overall, we provide important insights for the translation of pre-clinical data to the clinic and further therapeutic development of this series of molecules for SMA treatment.


Subject(s)
Isocoumarins/administration & dosage , Muscular Atrophy, Spinal/drug therapy , Muscular Atrophy, Spinal/genetics , Piperazines/administration & dosage , Small Molecule Libraries/pharmacokinetics , Survival of Motor Neuron 2 Protein/genetics , Alternative Splicing/drug effects , Alternative Splicing/genetics , Animals , Central Nervous System/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Exons/genetics , Humans , Leukocytes, Mononuclear/drug effects , Mice , Mice, Transgenic , Muscular Atrophy, Spinal/blood , Muscular Atrophy, Spinal/pathology , RNA Splicing/drug effects , RNA Splicing/genetics , Skin/metabolism , Small Molecule Libraries/administration & dosage , Survival of Motor Neuron 2 Protein/blood
16.
Bioorg Med Chem Lett ; 27(22): 5014-5021, 2017 11 15.
Article in English | MEDLINE | ID: mdl-29032026

ABSTRACT

The continued emergence of bacteria resistant to current standard of care antibiotics presents a rapidly growing threat to public health. New chemical entities (NCEs) to treat these serious infections are desperately needed. Herein we report the discovery, synthesis, SAR and in vivo efficacy of a novel series of 4-hydroxy-2-pyridones exhibiting activity against Gram-negative pathogens. Compound 1c, derived from the N-debenzylation of 1b, preferentially inhibits bacterial DNA synthesis as determined by standard macromolecular synthesis assays. The structural features of the 4-hydroxy-2-pyridone scaffold required for antibacterial activity were explored and compound 6q, identified through further optimization of the series, had an MIC90 value of 8Ć¢Ā€ĀÆĀµg/mL against a panel of highly resistant strains of E. coli. In a murine septicemia model, compound 6q exhibited a PD50 of 8Ć¢Ā€ĀÆmg/kg in mice infected with a lethal dose of E. coli. This novel series of 4-hydroxy-2-pyridones serves as an excellent starting point for the identification of NCEs treating Gram-negative infections.


Subject(s)
Anti-Bacterial Agents/metabolism , Azabicyclo Compounds/chemistry , DNA/metabolism , Niacin/analogs & derivatives , Pyridines/chemistry , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Azabicyclo Compounds/metabolism , Azabicyclo Compounds/pharmacology , Azabicyclo Compounds/therapeutic use , DNA/chemistry , Drug Evaluation, Preclinical , Escherichia coli/drug effects , Escherichia coli/pathogenicity , Gram-Negative Bacteria/drug effects , Gram-Negative Bacterial Infections/drug therapy , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/veterinary , Half-Life , Mice , Microbial Sensitivity Tests , Niacin/metabolism , Niacin/pharmacology , Niacin/therapeutic use , Pyridines/metabolism , Pyridines/pharmacology , Pyridines/therapeutic use , Structure-Activity Relationship
17.
Bioorg Med Chem Lett ; 26(2): 594-601, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26652483

ABSTRACT

A novel series of 2-(4-sulfonamidophenyl)-indole 3-carboxamides was identified and optimized for activity against the HCV genotype 1b replicon resulting in compounds with potent and selective activity. Further evaluation of this series demonstrated potent activity across HCV genotypes 1a, 2a and 3a. Compound 4z had reduced activity against HCV genotype 1b replicons containing single mutations in the NS4B coding sequence (F98C and V105M) indicating that NS4B is the target. This novel series of 2-(4-sulfonamidophenyl)-indole 3-carboxamides serves as a promising starting point for a pan-genotype HCV discovery program.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Hepacivirus/drug effects , Indoles/chemistry , Indoles/pharmacology , Viral Nonstructural Proteins/metabolism , Amino Acid Sequence , Hepacivirus/chemistry , Hepacivirus/genetics , Hepacivirus/metabolism , Hepatitis C/drug therapy , Humans , Molecular Sequence Data , Mutation , Replicon/drug effects , Sulfonamides/chemistry , Sulfonamides/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics
18.
Bioorg Med Chem Lett ; 25(4): 781-6, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25613678

ABSTRACT

A structure-activity relationship investigation of various 6-(azaindol-2-yl)pyridine-3-sulfonamides using the HCV replicon cell culture assay led to the identification of a potent series of 7-azaindoles that target the hepatitis C virus NS4B. Compound 2ac, identified via further optimization of the series, has excellent potency against the HCV 1b replicon with an EC50 of 2nM and a selectivity index of >5000 with respect to cellular GAPDH RNA. Compound 2ac also has excellent oral plasma exposure levels in rats, dogs and monkeys and has a favorable liver to plasma distribution profile in rats.


Subject(s)
Hepacivirus/enzymology , Pyridines/chemistry , Pyridines/pharmacology , Sulfonamides/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Dogs , Hepacivirus/drug effects , Humans , Macaca fascicularis , Rats , Structure-Activity Relationship
19.
J Clin Oncol ; 42(20): 2404-2414, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38684039

ABSTRACT

PURPOSE: This multicenter, single-arm, open-label, phase Ib study was designed to determine the recommended phase II dose (RP2D) and to evaluate the safety and preliminary efficacy of unesbulin plus dacarbazine (DTIC) in patients with advanced leiomyosarcoma (LMS). PATIENTS AND METHODS: Adult subjects with locally advanced, unresectable or metastatic, relapsed or refractory LMS were treated with escalating doses of unesbulin orally twice per week in combination with DTIC 1,000 mg/m2 intravenously (IV) once every 21 days. The time-to-event continual reassessment method was used to determine the RP2D on the basis of dose-limiting toxicities (DLTs) assessed during the first two 21-day treatment cycles. All explored doses of unesbulin (200 mg up to 400 mg) were in combination with DTIC. An expansion cohort was enrolled to evaluate the safety and efficacy of unesbulin at the RP2D. RESULTS: Unesbulin 300 mg administered orally twice per week in combination with DTIC 1,000 mg/m2 IV once every 21 days was identified as the RP2D. On the basis of data from 27 subjects who were deemed DLT-evaluable, toxicity was higher in the unesbulin 400 mg group, with three of four subjects (75%) experiencing DLTs versus one of four subjects (25%) in the 200 mg group and three of 19 subjects (15.8%) in the 300 mg group. The most commonly reported DLTs and treatment-related grade 3 and 4 adverse events were thrombocytopenia and neutropenia. At the RP2D, seven subjects who were efficacy evaluable achieved partial response for an objective response rate of 24.1%. CONCLUSION: Unesbulin 300 mg twice per week plus DTIC 1,000 mg/m2 once every 21 days was identified as the RP2D, demonstrating a favorable benefit-risk profile in a heavily pretreated population of adults with advanced LMS.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Dacarbazine , Leiomyosarcoma , Neoplasm Recurrence, Local , Humans , Male , Female , Middle Aged , Leiomyosarcoma/drug therapy , Leiomyosarcoma/pathology , Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/pathology , Adult , Dacarbazine/administration & dosage , Dacarbazine/adverse effects , Neoplasm Metastasis
20.
PLoS One ; 19(9): e0309893, 2024.
Article in English | MEDLINE | ID: mdl-39292705

ABSTRACT

Parkinson's disease is the second most common neurodegenerative disorder, affecting nearly 10 million people worldwide. Ferroptosis, a recently identified form of regulated cell death characterized by 15-lipoxygenase-mediated hydroperoxidation of membrane lipids, has been implicated in neurodegenerative disorders including amyotrophic lateral sclerosis and Parkinson's disease. Pharmacological inhibition of 15 -lipoxygenase to prevent iron- and lipid peroxidation-associated ferroptotic cell death is a rational strategy for the treatment of Parkinson's disease. We report here the characterization of PTC-041 as an anti-ferroptotic reductive lipoxygenase inhibitor developed for the treatment of Parkinson's disease. In these studies, PTC-041 potently protects primary human Parkinson's disease patient-derived fibroblasts from lipid peroxidation and subsequent ferroptotic cell death and prevents ferroptosis-related neuronal loss and astrogliosis in primary rat neuronal cultures. Additionally, PTC-041 prevents ferroptotic-mediated α-synuclein protein aggregation and nitrosylation in vitro, suggesting a potential role for anti-ferroptotic lipoxygenase inhibitors in mitigating pathogenic aspects of synucleinopathies such as Parkinson's disease. We further found that PTC-041 protects against synucleinopathy in vivo, demonstrating that PTC-041 treatment of Line 61 transgenic mice protects against α-synuclein aggregation and phosphorylation as well as prevents associated neuronal and non-neuronal cell death. Finally, we show that. PTC-041 protects against 6-hydroxydopamine-induced motor deficits in a hemiparkinsonian rat model, further validating the potential therapeutic benefits of lipoxygenase inhibitors in the treatment of Parkinson's disease.


Subject(s)
Ferroptosis , Lipoxygenase Inhibitors , Parkinson Disease , Animals , Ferroptosis/drug effects , Lipoxygenase Inhibitors/pharmacology , Lipoxygenase Inhibitors/therapeutic use , Humans , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Parkinson Disease/pathology , Rats , Mice , alpha-Synuclein/metabolism , Lipid Peroxidation/drug effects , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Fibroblasts/drug effects , Fibroblasts/metabolism , Arachidonate 15-Lipoxygenase/metabolism , Cells, Cultured , Male
SELECTION OF CITATIONS
SEARCH DETAIL