Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
1.
Plant J ; 117(3): 694-712, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37988560

ABSTRACT

Xyloglucan, an important hemicellulose, plays a crucial role in maintaining cell wall structure and cell elongation. However, the effects of xyloglucan on cotton fiber development are not well understood. GhMUR3 encodes a xyloglucan galactosyltransferase that is essential for xyloglucan synthesis and is highly expressed during fiber elongation. In this study, we report that GhMUR3 participates in cotton fiber development under the regulation of GhMYB30. Overexpression GhMUR3 affects the fiber elongation and cell wall thickening. Transcriptome showed that the expression of genes involved in secondary cell wall synthesis was prematurely activated in OE-MUR3 lines. In addition, GhMYB30 was identified as a key regulator of GhMUR3 by Y1H, Dual-Luc, and electrophoretic mobility shift assay (EMSA) assays. GhMYB30 directly bound the GhMUR3 promoter and activated GhMUR3 expression. Furthermore, DAP-seq of GhMYB30 was performed to identify its target genes in the whole genome. The results showed that many target genes were associated with fiber development, including cell wall synthesis-related genes, BR-related genes, reactive oxygen species pathway genes, and VLCFA synthesis genes. It was demonstrated that GhMYB30 may regulate fiber development through multiple pathways. Additionally, GhMYB46 was confirmed to be a target gene of GhMYB30 by EMSA, and GhMYB46 was significantly increased in GhMYB30-silenced lines, indicating that GhMYB30 inhibited GhMYB46 expression. Overall, these results revealed that GhMUR3 under the regulation of GhMYB30 and plays an essential role in cotton fiber elongation and secondary wall thickening. Additionally, GhMYB30 plays an important role in the regulation of fiber development and regulates fiber secondary wall synthesis by inhibiting the expression of GhMYB46.


Subject(s)
Cotton Fiber , Genes, Plant , Transcriptome , Carbohydrate Metabolism , Gossypium/genetics , Gene Expression Regulation, Plant , Cell Wall/metabolism
2.
BMC Genomics ; 24(1): 467, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37596513

ABSTRACT

BACKGROUND: Phloem protein 2 (PP2) proteins play a vital role in the Phloem-based defense (PBD) and participate in many abiotic and biotic stress. However, research on PP2 proteins in cotton is still lacking. RESULTS: A total of 25, 23, 43, and 47 PP2 genes were comprehensively identified and characterized in G.arboretum, G.raimondii, G.barbadense, and G.hirsutum. The whole genome duplication (WGD) and allopolyploidization events play essential roles in the expansion of PP2 genes. The promoter regions of GhPP2 genes contain many cis-acting elements related to abiotic stress and the weighted gene co-expression network analysis (WGCNA) analysis displayed that GhPP2s could be related to salt stress. The qRT-PCR assays further confirmed that GhPP2-33 could be dramatically upregulated during the salt treatment. And the virus-induced gene silencing (VIGS) experiment proved that the silencing of GhPP2-33 could decrease salt tolerance. CONCLUSIONS: The results in this study not only offer new perspectives for understanding the evolution of PP2 genes in cotton but also further explore their function under salt stress.


Subject(s)
Gossypium , Plant Proteins , Salt Tolerance , Gossypium/genetics , Plant Lectins , Salt Stress , Salt Tolerance/genetics , Plant Proteins/metabolism
3.
BMC Plant Biol ; 23(1): 653, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38110862

ABSTRACT

BACKGROUND: Cotton, being extensively cultivated, holds immense economic significance as one of the most prominent crops globally. The SET (Su(var), E, and Trithorax) domain-containing protein is of significant importance in plant development, growth, and response to abiotic stress by modifying the lysine methylation status of histone. However, the comprehensive identification of SET domain genes (SDG) have not been conducted in upland cotton (Gossypium hirsutum L.). RESULTS: A total of 229 SDGs were identified in four Gossypium species, including G. arboretum, G. raimondii, G. hirsutum, and G. barbadense. These genes could distinctly be divided into eight groups. The analysis of gene structure and protein motif revealed a high degree of conservation among the SDGs within the same group. Collinearity analysis suggested that the SDGs of Gossypium species and most of the other selected plants were mainly expanded by dispersed duplication events and whole genome duplication (WGD) events. The allopolyploidization event also has a significant impact on the expansion of SDGs in tetraploid Gossypium species. Furthermore, the characteristics of these genes have been relatively conserved during the evolution. Cis-element analysis revealed that GhSDGs play a role in resistance to abiotic stresses and growth development. Furthermore, the qRT-PCR results have indicated the ability of GhSDGs to respond to salt stress. Co-expression analysis revealed that GhSDG51 might co-express with genes associated with salt stress. In addition, the silencing of GhSDG51 in cotton by the virus-induced gene silencing (VIGS) method suggested a potential positive regulatory role of GhSDG51 in salt stress. CONCLUSIONS: The results of this study comprehensively analyze the SDGs in cotton and provide a basis for understanding the biological role of SDGs in the stress resistance in upland cotton.


Subject(s)
Genome, Plant , Gossypium , Genome, Plant/genetics , Gossypium/genetics , Multigene Family , PR-SET Domains , Stress, Physiological/genetics , Salt Stress/genetics , Phylogeny , Plant Proteins/genetics , Gene Expression Regulation, Plant
4.
Int J Mol Sci ; 24(5)2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36902489

ABSTRACT

The CCCH zinc-finger protein contains a typical C3H-type motif widely existing in plants, and it plays an important role in plant growth, development, and stress responses. In this study, a CCCH zinc-finger gene, GhC3H20, was isolated and thoroughly characterized to regulate salt stress in cotton and Arabidopsis. The expression of GhC3H20 was up-regulated under salt, drought, and ABA treatments. GUS activity was detected in the root, stem, leaves, and flowers of ProGhC3H20::GUS transgenic Arabidopsis. Compared with the control, the GUS activity of ProGhC3H20::GUS transgenic Arabidopsis seedlings under NaCl treatment was stronger. Through the genetic transformation of Arabidopsis, three transgenic lines of 35S-GhC3H20 were obtained. Under NaCl and mannitol treatments, the roots of the transgenic lines were significantly longer than those of the wild-type (WT) Arabidopsis. The leaves of the WT turned yellow and wilted under high-concentration salt treatment at the seedling stage, while the leaves of the transgenic Arabidopsis lines did not. Further investigation showed that compared with the WT, the content of catalase (CAT) in the leaves of the transgenic lines was significantly higher. Therefore, compared with the WT, overexpression of GhC3H20 enhanced the salt stress tolerance of transgenic Arabidopsis. A virus-induced gene silencing (VIGS) experiment showed that compared with the control, the leaves of pYL156-GhC3H20 plants were wilted and dehydrated. The content of chlorophyll in pYL156-GhC3H20 leaves was significantly lower than those of the control. Therefore, silencing of GhC3H20 reduced salt stress tolerance in cotton. Two interacting proteins (GhPP2CA and GhHAB1) of GhC3H20 have been identified through a yeast two-hybrid assay. The expression levels of PP2CA and HAB1 in transgenic Arabidopsis were higher than those in the WT, and pYL156-GhC3H20 had expression levels lower than those in the control. GhPP2CA and GhHAB1 are the key genes involved in the ABA signaling pathway. Taken together, our findings demonstrate that GhC3H20 may interact with GhPP2CA and GhHAB1 to participate in the ABA signaling pathway to enhance salt stress tolerance in cotton.


Subject(s)
Gossypium , Plant Proteins , Salt Tolerance , Arabidopsis/genetics , Droughts , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Salt Tolerance/genetics , Seedlings/metabolism , Signal Transduction/genetics , Sodium Chloride/metabolism , Stress, Physiological/genetics , Zinc/metabolism , Gossypium/genetics , Zinc Fingers
5.
Plant J ; 107(4): 1198-1212, 2021 08.
Article in English | MEDLINE | ID: mdl-34160096

ABSTRACT

Hybrid breakdown (HB) functions as a common reproductive barrier and reduces hybrid fitness in many species, including cotton. However, the related genes and the underlying genetic mechanisms of HB in cotton remain unknown. Here, we found that the photosensitive genetic male sterile line CCRI9106 was a hybrid progeny of Gossypium hirsutum and Gossypium barbadense and probably a product of HB. Fine mapping with F2 s (CCRI9106 × G. hirsutum/G. barbadense lines) identified a pair of male sterility genes GoFLA19s (encoding fasciclin-like arabinogalactan family protein) located on chromosomes A12 and D12. Crucial variations occurring in the fasciclin-like domain and the arabinogalactan protein domain were predicted to cause the non-functionalization of GbFLA19-D and GhFLA19-A. CRISPR/Cas9-mediated knockout assay confirmed the effects of GhFLA19s on male sterility. Sequence alignment analyses showed that variations in GbFLA19-D and GhFLA19-A likely occurred after the formation of allotetraploid cotton species. GoFLA19s are specifically expressed in anthers and contribute to tapetal development, exine assembly, intine formation, and pollen grain maturation. RNA-sequencing and quantitative reverse transcriptase-polymerase chain reaction analyses illustrated that genes related to these biological processes were significantly downregulated in the mutant. Our research on male sterility genes, GoFLA19s, improves the understanding of the molecular characteristics and evolutionary significance of HB in interspecific hybrid breeding.


Subject(s)
Gossypium/physiology , Plant Infertility/genetics , Plant Proteins/genetics , CRISPR-Cas Systems , Chromosomes, Plant , Flowers/genetics , Gene Expression Regulation, Plant , Gossypium/genetics , Loss of Function Mutation , Mucoproteins/genetics , Mucoproteins/metabolism , Plant Infertility/physiology , Plant Proteins/metabolism , Plants, Genetically Modified , Pollen/genetics , Pollen/physiology , Tetraploidy
6.
BMC Genomics ; 23(1): 560, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35931984

ABSTRACT

BACKGROUND: Cyclic nucleotide-gated ion channels (CNGCs) are calcium-permeable channels that participate in a variety of biological functions, such as signaling pathways, plant development, and environmental stress and stimulus responses. Nevertheless, there have been few studies on CNGC gene family in cotton. RESULTS: In this study, a total of 114 CNGC genes were identified from the genomes of 4 cotton species. These genes clustered into 5 main groups: I, II, III, IVa, and IVb. Gene structure and protein motif analysis showed that CNGCs on the same branch were highly conserved. In addition, collinearity analysis showed that the CNGC gene family had expanded mainly by whole-genome duplication (WGD). Promoter analysis of the GhCNGCs showed that there were a large number of cis-acting elements related to abscisic acid (ABA). Combination of transcriptome data and the results of quantitative RT-PCR (qRT-PCR) analysis revealed that some GhCNGC genes were induced in response to salt and drought stress and to exogenous ABA. Virus-induced gene silencing (VIGS) experiments showed that the silencing of the GhCNGC32 and GhCNGC35 genes decreased the salt tolerance of cotton plants (TRV:00). Specifically, physiological indexes showed that the malondialdehyde (MDA) content in gene-silenced plants (TRV:GhCNGC32 and TRV:GhCNGC35) increased significantly under salt stress but that the peroxidase (POD) activity decreased. After salt stress, the expression level of ABA-related genes increased significantly, indicating that salt stress can trigger the ABA signal regulatory mechanism. CONCLUSIONS: we comprehensively analyzed CNGC genes in four cotton species, and found that GhCNGC32 and GhCNGC35 genes play an important role in cotton salt tolerance. These results laid a foundation for the subsequent study of the involvement of cotton CNGC genes in salt tolerance.


Subject(s)
Gossypium , Salt Tolerance , Abscisic Acid/pharmacology , Cyclic Nucleotide-Gated Cation Channels/genetics , Droughts , Gene Expression Regulation, Plant , Gossypium/genetics , Gossypium/metabolism , Phylogeny , Plant Proteins/metabolism , Salt Tolerance/genetics , Stress, Physiological/genetics
7.
Int J Mol Sci ; 23(14)2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35887288

ABSTRACT

Flowering is a prerequisite for flowering plants to complete reproduction, and flowering time has an important effect on the high and stable yields of crops. However, there are limited reports on flowering-related genes at the genomic level in cotton. In this study, genomewide analysis of the evolutionary relationship of flowering-related genes in different cotton species shows that the numbers of flowering-related genes in the genomes of tetraploid cotton species Gossypium hirsutum and Gossypium barbadense were similar, and that these numbers were approximately twice as much as the number in diploid cotton species Gossypium arboretum. The classification of flowering-related genes shows that most of them belong to the photoperiod and circadian clock flowering pathway. The distribution of flowering-related genes on the chromosomes of the At and Dt subgenomes was similar, with no subgenomic preference detected. In addition, most of the flowering-related core genes in Arabidopsis thaliana had homologs in the cotton genome, but the copy numbers and expression patterns were disparate; moreover, flowering-related genes underwent purifying selection throughout the evolutionary and selection processes. Although the differentiation and reorganization of many key genes of the cotton flowering regulatory network occurred throughout the evolutionary and selection processes, most of them, especially those involved in the important flowering regulatory networks, have been relatively conserved and preferentially selected.


Subject(s)
Arabidopsis , Gossypium , Arabidopsis/genetics , Diploidy , Gene Expression Regulation, Plant , Gossypium/metabolism , Multigene Family , Phylogeny , Reproduction , Tetraploidy
8.
Int J Mol Sci ; 23(3)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35163287

ABSTRACT

Cold stress can significantly affect the development, yield, and quality of crops and restrict the geographical distribution and growing seasons of plants. Aquaporins are the main channels for water transport in plant cells. Abiotic stresses such as cold and drought dehydrate cells by changing the water potential. In this study, we cloned a gene GhTIP1;1-like encodes tonoplast aquaporin from the transcriptome database of cotton seedlings after cold stress. Expression analysis showed that GhTIP1;1-like not only responds to cold stress but was also induced by heat, drought and salt stress. Subcellular localization showed that the protein was anchored to the vacuole membrane. Promoter deletion analysis revealed that a MYC motif within the promoter region of GhTIP1;1-like were the core cis-elements in response to low temperature. Virus-induced gene silencing (VIGS) and histochemical staining indicate that GhTIP1;1-like plays a positive role in plant cold tolerance. Overexpression of GhTIP1;1-like in Arabidopsis delayed the senescence process and enhanced the cold tolerance of transgenic plants. Compared with the wild type, the soluble protein concentration and peroxidase activity of the transgenic lines under cold stress were higher, while the malondialdehyde content was lower. In addition, the expression levels of cold-responsive genes were significantly increased in transgenic plants under cold stress. Our results indicate that GhTIP1;1-like could respond to different abiotic stresses and be positively involved in regulating the cold tolerance of cotton.


Subject(s)
Aquaporins/genetics , Cold-Shock Response/genetics , Gossypium/genetics , Aquaporins/metabolism , Arabidopsis/genetics , Cold Temperature , Droughts , Gene Expression/genetics , Gene Expression Regulation, Plant/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Salt Tolerance/genetics , Seedlings/genetics , Stress, Physiological/genetics , Vacuoles/metabolism
9.
Int J Mol Sci ; 23(20)2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36293038

ABSTRACT

Abiotic stress, such as drought and salinity stress, seriously inhibit the growth and development of plants. Therefore, it is vital to understand the drought and salinity resistance mechanisms to enable cotton to provide more production under drought and salt conditions. In this study, we identified 8806 and 9108 differentially expressed genes (DEGs) through a comprehensive analysis of transcriptomic data related to the PEG-induced osmotic and salt stress in cotton. By performing weighted gene co-expression network analysis (WGCNA), we identified four co-expression modules in PEG treatment and five co-expression modules in salinity stress, which included 346 and 324 predicted transcription factors (TFs) in these modules, respectively. Correspondingly, whole genome duplication (WGD) events mainly contribute to the expansion of those TFs. Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) analyses revealed those different modules were associated with stress resistance, including regulating macromolecule metabolic process, peptidase activity, transporter activity, lipid metabolic process, and responses to stimulus. Quantitative RT-PCR analysis was used to confirm the expression levels of 15 hub TFs in PEG6000 and salinity treatments. We found that the hub gene GhWRKY46 could alter salt and PEG-induced drought resistance in cotton through the virus-induced gene silencing (VIGS) method. Our results provide a preliminary framework for further investigation of the cotton response to salt and drought stress, which is significant to breeding salt- and drought-tolerant cotton varieties.


Subject(s)
Droughts , Gene Expression Regulation, Plant , Plant Breeding , Stress, Physiological/genetics , Salt Stress/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Peptide Hydrolases/metabolism , Lipids , Gossypium/genetics , Gossypium/metabolism
10.
Int J Mol Sci ; 23(9)2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35562957

ABSTRACT

As one of the most important factors in alternative splicing (AS) events, serine/arginine-rich (SR) proteins not only participate in the growth and development of plants but also play pivotal roles in abiotic stresses. However, the research about SR proteins in cotton is still lacking. In this study, we performed an extensive comparative analysis of SR proteins and determined their phylogeny in the plant lineage. A total of 169 SR family members were identified from four Gossypium species, and these genes could be divided into eight distinct subfamilies. The domain, motif distribution and gene structure of cotton SR proteins are conserved within each subfamily. The expansion of SR genes is mainly contributed by WGD and allopolyploidization events in cotton. The selection pressure analysis showed that all the paralogous gene pairs were under purifying selection pressure. Many cis-elements responding to abiotic stress and phytohormones were identified in the upstream sequences of the GhSR genes. Expression profiling suggested that some GhSR genes may involve in the pathways of plant resistance to abiotic stresses. The WGCNA analysis showed that GhSCL-8 co-expressed with many abiotic responding related genes in a salt-responding network. The Y2H assays showed that GhSCL-8 could interact with GhSRs in other subfamilies. The subcellular location analysis showed that GhSCL-8 is expressed in the nucleus. The further VIGS assays showed that the silencing of GhSCL-8 could decrease salt tolerance in cotton. These results expand our knowledge of the evolution of the SR gene family in plants, and they will also contribute to the elucidation of the biological functions of SR genes in the future.


Subject(s)
Gene Expression Regulation, Plant , Gossypium , Arginine/metabolism , Genome, Plant , Gossypium/metabolism , Multigene Family , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Serine/metabolism , Stress, Physiological/genetics
11.
Int J Mol Sci ; 23(21)2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36362330

ABSTRACT

Soil salinization conditions seriously restrict cotton yield and quality. Related studies have shown that the DUF4228 proteins are pivotal in plant resistance to abiotic stress. However, there has been no systematic identification and analysis of the DUF4228 gene family in cotton and their role in abiotic stress. In this study, a total of 308 DUF4228 genes were identified in four Gossypium species, which were divided into five subfamilies. Gene structure and protein motifs analysis showed that the GhDUF4228 proteins were conserved in each subfamily. In addition, whole genome duplication (WGD) events and allopolyploidization might play an essential role in the expansion of the DUF4228 genes. Besides, many stress-responsive (MYB, MYC) and hormone-responsive (ABA, MeJA) related cis-elements were detected in the promoters of the DUF4228 genes. The qRT-PCR results showed that GhDUF4228 genes might be involved in the response to abiotic stress. VIGS assays and the measurement of relative water content (RWC), Proline content, POD activity, and malondialdehyde (MDA) content indicated that GhDUF4228-67 might be a positive regulator of cotton response to salt stress. The results in this study systematically characterized the DUF4228s in Gossypium species and will provide helpful information to further research the role of DUF4228s in salt tolerance.


Subject(s)
Gossypium , Salt Tolerance , Gossypium/metabolism , Salt Tolerance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Phylogeny , Stress, Physiological/genetics , Gene Expression Regulation, Plant , Multigene Family
12.
BMC Genomics ; 22(1): 439, 2021 Jun 12.
Article in English | MEDLINE | ID: mdl-34118883

ABSTRACT

BACKGROUND: B-BOX (BBX) proteins are zinc-finger transcription factors with one or two BBX domains and sometimes a CCT domain. These proteins play an essential role in regulating plant growth and development, as well as in resisting abiotic stress. So far, the BBX gene family has been widely studied in other crops. However, no one has systematically studied the BBX gene in cotton. RESULTS: In the present study, 17, 18, 37 and 33 BBX genes were detected in Gossypium arboreum, G. raimondii, G. hirsutum and G. barbadense, respectively, via genome-wide identification. Phylogenetic analysis showed that all BBX genes were divided into 5 main categories. The protein motifs and exon/intron structures showed that each group of BBX genes was highly conserved. Collinearity analysis revealed that the amplification of BBX gene family in Gossypium spp. was mainly through segmental replication. Nonsynonymous (Ka)/ synonymous (Ks) substitution ratios indicated that the BBX gene family had undergone purification selection throughout the long-term natural selection process. Moreover, transcriptomic data showed that some GhBBX genes were highly expressed in floral organs. The qRT-PCR results showed that there were significant differences in GhBBX genes in leaves and shoot apexes between early-maturing materials and late-maturing materials at most periods. Yeast two-hybrid results showed that GhBBX5/GhBBX23 and GhBBX8/GhBBX26 might interact with GhFT. Transcriptome data analysis and qRT-PCR verification showed that different GhBBX genes had different biological functions in abiotic stress and phytohormone response. CONCLUSIONS: Our comprehensive analysis of BBX in G. hirsutum provided a basis for further study on the molecular role of GhBBXs in regulating flowering and cotton resistance to abiotic stress.


Subject(s)
Gene Expression Regulation, Plant , Gossypium , Gene Expression Profiling , Genome, Plant , Gossypium/genetics , Gossypium/metabolism , Multigene Family , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism
13.
BMC Genomics ; 22(1): 882, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34872494

ABSTRACT

BACKGROUND: The node of the first fruiting branch (NFFB) is an important precocious trait in cotton. Many studies have been conducted on the localization of quantitative trait loci (QTLs) and genes related to fiber quality and yield, but there has been little attention to traits related to early maturity, especially the NFFB, in cotton. RESULTS: To identify the QTL associated with the NFFB in cotton, a BC4F2 population comprising 278 individual plants was constructed. The parents and two DNA bulks for high and low NFFB were whole genome sequenced, and 243.8 Gb of clean nucleotide data were generated. A total of 449,302 polymorphic SNPs and 135,353 Indels between two bulks were identified for QTL-seq. Seventeen QTLs were detected and localized on 11 chromosomes in the cotton genome, among which two QTLs (qNFFB-Dt2-1 and qNFFB-Dt3-3) were located in hotspots. Two candidate genes (GhAPL and GhHDA5) related to the NFFB were identified using quantitative real-time PCR (qRT-PCR) and virus-induced gene silencing (VIGS) experiments in this study. Both genes exhibited higher expression levels in the early-maturing cotton material RIL182 during flower bud differentiation, and the silencing of GhAPL and GhHDA5 delayed the flowering time and increased the NFFB compared to those of VA plants in cotton. CONCLUSIONS: Our study preliminarily found that GhAPL and GhHDA5 are related to the early maturity in cotton. The findings provide a basis for the further functional verification of candidate genes related to the NFFB and contribute to the study of early maturity in cotton.


Subject(s)
Gossypium , Quantitative Trait Loci , Chromosome Mapping , Genetic Association Studies , Gossypium/genetics , Phenotype
14.
Plant Biotechnol J ; 19(1): 109-123, 2021 01.
Article in English | MEDLINE | ID: mdl-32652678

ABSTRACT

Although upland cotton (Gossypium hirsutism L.) originated in the tropics, this early maturity cotton can be planted as far north as 46°N in China due to the accumulation of numerous phenotypic and physiological adaptations during domestication. However, how the genome of early maturity cotton has been altered by strong human selection remains largely unknown. Herein, we report a cotton genome variation map generated by the resequencing of 436 cotton accessions. Whole-genome scans for sweep regions identified 357 putative selection sweeps covering 4.94% (112 Mb) of the upland cotton genome, including 5184 genes. These genes were functionally related to flowering time control, hormone catabolism, ageing and defence response adaptations to environmental changes. A genome-wide association study (GWAS) for seven early maturity traits identified 307 significant loci, 22.48% (69) of which overlapped with putative selection sweeps that occurred during the artificial selection of early maturity cotton. Several previously undescribed candidate genes associated with early maturity were identified by GWAS. This study provides insights into the genetic basis of early maturity in upland cotton as well as breeding resources for cotton improvement.


Subject(s)
Genome-Wide Association Study , Gossypium , China , Cotton Fiber , Genome, Plant/genetics , Genomics , Genotype , Gossypium/genetics , Phenotype , Plant Breeding , Quantitative Trait Loci
15.
Plant Biotechnol J ; 19(1): 153-166, 2021 01.
Article in English | MEDLINE | ID: mdl-32654381

ABSTRACT

The transition from vegetative to reproductive growth is very important for early maturity in cotton. However, the genetic control of this highly dynamic and complex developmental process remains unclear. A high-resolution tissue- and stage-specific transcriptome profile was generated from six developmental stages using 72 samples of two early-maturing and two late-maturing cotton varieties. The results of histological analysis of paraffin sections showed that flower bud differentiation occurred at the third true leaf stage (3TLS) in early-maturing varieties, but at the fifth true leaf stage (5TLS) in late-maturing varieties. Using pairwise comparison and weighted gene co-expression network analysis, 5312 differentially expressed genes were obtained, which were divided into 10 gene co-expression modules. In the MElightcyan module, 46 candidate genes regulating cotton flower bud differentiation were identified and expressed at the flower bud differentiation stage. A novel key regulatory gene related to flower bud differentiation, GhCAL, was identified in the MElightcyan module. Anti-GhCAL transgenic cotton plants exhibited late flower bud differentiation and flowering time. GhCAL formed heterodimers with GhAP1-A04/GhAGL6-D09 and regulated the expression of GhAP1-A04 and GhAGL6-D09. GhAP1-A04- and GhAGL6-D09-silenced plants also showed significant late flowering. Finally, we propose a new flowering regulatory pathway mediated by GhCAL. This study elucidated the molecular mechanism of cotton flowering regulation and provides good genetic resources for cotton early-maturing breeding.


Subject(s)
Gossypium , Transcriptome , Flowers/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant/genetics , Gossypium/genetics , Plant Breeding , Transcriptome/genetics
16.
BMC Genomics ; 21(1): 445, 2020 Jun 29.
Article in English | MEDLINE | ID: mdl-32600247

ABSTRACT

BACKGROUND: Multiple C2 domains and transmembrane region proteins (MCTPs) may act as transport mediators of other regulators. Although increased number of MCTPs in higher plants implies their diverse and specific functions in plant growth and development, only a few plant MCTPs have been studied and no study on the MCTPs in cotton has been reported. RESULTS: In this study, we identified 31 MCTPs in G. hirsutum, which were classified into five subfamilies according to the phylogenetic analysis. GhMCTPs from subfamily V exhibited isoelectric points (pIs) less than 7, whereas GhMCTPs from subfamily I, II, III and IV exhibited pIs more than 7.5, implying their distinct biological functions. In addition, GhMCTPs within subfamily III, IV and V exhibited more diverse physicochemical properties, domain architectures and expression patterns than GhMCTPs within subfamily I and II, suggesting that GhMCTPs within subfamily III, IV and V diverged to perform more diverse and specific functions. Analyses of conserved motifs and pIs indicated that the N-terminus was more divergent than the C-terminus and GhMCTPs' functional divergence might be mainly contributed by the N-terminus. Furthermore, yeast two-hybrid assay indicated that the N-terminus was responsible to interact with target proteins. Phylogenetic analysis classified multiple N-terminal C2 domains into four subclades, suggesting that these C2 domains performed different molecular functions in mediating the transport of target proteins. CONCLUSIONS: Our systematic characterization of MCTPs in G. hirsutum will provide helpful information to further research GhMCTPs' molecular roles in mediating other regulators' transport to coordinate growth and development of various cotton tissues.


Subject(s)
Gossypium/genetics , Membrane Proteins/chemistry , Membrane Proteins/classification , Whole Genome Sequencing/methods , Binding Sites , Chromosome Mapping , Membrane Proteins/genetics , Membrane Proteins/metabolism , Multigene Family , Phylogeny , Plant Proteins/chemistry , Plant Proteins/classification , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Domains
17.
BMC Genomics ; 21(1): 825, 2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33228563

ABSTRACT

BACKGROUND: Male sterility is a simple and efficient pollination control system that is widely exploited in hybrid breeding. In upland cotton, CCRI9106, a photosensitive genetic male sterile (PGMS) mutant isolated from CCRI040029, was reported of great advantages to cotton heterosis. However, little information concerning the male sterility of CCRI9106 is known. Here, comparative transcriptome analysis of CCRI9106 (the mutant, MT) and CCRI040029 (the wild type, WT) anthers in Anyang (long-day, male sterile condition to CCRI9106) was performed to reveal the potential male sterile mechanism of CCRI9106. RESULTS: Light and electron microscopy revealed that the male sterility phenotype of MT was mainly attributed to irregularly exine, lacking tryphine and immature anther cuticle. Based on the cytological characteristics of MT anthers, anther RNA libraries (18 in total) of tetrad (TTP), late uninucleate (lUNP) and binucleate (BNP) stages in MT and WT were constructed for transcriptomic analysis, therefore revealing a total of 870,4 differentially expressed genes (DEGs). By performing gene expression pattern analysis and protein-protein interaction (PPI) networks construction, we found down-regulation of DEGs, which enriched by the lipid biosynthetic process and the synthesis pathways of several types of secondary metabolites such as terpenoids, flavonoids and steroids, may crucial to the male sterility phenotype of MT, and resulting in the defects of anther cuticle and tryphine, even the irregularly exine. Furthermore, several lipid-related genes together with ABA-related genes and MYB transcription factors were identified as hub genes via weighted gene co-expression network analysis (WGCNA). Additionally, the ABA content of MT anthers was reduced across all stages when compared with WT anthers. At last, genes related to the formation of anther cuticle and tryphine could activated in MT under short-day condition. CONCLUSIONS: We propose that the down-regulation of genes related to the assembly of anther cuticle and tryphine may lead to the male sterile phenotype of MT, and MYB transcription factors together with ABA played key regulatory roles in these processes. The conversion of fertility in different photoperiods may closely relate to the functional expression of these genes. These findings contribute to elucidate the mechanism of male sterility in upland cotton.


Subject(s)
Flowers , Gossypium/genetics , Lipids , Plant Infertility , Flowers/genetics , Flowers/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Plant Infertility/genetics , Plant Proteins/genetics
18.
BMC Genomics ; 21(1): 643, 2020 Sep 18.
Article in English | MEDLINE | ID: mdl-32948145

ABSTRACT

BACKGROUND: Histone deacetylases (HDACs) catalyze histone deacetylation and suppress gene transcription during various cellular processes. Within the superfamily of HDACs, RPD3/HDA1-type HDACs are the most studied, and it is reported that RPD3 genes play crucial roles in plant growth and physiological processes. However, there is a lack of systematic research on the RPD3/HDA1 gene family in cotton. RESULTS: In this study, genome-wide analysis identified 9, 9, 18, and 18 RPD3 genes in Gossypium raimondii, G. arboreum, G. hirsutum, and G. barbadense, respectively. This gene family was divided into 4 subfamilies through phylogenetic analysis. The exon-intron structure and conserved motif analysis revealed high conservation in each branch of the cotton RPD3 genes. Collinearity analysis indicated that segmental duplication was the primary driving force during the expansion of the RPD3 gene family in cotton. There was at least one presumed cis-element related to plant hormones in the promoter regions of all GhRPD3 genes, especially MeJA- and ABA-responsive elements, which have more members than other hormone-relevant elements. The expression patterns showed that most GhRPD3 genes had relatively high expression levels in floral organs and performed higher expression in early-maturity cotton compared with late-maturity cotton during flower bud differentiation. In addition, the expression of GhRPD3 genes could be significantly induced by one or more abiotic stresses as well as exogenous application of MeJA or ABA. CONCLUSIONS: Our findings reveal that GhRPD3 genes may be involved in flower bud differentiation and resistance to abiotic stresses, which provides a basis for further functional verification of GhRPD3 genes in cotton development and a foundation for breeding better early-maturity cotton cultivars in the future.


Subject(s)
Gossypium/genetics , Histone Deacetylase 1/genetics , Plant Proteins/genetics , Flowers/genetics , Flowers/growth & development , Flowers/metabolism , Gene Expression Regulation, Plant , Gossypium/growth & development , Gossypium/metabolism , Histone Deacetylase 1/metabolism , Multigene Family , Plant Proteins/metabolism , Stress, Physiological
19.
BMC Genomics ; 21(1): 795, 2020 Nov 16.
Article in English | MEDLINE | ID: mdl-33198654

ABSTRACT

BACKGROUND: Valine-glutamine (VQ) motif-containing proteins play important roles in plant growth, development and abiotic stress response. For many plant species, the VQ genes have been identified and their functions have been described. However, little is known about the origin, evolution, and functions (and underlying mechanisms) of the VQ family genes in cotton. RESULTS: In this study, we comprehensively analyzed the characteristics of 268 VQ genes from four Gossypium genomes and found that the VQ proteins evolved into 10 clades, and each clade had a similar structural and conservative motif. The expansion of the VQ gene was mainly through segmental duplication, followed by dispersal. Expression analysis revealed that many GhVQs might play important roles in response to salt and drought stress, and GhVQ18 and GhVQ84 were highly expressed under PEG and salt stress. Further analysis showed that GhVQs were co-expressed with GhWRKY transcription factors (TFs), and microRNAs (miRNAs) could hybridize to their cis-regulatory elements. CONCLUSIONS: The results in this study broaden our understanding of the VQ gene family in plants, and the analysis of the structure, conserved elements, and expression patterns of the VQs provide a solid foundation for exploring their specific functions in cotton responding to abiotic stresses. Our study provides significant insight into the potential functions of VQ genes in cotton.


Subject(s)
Gossypium , Plant Proteins , Gene Expression Regulation, Plant , Gossypium/genetics , Gossypium/metabolism , Multigene Family , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
20.
Mol Genet Genomics ; 295(3): 645-660, 2020 May.
Article in English | MEDLINE | ID: mdl-32172356

ABSTRACT

Genetic male sterility (GMS) facilitates hybrid seed production in crops including cotton (Gossypium hirsutum). However, the genetic and molecular mechanisms specifically involved in this developmental process are poorly understood. In this study, small RNA sequencing, degradome sequencing, and transcriptome sequencing were performed to analyze miRNAs and their target genes during anther development in a GMS mutant ('Dong A') and its fertile wildtype (WT). A total of 80 known and 220 novel miRNAs were identified, 71 of which showed differential expressions during anther development. A further degradome sequencing revealed a total of 117 candidate target genes cleaved by 16 known and 36 novel miRNAs. Based on RNA-seq, 24, 11, and 21 predicted target genes showed expression correlations with the corresponding miRNAs at the meiosis, tetrad and uninucleate stages, respectively. In addition, a large number of differentially expressed genes were identified, most of which were involved in sucrose and starch metabolism, carbohydrate metabolism, and plant hormone signal transduction based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The results of our study provide valuable information for further functional investigations of the important miRNAs and target genes involved in genetic male sterility and advance our understanding of miRNA regulatory functions during cotton anther development.


Subject(s)
Gene Expression Regulation, Developmental , Gossypium/growth & development , Gossypium/genetics , MicroRNAs/genetics , Mutation , Plant Infertility/genetics , Plant Proteins/genetics , Flowers/genetics , Flowers/growth & development , Gene Expression Profiling , Gene Expression Regulation, Plant , High-Throughput Nucleotide Sequencing , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL