Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Protein Expr Purif ; 190: 106003, 2022 02.
Article in English | MEDLINE | ID: mdl-34688919

ABSTRACT

SARS-CoV-2 protein subunit vaccines are currently being evaluated by multiple manufacturers to address the global vaccine equity gap, and need for low-cost, easy to scale, safe, and effective COVID-19 vaccines. In this paper, we report on the generation of the receptor-binding domain RBD203-N1 yeast expression construct, which produces a recombinant protein capable of eliciting a robust immune response and protection in mice against SARS-CoV-2 challenge infections. The RBD203-N1 antigen was expressed in the yeast Pichia pastoris X33. After fermentation at the 5 L scale, the protein was purified by hydrophobic interaction chromatography followed by anion exchange chromatography. The purified protein was characterized biophysically and biochemically, and after its formulation, the immunogenicity was evaluated in mice. Sera were evaluated for their efficacy using a SARS-CoV-2 pseudovirus assay. The RBD203-N1 protein was expressed with a yield of 492.9 ± 3.0 mg/L of fermentation supernatant. A two-step purification process produced a >96% pure protein with a recovery rate of 55 ± 3% (total yield of purified protein: 270.5 ± 13.2 mg/L fermentation supernatant). The protein was characterized to be a homogeneous monomer that showed a well-defined secondary structure, was thermally stable, antigenic, and when adjuvanted on Alhydrogel in the presence of CpG it was immunogenic and induced high levels of neutralizing antibodies against SARS-CoV-2 pseudovirus. The characteristics of the RBD203-N1 protein-based vaccine show that this candidate is another well suited RBD-based construct for technology transfer to manufacturing entities and feasibility of transition into the clinic to evaluate its immunogenicity and safety in humans.


Subject(s)
COVID-19 Vaccines , Gene Expression , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/genetics , COVID-19 Vaccines/pharmacology , Humans , Mice , Protein Domains , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/pharmacology , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/pharmacology
2.
Appl Microbiol Biotechnol ; 105(10): 4153-4165, 2021 May.
Article in English | MEDLINE | ID: mdl-33959781

ABSTRACT

A SARS-CoV-2 RBD219-N1C1 (RBD219-N1C1) recombinant protein antigen formulated on Alhydrogel® has recently been shown to elicit a robust neutralizing antibody response against SARS-CoV-2 pseudovirus in mice. The antigen has been produced under current good manufacturing practices (cGMPs) and is now in clinical testing. Here, we report on process development and scale-up optimization for upstream fermentation and downstream purification of the antigen. This includes production at the 1-L and 5-L scales in the yeast, Pichia pastoris, and the comparison of three different chromatographic purification methods. This culminated in the selection of a process to produce RBD219-N1C1 with a yield of >400 mg per liter of fermentation with >92% purity and >39% target product recovery after purification. In addition, we show the results from analytical studies, including SEC-HPLC, DLS, and an ACE2 receptor binding assay that were performed to characterize the purified proteins to select the best purification process. Finally, we propose an optimized upstream fermentation and downstream purification process that generates quality RBD219-N1C1 protein antigen and is fully scalable at a low cost. KEY POINTS: • Yeast fermentation conditions for a recombinant COVID-19 vaccine were determined. • Three purification protocols for a COVID-19 vaccine antigen were compared. • Reproducibility of a scalable, low-cost process for a COVID-19 vaccine was shown. Graphical abstract.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Humans , Mice , Reproducibility of Results , SARS-CoV-2 , Saccharomycetales , Spike Glycoprotein, Coronavirus
3.
PLoS Pathog ; 14(8): e1007273, 2018 08.
Article in English | MEDLINE | ID: mdl-30153307

ABSTRACT

Human whipworm (Trichuris trichiura) infects approximately 1 in 15 people worldwide, representing the leading infectious cause of colitis and subsequent, inflammatory bowel disease (IBD). Current control measures focused on mass deworming have had limited success due to low drug efficacies. Vaccination would be an ideal, cost-effective strategy to induce protective immunity, leading to control of infection and transmission. Here we report the identification of whey acidic protein, a whipworm secretory protein, as a strong immunogen for inducing protective efficacy in a surrogate mouse T. muris infection model. The recombinant WAP protein (rTm-WAP49), as well as a single, highly conserved repeat within WAP (fragment 8) expressed as an Na-GST-1 fusion protein (rTm-WAP-F8+Na-GST-1), generate a strong T helper type 2 (Th2) immune response when delivered as subcutaneous vaccines formulated with Montanide ISA 720. Oral challenge with T. muris infective eggs following vaccination led to a significant reduction in worm burden of 48% by rTm-WAP49 and 33% by rTm-WAP-F8+Na-GST-1. The cellular immune correlates of protection included significant antigen-specific production of Th2 cytokines IL-4, IL-9, and IL-13 by cells isolated from the vaccine-draining inguinal lymph nodes, parasite-draining mesenteric lymph nodes, and spleen in mice vaccinated with either rTm-WAP49 or rTm-WAP-F8+Na-GST-1. The humoral immune correlates included a high antigen-specific ratio of IgG1 to IgG2a, without eliciting an IgE-mediated allergic response. Immunofluorescent staining of adult T. muris with WAP antisera identified the worm's pathogenic stichosome organ as the site of secretion of native Tm-WAP protein into the colonic mucosa. Given the high sequence conservation for the WAP proteins from T. muris and T. trichiura, the results presented here support the WAP protein to be further evaluated as a potential human whipworm vaccine candidate.


Subject(s)
Immunity , Milk Proteins/immunology , Trichuriasis/prevention & control , Trichuris/immunology , Animals , Antibodies, Helminth/metabolism , Antigens, Helminth/genetics , Antigens, Helminth/immunology , Antigens, Helminth/pharmacology , Immunity/drug effects , Immunity/genetics , Male , Mice , Mice, Inbred AKR , Mice, Knockout , Mice, SCID , Milk Proteins/genetics , Milk Proteins/pharmacology , Trichuriasis/immunology , Trichuris/genetics , Vaccination/methods
4.
Protein Expr Purif ; 130: 129-136, 2017 02.
Article in English | MEDLINE | ID: mdl-27773761

ABSTRACT

The nucleoside hydrolase gene from Leishmania donovani was cloned and expressed in Escherichia coli as a full length 36-kDa protein (LdNH36). Following lysis and extraction, the protein was purified by anion exchange and gel filtration chromatography. The purified protein had a molecular mass of approximately 36-kDa and was confirmed to be >99% pure. Using a nucleoside hydrolase assay, the protein was found to exhibit a Km of 741 ± 246 µM. Protein integrity was confirmed by lithium dodecyl sulfate polyacrylamide gel electrophoresis (LDS-PAGE), mass spectrometry (MS), and enzymatic assay. Analysis of antibody levels from immunized mice indicated that LdNH36 alone or in a stable emulsion with the Toll-like receptor-4 ligand glucopyranosyl lipid adjuvant (GLA-SE) as immunostimulant induced high levels of antigen-specific IgG antibodies. The cellular immune response indicated a Th1 response in mice immunized with LdNH36, but only when formulated with GLA-SE. Mice immunized with the LdNH36 antigen in combination with the GLA-SE adjuvant and challenged with Leishmania mexicana showed significant reductions (>20 fold) in parasite burden, confirming the protective efficacy of this vaccine candidate.


Subject(s)
Immunogenicity, Vaccine , Leishmania donovani , Leishmaniasis Vaccines , Leishmaniasis, Cutaneous , N-Glycosyl Hydrolases , Protozoan Proteins , Animals , Female , Leishmania donovani/enzymology , Leishmania donovani/genetics , Leishmania donovani/immunology , Leishmaniasis Vaccines/biosynthesis , Leishmaniasis Vaccines/immunology , Leishmaniasis Vaccines/isolation & purification , Leishmaniasis Vaccines/pharmacokinetics , Leishmaniasis, Cutaneous/immunology , Leishmaniasis, Cutaneous/prevention & control , Mice , Mice, Inbred BALB C , N-Glycosyl Hydrolases/biosynthesis , N-Glycosyl Hydrolases/immunology , N-Glycosyl Hydrolases/isolation & purification , N-Glycosyl Hydrolases/pharmacology , Protozoan Proteins/biosynthesis , Protozoan Proteins/immunology , Protozoan Proteins/isolation & purification , Protozoan Proteins/pharmacology , Recombinant Proteins/biosynthesis , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification , Recombinant Proteins/pharmacology
5.
Trop Med Int Health ; 20(12): 1787-96, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26426162

ABSTRACT

OBJECTIVES: To identify immunodominant antigens of Toxocara canis recognised by Toxocara-infected sera as recombinant reagents for immunodiagnosis of toxocariasis. METHODS: Pooled sera from human cases of toxocariasis were used to identify immunodominant antigens by immunoscreening a T. canis larval expression cDNA library. The positive clones were sequenced to reveal the identity of the antigens. The recombinant proteins were expressed in E. coli and then used to confirm their immunoreaction with sera of humans with toxocariasis. Two chosen antigens were also used to differentiate Toxocara infection from other helminth infections in mice. RESULTS: Eleven antigens with immunodiagnostic potential were identified, including two C-type lectins (CTLs) that reacted strongly with the Toxocara-positive serum pool. The first CTL (Tc-CTL-1) is the same as TES-32, previously identified as a major immunodominant component of TES; the second CTL (Tc-CTL-2) is a novel C-type lectin sharing 83% amino acid sequence identity within the functional domain of Tc-CTL-1. The E. coli-expressed recombinant Tc-CTL-1 was strongly recognised by the Toxocara-positive serum pool or sera from animals experimentally infected with T. canis. Reactivity with recombinant Tc-CTL-1 was higher when the unreduced protein was used in an enzyme-linked immunosorbent assay (ELISA), dot-blot assay or Western blot test compared to the protein under reduced condition. Both recombinant Tc-CTL-1- and Tc-CTL-2-based ELISAs were able to differentiate T. canis infection from other helminth infections in experimentally infected mice. CONCLUSIONS: Both Tc-CTL-1 and Tc-CTL-2 were able to differentiate Toxocara infection from other helminth infections and could potentially be used as sensitive and specific immunodiagnostic antigens.


Subject(s)
Antigens, Helminth/immunology , Immunodominant Epitopes , Toxocara canis/immunology , Toxocariasis/diagnosis , Amino Acid Sequence , Animals , Antibodies, Helminth/blood , Blotting, Western , Clinical Laboratory Techniques , DNA, Complementary , Enzyme-Linked Immunosorbent Assay , Escherichia coli , Helminthiasis/diagnosis , Helminthiasis/immunology , Humans , Larva , Lectins/immunology , Mice, Inbred C57BL , Recombinant Proteins/immunology , Toxocariasis/immunology
6.
Medicine (Baltimore) ; 103(8): e37299, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38394490

ABSTRACT

The aim of this study was to estimate the association between blood urea nitrogen (BUN) and clinical prognosis in patients with COVID-19. A multicenter, retrospective study was conducted in adult patients with COVID-19 in 3 hospitals in Zhenjiang from January 2023 to May 2023. Patients were divided into survival and death group based on whether they survived at day 28. The demographic, comorbidities, and laboratory data were independently collected and analyzed, as well as clinical outcomes. Total 141 patients were enrolled and 23 (16.3%) died within 28 days. Patients who died within 28 days had a higher level of BUN compared with survivors. Bivariate logistic regression analysis showed that BUN was a risk factor for 28-day mortality in patients with COVID-19. ROC curve showed that BUN could predict 28-day mortality of COVID-19 patients (AUC = 0.796, 95%CI: 0.654-0.938, P < .001). When the cutoff value of BUN was 7.37 mmol/L, the sensitivity and specificity were 84.62% and 70.31%. Subgroup analysis demonstrated that hyper-BUN (≥7.37 mmol/L) was associated with increased 28-day mortality among COVID-19 patients. Patients with COVID-19 who died within 28 days had a higher level of BUN, and hyper-BUN (≥7.37 mmol/L) was associated with increased 28-day mortality.


Subject(s)
COVID-19 , Adult , Humans , Blood Urea Nitrogen , Retrospective Studies , Prognosis , Risk Factors , ROC Curve
7.
Expert Rev Vaccines ; 22(1): 495-500, 2023.
Article in English | MEDLINE | ID: mdl-37252854

ABSTRACT

INTRODUCTION: The development of a yeast-expressed recombinant protein-based vaccine technology co-developed with LMIC vaccine producers and suitable as a COVID-19 vaccine for global access is described. The proof-of-concept for developing a SARS-CoV-2 spike protein receptor-binding domain (RBD) antigen as a yeast-derived recombinant protein vaccine technology is described. AREAS COVERED: Genetic Engineering: The strategy is presented for the design and genetic modification used during cloning and expression in the yeast system. Process and Assay Development: A summary is presented of how a scalable, reproducible, and robust production process for the recombinant protein COVID-19 vaccine antigen was developed. Formulation and Pre-clinical Strategy: We report on the pre-clinical and formulation strategy used for the proof-of-concept evaluation of the SARS-CoV-2 RBD vaccine antigen. Technology Transfer and Partnerships: The process used for the technology transfer and co-development with LMIC vaccine producers is described. Clinical Development and Delivery: The approach used by LMIC developers to establish the industrial process, clinical development, and deployment is described. EXPERT OPINION: Highlighted is an alternative model for developing new vaccines for emerging infectious diseases of pandemic importance starting with an academic institution directly transferring their technology to LMIC vaccine producers without the involvement of multinational pharma companies.


Subject(s)
COVID-19 , Saccharomyces cerevisiae , Humans , COVID-19 Vaccines , COVID-19/prevention & control , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Technology , Recombinant Proteins/genetics , Antibodies, Viral , Antibodies, Neutralizing
8.
Front Immunol ; 13: 800295, 2022.
Article in English | MEDLINE | ID: mdl-35197976

ABSTRACT

Trichuriasis is one of the most common neglected tropical diseases of the world's poorest people. A recombinant vaccine composed of Tm-WAP49, an immunodominant antigen secreted by adult Trichuris stichocytes into the mucosa of the cecum to which the parasite attaches, is under development. The prototype is being evaluated in a mouse model of Trichuris muris infection, with the ultimate goal of producing a mucosal vaccine through intranasal delivery. Intranasal immunization of mice with Tm-WAP49 formulated with the adjuvant OCH, a truncated analog of alpha-GalCer with adjuvanticity to stimulate natural killer T cells (NKT) and mucosal immunity, induced significantly high levels of IgG and its subclasses (IgG1 and IgG2a) in immunized mice. This also resulted in a significant reduction of worm burden after challenge with T. muris-infective eggs. The addition of QS-21 adjuvant to this vaccine formulation further reduced worm counts. The improved protection from the dual-adjuvanted vaccine correlated with higher serum antibody responses (IgG, IgG1, IgG2a, IgA) as well as with the induction of antigen-specific IgA in the nasal mucosa. It was also associated with the robust cellular responses including functional subsets of CD4 T cells producing IL-4, and cytotoxic CD8 T cells expressing granzyme B. The worm reduction achieved by mucosal immunization was higher than that induced by subcutaneous immunization. Intranasal immunization also induced a significantly higher nasal mucosa-secreted antigen-specific IgA response, as well as higher functional cellular responses including CD4+IL4+ (Th1) and CD8+GnzB+ (Th2) T cells, and antigen-specific INFγ-producing T cells in both spleen and MLNs and antibody-producing B cells (CD19+B220+/B220+GL7+). Mucosal immunization further induced long-term T lymphocyte memory with increased central (CD62L+CD44+) and effector (CD62L-CD44+) memory subsets of both CD4 and CD8 T cells at 60 days after the last immunization. In summary, intranasal immunization with recombinant Tm-WAP49 protein induced strong protection versus murine trichuriasis. It represents a promising vaccination approach against intestinal nematodes.


Subject(s)
Trichuriasis/immunology , Adjuvants, Immunologic/pharmacology , Administration, Intranasal , Animals , Antibody Formation/drug effects , CD8-Positive T-Lymphocytes/immunology , Female , Immunity, Cellular/drug effects , Immunity, Mucosal/immunology , Immunization , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Mice , Mice, Inbred AKR , Mice, Inbred BALB C , Mucous Membrane/immunology , Th1 Cells/immunology , Trichuris/immunology , Vaccination/methods , Vaccines, Synthetic
9.
Vaccine ; 40(26): 3655-3663, 2022 06 09.
Article in English | MEDLINE | ID: mdl-35568591

ABSTRACT

We conducted preclinical studies in mice using a yeast-produced SARS-CoV-2 RBD subunit vaccine candidate formulated with aluminum hydroxide (alum) and CpG deoxynucleotides. This formulation is equivalent to the CorbevaxTM vaccine that recently received emergency use authorization by the Drugs Controller General ofIndia. We compared the immune response of mice vaccinated with RBD/alum to mice vaccinated with RBD/alum + CpG. We also evaluated mice immunized with RBD/alum + CpG and boosted with RBD/alum. Mice were immunized twice intramuscularly at a 21-day interval. Compared to two doses of the /alum formulation, the RBD/alum + CpG vaccine induced a stronger and more balanced Th1/Th2 cellular immune response, with high levels of neutralizing antibodies against the original Wuhan isolate of SARS-CoV-2 as well as the B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617.2 and (Delta) variants. Neutralizing antibody titers against the B.1.1.529 (BA.1, Omicron) variant exceeded those in human convalescent plasma after Wuhan infection but were lower than against the other variants. Interestingly, the second dose did not benefit from the addition of CpG, possibly allowing dose-sparing of the adjuvant in the future. The data reported here reinforces that the RBD/alum + CpG vaccine formulation is suitable for inducing broadly neutralizing antibodies against SARS-CoV-2, including variants of concern.


Subject(s)
COVID-19 , SARS-CoV-2 , Alum Compounds , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19/therapy , COVID-19 Vaccines , Humans , Immunization, Passive , Mice , Recombinant Proteins , Spike Glycoprotein, Coronavirus , COVID-19 Serotherapy
10.
bioRxiv ; 2022 Mar 22.
Article in English | MEDLINE | ID: mdl-34268512

ABSTRACT

We conducted preclinical studies in mice using a yeast-produced SARS-CoV-2 RBD subunit vaccine candidate formulated with aluminum hydroxide (alum) and CpG deoxynucleotides. This formulation is equivalent to the CorbevaxTM vaccine that recently received emergency use authorization by the Drugs Controller General of India. We compared the immune response of mice vaccinated with RBD/alum to mice vaccinated with RBD/alum+CpG. We also evaluated mice immunized with RBD/alum+CpG and boosted with RBD/alum. Mice were immunized twice intramuscularly at a 21-day interval. Compared to two doses of the /alum formulation, the RBD/alum+CpG vaccine induced a stronger and more balanced Th1/Th2 cellular immune response, with high levels of neutralizing antibodies against the original Wuhan isolate of SARS-CoV-2 as well as the B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617.2 and (Delta) variants. Neutralizing antibody titers against the B.1.1.529 (BA.1, Omicron) variant exceeded those in human convalescent plasma after Wuhan infection but were lower than against the other variants. Interestingly, the second dose did not benefit from the addition of CpG, possibly allowing dose-sparing of the adjuvant in the future. The data reported here reinforces that the RBD/alum+CpG vaccine formulation is suitable for inducing broadly neutralizing antibodies against SARS-CoV-2 including variants of concern.

11.
bioRxiv ; 2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33173864

ABSTRACT

There is an urgent need for an accessible and low-cost COVID-19 vaccine suitable for low- and middle-income countries. Here we report on the development of a SARS-CoV-2 receptor-binding domain (RBD) protein, expressed at high levels in yeast ( Pichia pastoris ), as a suitable vaccine candidate against COVID-19. After introducing two modifications into the wild-type RBD gene to reduce yeast-derived hyperglycosylation and improve stability during protein expression, we show that the recombinant protein, RBD219-N1C1, is equivalent to the wild-type RBD recombinant protein (RBD219-WT) in an in vitro ACE-2 binding assay. Immunogenicity studies of RBD219-N1C1 and RBD219-WT proteins formulated with Alhydrogel ® were conducted in mice, and, after two doses, both the RBD219-WT and RBD219-N1C1 vaccines induced high levels of binding IgG antibodies. Using a SARS-CoV-2 pseudovirus, we further showed that sera obtained after a two-dose immunization schedule of the vaccines were sufficient to elicit strong neutralizing antibody titers in the 1:1,000 to 1:10,000 range, for both antigens tested. The vaccines induced IFN-γ, IL-6, and IL-10 secretion, among other cytokines. Overall, these data suggest that the RBD219-N1C1 recombinant protein, produced in yeast, is suitable for further evaluation as a human COVID-19 vaccine, in particular, in an Alhydrogel ® containing formulation and possibly in combination with other immunostimulants.

12.
Hum Vaccin Immunother ; 17(8): 2356-2366, 2021 08 03.
Article in English | MEDLINE | ID: mdl-33847226

ABSTRACT

There is an urgent need for an accessible and low-cost COVID-19 vaccine suitable for low- and middle-income countries. Here, we report on the development of a SARS-CoV-2 receptor-binding domain (RBD) protein, expressed at high levels in yeast (Pichia pastoris), as a suitable vaccine candidate against COVID-19. After introducing two modifications into the wild-type RBD gene to reduce yeast-derived hyperglycosylation and improve stability during protein expression, we show that the recombinant protein, RBD219-N1C1, is equivalent to the wild-type RBD recombinant protein (RBD219-WT) in an in vitro ACE-2 binding assay. Immunogenicity studies of RBD219-N1C1 and RBD219-WT proteins formulated with Alhydrogel® were conducted in mice, and, after two doses, both the RBD219-WT and RBD219-N1C1 vaccines induced high levels of binding IgG antibodies. Using a SARS-CoV-2 pseudovirus, we further showed that sera obtained after a two-dose immunization schedule of the vaccines were sufficient to elicit strong neutralizing antibody titers in the 1:1,000 to 1:10,000 range, for both antigens tested. The vaccines induced IFN-γ IL-6, and IL-10 secretion, among other cytokines. Overall, these data suggest that the RBD219-N1C1 recombinant protein, produced in yeast, is suitable for further evaluation as a human COVID-19 vaccine, in particular, in an Alhydrogel® containing formulation and possibly in combination with other immunostimulants.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , Humans , Mice , Mice, Inbred BALB C , Protein Domains , SARS-CoV-2 , Saccharomyces cerevisiae/genetics , Saccharomycetales , T-Lymphocytes
13.
Biochim Biophys Acta Gen Subj ; 1865(6): 129893, 2021 06.
Article in English | MEDLINE | ID: mdl-33731300

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 has now spread worldwide to infect over 110 million people, with approximately 2.5 million reported deaths. A safe and effective vaccine remains urgently needed. METHOD: We constructed three variants of the recombinant receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein (residues 331-549) in yeast as follows: (1) a "wild type" RBD (RBD219-WT), (2) a deglycosylated form (RBD219-N1) by deleting the first N-glycosylation site, and (3) a combined deglycosylated and cysteine-mutagenized form (C538A-mutated variant (RBD219-N1C1)). We compared the expression yields, biophysical characteristics, and functionality of the proteins produced from these constructs. RESULTS AND CONCLUSIONS: These three recombinant RBDs showed similar secondary and tertiary structure thermal stability and had the same affinity to their receptor, angiotensin-converting enzyme 2 (ACE-2), suggesting that the selected deletion or mutations did not cause any significant structural changes or alteration of function. However, RBD219-N1C1 had a higher fermentation yield, was easier to purify, was not hyperglycosylated, and had a lower tendency to form oligomers, and thus was selected for further vaccine development and evaluation. GENERAL SIGNIFICANCE: By genetic modification, we were able to design a better-controlled and more stable vaccine candidate, which is an essential and important criterion for any process and manufacturing of biologics or drugs for human use.


Subject(s)
COVID-19 Vaccines/immunology , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Saccharomycetales/genetics , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Sequence , Cloning, Molecular , Gene Expression , Protein Domains , Protein Structure, Tertiary , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology
14.
Sci Immunol ; 6(61)2021 07 15.
Article in English | MEDLINE | ID: mdl-34266981

ABSTRACT

Ongoing SARS-CoV-2 vaccine development is focused on identifying stable, cost-effective, and accessible candidates for global use, specifically in low and middle-income countries. Here, we report the efficacy of a rapidly scalable, novel yeast expressed SARS-CoV-2 specific receptor-binding domain (RBD) based vaccine in rhesus macaques. We formulated the RBD immunogen in alum, a licensed and an emerging alum adsorbed TLR-7/8 targeted, 3M-052-alum adjuvants. The RBD+3M-052-alum adjuvanted vaccine promoted better RBD binding and effector antibodies, higher CoV-2 neutralizing antibodies, improved Th1 biased CD4+T cell reactions, and increased CD8+ T cell responses when compared to the alum-alone adjuvanted vaccine. RBD+3M-052-alum induced a significant reduction of SARS-CoV-2 virus in respiratory tract upon challenge, accompanied by reduced lung inflammation when compared with unvaccinated controls. Anti-RBD antibody responses in vaccinated animals inversely correlated with viral load in nasal secretions and BAL. RBD+3M-052-alum blocked a post SARS-CoV-2 challenge increase in CD14+CD16++ intermediate blood monocytes, and Fractalkine, MCP-1, and TRAIL in the plasma. Decreased plasma analytes and intermediate monocyte frequencies correlated with reduced nasal and BAL viral loads. Lastly, RBD-specific plasma cells accumulated in the draining lymph nodes and not in the bone marrow, contrary to previous findings. Together, these data show that a yeast expressed, RBD-based vaccine+3M-052-alum provides robust immune responses and protection against SARS-CoV-2, making it a strong and scalable vaccine candidate.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Alum Compounds/administration & dosage , COVID-19 Vaccines , COVID-19/prevention & control , SARS-CoV-2 , Saccharomycetales/genetics , Spike Glycoprotein, Coronavirus/genetics , Administration, Inhalation , Administration, Intranasal , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Cell Line , Cytokines/immunology , Humans , Immunoglobulin G/immunology , Lung/pathology , Macaca mulatta , Male , Protein Binding , Protein Domains , Spike Glycoprotein, Coronavirus/immunology , Viral Load
15.
Exp Parasitol ; 124(4): 403-8, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20045697

ABSTRACT

Our previous studies showed that immunization with recombinant paramyosin from Trichinella spiralis (rTs-Pmy) formulated with Freund's adjuvant significantly reduced larval burden in mice after T. spiralis larval challenge. Since Freund's adjuvant is toxic and not a suitable adjuvant for clinical vaccine trials, we evaluated the ability of the adjuvants Montanide ISA206 and ISA720 to stimulate immune responses during rTs-Pmy immunization and to enhance protective immunity. The results revealed that immunization of BALB/c mice with rTs-Pmy formulated with either ISA206 or ISA720 triggered Th1 and Th2 immune responses similar to those produced by the conventional Freund's adjuvant formulation and also provided a similar level of protection against T. spiralis larval challenge. This indicates that the recombinant Ts-Pmy formulated with Montanide ISA206 or ISA720 may be an effective and safety vaccine strategy for trichinellosis.


Subject(s)
Antibodies, Helminth/blood , Trichinella spiralis/immunology , Trichinellosis/prevention & control , Tropomyosin/immunology , Adjuvants, Immunologic/administration & dosage , Animals , Antibodies, Helminth/biosynthesis , Cytokines/analysis , Cytokines/biosynthesis , Enzyme-Linked Immunosorbent Assay , Female , Immunization/methods , Immunoglobulin G/biosynthesis , Immunoglobulin G/blood , Kinetics , Mice , Mice, Inbred BALB C , Mice, Inbred ICR , Muscles/parasitology , Recombinant Proteins/administration & dosage , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Spleen/cytology , Spleen/immunology , Trichinella spiralis/genetics , Trichinellosis/immunology , Tropomyosin/administration & dosage , Tropomyosin/genetics
16.
PLoS Negl Trop Dis ; 14(2): e0008057, 2020 02.
Article in English | MEDLINE | ID: mdl-32053593

ABSTRACT

BACKGROUND: Ascaris lumbricoides is one of the three major soil-transmitted gastrointestinal helminths (STHs) that infect more than 440 million people in the world, ranking this neglected tropical disease among the most common afflictions of people living in poverty. Children infected with this roundworm suffer from malnutrition, growth stunting as well as cognitive and intellectual deficits. An effective vaccine is urgently needed to complement anthelmintic deworming as a better approach to control helminth infections. As37 is an immunodominant antigen of Ascaris suum, a pig roundworm closely related to the human A. lumbricoides parasite, recognized by protective immune sera from A. suum infected mice. In this study, the immunogenicity and vaccine efficacy of recombinant As37 were evaluated in a mouse model. METHODOLOGY/PRINCIPAL FINDINGS: As37 was cloned and expressed as a soluble recombinant protein (rAs37) in Escherichia coli. The expressed rAs37 was highly recognized by protective immune sera from A. suum egg-infected mice. Balb/c mice immunized with 25 µg rAs37 formulated with AddaVax™ adjuvant showed significant larval worm reduction after challenge with A. suum infective eggs when compared with a PBS (49.7%) or adjuvant control (48.7%). Protection was associated with mixed Th1/2-type immune responses characterized by high titers of serological IgG1 and IgG2a and stimulation of the production of cytokines IL-4, IL-5, IL-10 and IL-13. In this experiment, the AddaVax™ adjuvant induced better protection than the Th1-type adjuvant MPLA (38.9%) and the Th2-type adjuvant Alhydrogel (40.7%). Sequence analysis revealed that As37 is a member of the immunoglobulin superfamily (IgSF) and highly conserved in other human STHs. Anti-As37 antibodies strongly recognized homologs in hookworms (Necator americanus, Ancylostoma ceylanicum, A. caninum) and in the whipworm Trichuris muris, but there was no cross-reaction with human spleen tissue extracts. These results suggest that the nematode-conserved As37 could serve as a pan-helminth vaccine antigen to prevent all STH infections without cross-reaction with human IgSF molecules. CONCLUSIONS/SIGNIFICANCE: As37 is an A. suum expressed immunodominant antigen that elicited significant protective immunity in mice when formulated with AddaVax™. As37 is highly conserved in other STHs, but not in humans, suggesting it could be further developed as a pan-helminth vaccine against STH co-infections.


Subject(s)
Ascariasis/immunology , Ascaris suum/metabolism , Helminth Proteins/immunology , Amino Acid Sequence , Animals , Antibodies, Helminth/blood , Antigens, Helminth/immunology , Ascaris suum/genetics , Ascaris suum/immunology , Female , Humans , Mice , Mice, Inbred BALB C , Phylogeny , Soil/parasitology
17.
Biochem Biophys Res Commun ; 365(3): 528-33, 2008 Jan 18.
Article in English | MEDLINE | ID: mdl-18021743

ABSTRACT

A full-length cDNA encoding Trichinella spiralis paramyosin (Ts-Pmy) was cloned by immunoscreening a cDNA library of the adult T. spiralis worm. Ts-Pmy cDNA consists of 2655bp that encode 885 amino acids. The recombinant protein (rTs-Pmy) was expressed and purified by Ni-affinity chromatography. Western blot analysis showed that rTs-Pmy could be recognized by sera from T. spiralis-infected humans, swine, rabbits, and mice. Immunolocalization demonstrated that Ts-Pmy was abundant on the surface of T. spiralis larvae. BALB/c mice vaccinated with rTs-Pmy demonstrated 36.2% reduction in muscle larvae burden following T. spiralis larvae challenge. Vaccination of the mice with rTs-Pmy resulted in a high level of specific anti-Ts-Pmy IgG antibodies and generated a Th1/Th2 mixed type of immune response, with Th2 predominant. These studies showed that rTs-Pmy induced protective immunity in mice and could be considered as a potential vaccine candidate for trichinellosis.


Subject(s)
Antigens, Helminth/immunology , Helminth Proteins/immunology , Recombinant Proteins/immunology , Trichinella spiralis/immunology , Tropomyosin/immunology , Animals , Antibodies, Helminth/blood , Antigens, Helminth/genetics , DNA, Complementary/genetics , Female , Helminth Proteins/genetics , Immunoglobulin G/blood , Mice , Mice, Inbred BALB C , Recombinant Proteins/genetics , Th1 Cells/immunology , Th2 Cells/immunology , Trichinella spiralis/genetics , Tropomyosin/genetics , Vaccination , Vaccines/immunology
18.
Vaccine ; 36(25): 3650-3665, 2018 06 14.
Article in English | MEDLINE | ID: mdl-29764680

ABSTRACT

Vaccination remains the most cost-effective biomedical approach for controlling influenza disease. In times of pandemics, however, these vaccines cannot be produced in sufficient quantities for worldwide use by the current manufacturing capacities and practices. What is needed is the development of adjuvanted vaccines capable of inducing an adequate or better immune response at a decreased antigen dose. Previously we showed that the protein adjuvant rOv-ASP-1 augments influenza-specific antibody titers and survival after virus challenge in both young adult and old-age mice when administered with the trivalent inactivated influenza vaccine (IIV3). In this study we show that a reduced amount of rOv-ASP-1, with 40-times less IIV3 can also induce protection. Apparently the potency of the rOv-ASP-1 adjuvanted IIV3 vaccine is independent of the IIV3-specific Th1/Th2 associated antibody responses, and independent of the presence of HAI antibodies. However, CD4+ T helper cells were indispensable for the protection. Further, rOv-ASP-1 with or without IIV3 elicited the increased level of various chemokines, which are known chemoattractant for immune cells, into the muscle 4 h after immunization, and significantly induced the recruitment of monocytes, macrophages and neutrophils into the muscles. The recruited monocytes had higher expression of the activation marker MHCII on their surface as well as CXCR3 and CCR2; receptors for IP-10 and MCP-1, respectively. These results show that the rOv-ASP-1 adjuvant allows substantial antigen sparing of IIV3 by stimulating at the site of injection the accumulation of chemokines and the recruitment of immune cells that can augment the activation of CD4+ T cell immune responses, essential for the production of antibody responses. Protection elicited by the rOv-ASP-1 adjuvanted IIV3 vaccine also appears to function in the absence of MyD88-signaling. Future studies will attempt to delineate the precise mechanisms by which the rOv-ASP-1 adjuvanted IIV3 vaccine works.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Aging/immunology , Antibodies, Viral/biosynthesis , Antigens, Helminth/administration & dosage , Helminth Proteins/administration & dosage , Immunization/methods , Influenza Vaccines/administration & dosage , Orthomyxoviridae Infections/prevention & control , Aging/genetics , Animals , Female , Gene Expression Regulation , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/immunology , Macrophages/drug effects , Macrophages/immunology , Macrophages/virology , Mice , Mice, Knockout , Monocytes/drug effects , Monocytes/immunology , Monocytes/virology , Muscle, Skeletal/drug effects , Muscle, Skeletal/immunology , Muscle, Skeletal/virology , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/immunology , Neutrophils/drug effects , Neutrophils/immunology , Neutrophils/virology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/mortality , Orthomyxoviridae Infections/virology , Receptors, CCR2/genetics , Receptors, CCR2/immunology , Receptors, CXCR3/genetics , Receptors, CXCR3/immunology , Survival Analysis , T-Lymphocytes, Helper-Inducer/drug effects , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/virology , Viral Load/drug effects , Viral Load/immunology
19.
J Parasitol Res ; 2017: 4342789, 2017.
Article in English | MEDLINE | ID: mdl-28884022

ABSTRACT

Trichuriasis is a disease of poverty for which excretory and secretory (ES) products that induce the protective immunity are being investigated as candidate vaccines antigens. In this study, ES products of T. muris and immune sera were produced. The immune sera recognized more than 20 proteins on a 2D-gel of ES products of T. muris adult worms. Tm16 was one of the proteins identified by mass spectrometry. Tm16 shares 57% sequence identity with Ov16, an immunodominant diagnostic antigen from Onchocerca volvulus. Recombinant Tm16 with a carboxyl terminal hexahistidine was produced using Pichia pastoris. Polyclonal antibodies against rTm16 were generated by one-prime and two-boost immunization of three female Balb/c mice with 25 µg of recombinant Tm16 emulsified with ISA720 adjuvant. These polyclonal antibodies confirmed that Tm16 is localized to the ES products and the soluble fraction of the adult worm. Additionally, the high-resolution crystal structure of Tm16 was solved by molecular replacement. Tm16 belongs to the phosphatidylethanolamine-binding-like protein (PEBP1) family and this is the first structure of a PEBP1 from a parasite.

20.
PLoS Negl Trop Dis ; 11(7): e0005769, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28708895

ABSTRACT

BACKGROUND: Ascariasis remains the most common helminth infection in humans. As an alternative or complementary approach to global deworming, a pan-anthelminthic vaccine is under development targeting Ascaris, hookworm, and Trichuris infections. As16 and As14 have previously been described as two genetically related proteins from Ascaris suum that induced protective immunity in mice when formulated with cholera toxin B subunit (CTB) as an adjuvant, but the exact protective mechanism was not well understood. METHODOLOGY/PRINCIPAL FINDINGS: As16 and As14 were highly expressed as soluble recombinant proteins (rAs16 and rAs14) in Pichia pastoris. The yeast-expressed rAs16 was highly recognized by immune sera from mice infected with A. suum eggs and elicited 99.6% protection against A. suum re-infection. Mice immunized with rAs16 formulated with ISA720 displayed significant larva reduction (36.7%) and stunted larval development against A. suum eggs challenge. The protective immunity was associated with a predominant Th2-type response characterized by high titers of serological IgG1 (IgG1/IgG2a > 2000) and high levels of IL-4 and IL-5 produced by restimulated splenocytes. A similar level of protection was observed in mice immunized with rAs16 formulated with alum (Alhydrogel), known to induce mainly a Th2-type immune response, whereas mice immunized with rAs16 formulated with MPLA or AddaVax, both known to induce a Th1-type biased response, were not significantly protected against A. suum infection. The rAs14 protein was not recognized by A. suum infected mouse sera and mice immunized with rAs14 formulated with ISA720 did not show significant protection against challenge infection, possibly due to the protein's inaccessibility to the host immune system or a Th1-type response was induced which would counter a protective Th2-type response. CONCLUSIONS/SIGNIFICANCE: Yeast-expressed rAs16 formulated with ISA720 or alum induced significant protection in mice against A. suum egg challenge that associates with a Th2-skewed immune response, suggesting that rAS16 could be a feasible vaccine candidate against ascariasis.


Subject(s)
Antibodies, Helminth/blood , Antigens, Helminth/therapeutic use , Ascariasis/prevention & control , Th2 Cells/immunology , Vaccines/therapeutic use , Adjuvants, Immunologic , Animals , Antigens, Helminth/immunology , Ascaris suum , Cholera Toxin/immunology , Female , Immunoglobulin G/blood , Interleukin-4/immunology , Interleukin-5/immunology , Larva , Mice , Mice, Inbred BALB C , Recombinant Proteins/therapeutic use , Saccharomyces cerevisiae , Sequence Analysis , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL