Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Cladistics ; 36(1): 22-71, 2020 Feb.
Article in English | MEDLINE | ID: mdl-34618950

ABSTRACT

The infrageneric relationships and taxonomy of the largest fern genus, Asplenium (Aspleniaceae), have remained poorly understood. Previous studies have focused mainly on specific species complexes involving a few or dozens of species only, or have achieved a large taxon sampling but only one plastid marker was used. In the present study, DNA sequences from six plastid markers (atpB, rbcL, rps4, rps4-trnS, trnL and trnL-F) of 1030 accessions (616 of them newly sequenced here) representing c. 420 species of Asplenium (60% of estimated species diversity), 16 species of Hymenasplenium, three Diplaziopsidaceae, and four Rhachidosoraceae were used to produce the largest genus-level phylogeny yet for ferns. Our major results include: (i) Asplenium as broadly circumscribed is monophyletic based on our inclusion of representatives of 32 of 38 named segregate genera; (ii) 11 major clades in Asplenium are identified, and their relationships are mostly well-resolved and strongly supported; (iii) numerous species, unsampled in previous studies, suggest new relationships and numerous cryptic species and species complexes in Asplenium; and (iv) the accrued molecular evidence provides an essential foundation for further investigations of complex patterns of geographical diversification, speciation and reticulate evolution in this family.

2.
PhytoKeys ; 202: 107-119, 2022.
Article in English | MEDLINE | ID: mdl-36761817

ABSTRACT

A new spikemoss species, Selaginellawuyishanensis, is described and illustrated based on materials collected from Fujian Province, East China. The new species can be distinguished from S.lutchuensis Koidzumi and S.albociliata P. S. Wang by its leaves with extremely long cilia (up to 8 mm) and distinctly white margins, ovate ventral sporophylls, and sporophyll-pteryx completely inverted on dorsal sporophylls. In the present work, a molecular phylogeny, taxonomic description, distribution information, line drawing, and photographs of this new species are presented. A morphological comparison is also given to distinguish it from morphologically similar species in Selaginellasect.Tetragonostachyae (Hook. & Grev.) Hieron. & Sadeb.

3.
PhytoKeys ; 185: 17-26, 2021.
Article in English | MEDLINE | ID: mdl-34819778

ABSTRACT

Dryopteriswulingshanensis, a new species growing on limestone in the Wulingshan Mountains, Hunan, China, is described and illustrated. This species is most similar to D.jishouensis and D.gymnophylla on general morphological traits, such as the form of scales, rhizome and sori, but differs by the number of vascular bundles at the base of the petiole, length to width ratio of lamina, stalk length of basal pinnae, division of the lamina, apex form of the pinnule and habitat. Moreover, molecular phylogenetic analysis using the chloroplast rbcL gene suggested that D.wulingshanensis, as the sister group of D.jishouensis, is a monophyletic clade. According to its restricted geographic range, small populations and few individuals, D.wulingshanensis should be considered endangered, according to the IUCN Red List criteria.

4.
PhytoKeys ; (96): 35-45, 2018.
Article in English | MEDLINE | ID: mdl-30532622

ABSTRACT

Based on field observations and examinations of herbarium specimens (including type material), consulting the original literature and molecular phylogenetic analysis of the rbcL and trnL-F sequences, it is concluded that Hypolepis robusta is conspecific with Hypolepis alpina and is here formally treated as a synonym of it. Additionally H. alpina is reported with new distribution records in Guangdong, Guangxi and the Hainan Island of China, respectively.

5.
Gigascience ; 7(2): 1-11, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29186447

ABSTRACT

Background: Ferns, originated about 360 million years ago, are the sister group of seed plants. Despite the remarkable progress in our understanding of fern phylogeny, with conflicting molecular evidence and different morphological interpretations, relationships among major fern lineages remain controversial. Results: With the aim to obtain a robust fern phylogeny, we carried out a large-scale phylogenomic analysis using high-quality transcriptome sequencing data, which covered 69 fern species from 38 families and 11 orders. Both coalescent-based and concatenation-based methods were applied to both nucleotide and amino acid sequences in species tree estimation. The resulting topologies are largely congruent with each other, except for the placement of Angiopteris fokiensis, Cheiropleuria bicuspis, Diplaziopsis brunoniana, Matteuccia struthiopteris, Elaphoglossum mcclurei, and Tectaria subpedata. Conclusions: Our result confirmed that Equisetales is sister to the rest of ferns, and Dennstaedtiaceae is sister to eupolypods. Moreover, our result strongly supported some relationships different from the current view of fern phylogeny, including that Marattiaceae may be sister to the monophyletic clade of Psilotaceae and Ophioglossaceae; that Gleicheniaceae and Hymenophyllaceae form a monophyletic clade sister to Dipteridaceae; and that Aspleniaceae is sister to the rest of the groups in eupolypods II. These results were interpreted with morphological traits, especially sporangia characters, and a new evolutionary route of sporangial annulus in ferns was suggested. This backbone phylogeny in ferns sets a foundation for further studies in biology and evolution in ferns, and therefore in plants.


Subject(s)
Ferns/genetics , Phylogeny , Transcriptome , Biological Evolution , Equisetum/anatomy & histology , Equisetum/classification , Equisetum/genetics , Ferns/anatomy & histology , Ferns/classification , High-Throughput Nucleotide Sequencing , Sporangia/anatomy & histology , Sporangia/genetics
6.
PLoS One ; 12(3): e0164604, 2017.
Article in English | MEDLINE | ID: mdl-28296890

ABSTRACT

Because synonymy treatment traditionally relies on morphological judgments, it usually causes many problems in species delimitation and in the biodiversity catalogue. For example, Diplopterygium simulans, which belongs to the Gleicheniaceae family, has been considered to be synonymous with D. glaucum or D. giganteum based mainly on the morphology of its pinna rachis and blade. In the absence of molecular evidence, these revisions remain doubtful. DNA barcoding, which is considered to be a powerful method for species-level identification, was employed to assess the genetic distance among 9 members of the Diplopterygium genus. The results indicate that D. simulans is an independent species rather than a synonymy of D. glaucum or D. giganteum. Moreover, phylogenetic analysis uncovered the sisterhood of D. simulans and D. cantonense, which is supported by their geographical distributions and morphological traits. Incorrect synonymy treatment is prevalent in the characterization of biological diversity, and our study proposes a convenient and effective method for validating synonym treatments and discovering cryptic species.


Subject(s)
DNA Barcoding, Taxonomic , DNA, Plant/genetics , Ferns/genetics , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL