Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Rapid Commun Mass Spectrom ; 35(11): e9081, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33728686

ABSTRACT

RATIONALE: Complete decomposition of silicate rock matrices is crucial in determining their isotopic compositions, but acid dissolution in a high-pressure steel-jacketed bomb, which has been the only powerful, effective technique thus far, is time-consuming and expensive. Rock dissolution using ammonium bifluoride (ABF), as described here, is a viable alternative. METHODS: Geological reference materials (GRMs) were digested using ABF in closed Teflon beakers at temperatures of 220/230°C in a convection oven and subsequently treated with HNO3 . Hf-Sr-Nd were separated and purified using ion-exchange chemistry columns calibrated for 50-2 mg samples. The isotopic compositions of Sr-Nd were measured by Thermal Ionization Mass Spectrometry, while that of Hf by Multi-Collector Inductively Coupled Plasma Mass Spectrometry, both with normal 1011 Ω and gain calibrated 1013 Ω amplifiers. RESULTS: Total procedural blanks of our protocol are 0.5 ng for Sr, 0.2 ng for Nd and <25 pg for Hf. Test runs with GRMs, ranging in composition from basic to felsic and dissolved in ABF, yield accurate 87 Sr/86 Sr, 143 Nd/144 Nd and 176 Hf/177 Hf isotope ratios as compared with those obtained with the bomb dissolution technique. Reproducibilities were comparable, on the order of 10-20 ppm. Our technique allows combined Hf-Sr-Nd isotope analyses of low-mass (50-2 mg) samples. CONCLUSIONS: The ABF digestion is an alternative technique to high-pressure bomb dissolution in matrix decomposition for accurate and reproducible Hf-Nd-Sr isotope analyses of geological samples within a reasonable time (3-4 days), with high sample throughput and low costs in geochemistry and environmental sciences.

2.
Toxics ; 11(9)2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37755800

ABSTRACT

Microplastic particles are ubiquitous in our environment, having entered the air, the water, the soil, and ultimately our food chain. Owing to their small size, these particles can potentially enter the bloodstream and accumulate in the organs. To detect microplastics using existing methods, they must first be isolated. The aim of this study was to develop a non-destructive method for efficiently and affordably isolating plastic particles. We investigated the digestion of kidney, lung, liver, and brain samples from pigs. Kidney samples were analyzed using light microscopy after incubation with proteinase K, pepsin/pancreatin, and 10% potassium hydroxide (KOH) solution. Various KOH:tissue ratios were employed for the digestion of lung, liver, and brain samples. Additionally, we examined the effect of 10% KOH solution on added polystyrene microplastics using scanning electron microscopy. Our findings revealed that a 10% KOH solution is the most suitable for dissolving diverse organ samples, while enzymatic methods require further refinement. Moreover, we demonstrated that commonly used 1 µm polystyrene particles remain unaffected by 10% KOH solution even after 76 h of incubation. Digestion by KOH offers a simple and cost-effective approach for processing organ samples and holds potential for isolating plastic particles from meat products.

SELECTION OF CITATIONS
SEARCH DETAIL