Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Yeast ; 41(6): 369-378, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38613186

ABSTRACT

Engineering Yarrowia lipolytica to produce astaxanthin provides a promising route. Here, Y. lipolytica M2 producing a titer of 181 mg/L astaxanthin was isolated by iterative atmospheric and room-temperature plasma mutagenesis and diphenylamine-mediated screening. Interestingly, a negative correlation was observed between cell biomass and astaxanthin production. To reveal the underlying mechanism, RNA-seq analysis of transcriptional changes was performed in high producer M2 and reference strain M1, and a total of 1379 differentially expressed genes were obtained. Data analysis revealed that carbon flux was elevated through lipid metabolism, acetyl-CoA and mevalonate supply, but restrained through central carbon metabolism in strain M2. Moreover, upregulation of other pathways such as ATP-binding cassette transporter and thiamine pyrophosphate possibly provided more cofactors for carotenoid hydroxylase and relieved cell membrane stress caused by astaxanthin insertion. These results suggest that balancing cell growth and astaxanthin production may be important to promote efficient biosynthesis of astaxanthin in Y. lipolytica.


Subject(s)
Gene Expression Profiling , Xanthophylls , Yarrowia , Yarrowia/genetics , Yarrowia/metabolism , Xanthophylls/metabolism , Metabolic Engineering , Transcriptome , Gene Expression Regulation, Fungal , Metabolic Networks and Pathways/genetics , Metabolic Flux Analysis , Lipid Metabolism , Biomass
2.
Mol Microbiol ; 116(5): 1298-1314, 2021 11.
Article in English | MEDLINE | ID: mdl-34608686

ABSTRACT

The filamentous fungus Trichoderma reesei is widely used for industrial cellulase production. In T. reesei, cellulase gene expression is tightly controlled by a regulatory network involving multiple transcription factors. Here, we isolated a novel protein, Rce2, using a pull-down assay and mass spectrometry analysis, from a partial carbon catabolite de-repression mutant, T. reesei Rut-C30, cultured under glucose-repressing conditions. Deletion and overexpression of Rce2 in T. reesei wild-type QM6a and mutant Rut-C30 revealed that Rce2 acts as a repressor of cellulase gene expression. DNase I footprinting assays, electrophoretic mobility shift assays, and chromatin immunoprecipitation assays revealed that Rce2 was located in the nucleus and bound to the consensus sequences 5'-(T/A)NNNNCCG-3' and 5'-CGGNNNN(T/A)-3' in the promoters of cellulase-related genes to repress their transcription. Additionally, Rce2 antagonized Ace3 binding to the cbh1 promoter to repress its transcription. However, Rce2 was not involved in Cre1-mediated carbon catabolite repression. These results demonstrate the mechanism through which Rce2 represses the expression of cellulase genes and provide novel insights into the regulatory system of cellulases and methods that can be used for the regulation of gene expression in T. reesei.


Subject(s)
Cellulase/biosynthesis , Cellulase/genetics , Hypocreales/genetics , Hypocreales/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Amino Acid Sequence , Catabolite Repression , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Industrial Microbiology , Phylogeny , Promoter Regions, Genetic
3.
Appl Environ Microbiol ; 87(17): e0048121, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34132586

ABSTRACT

Squalene is a triterpenoid serving as an ingredient of various products in the food, cosmetic, pharmaceutical industries. The oleaginous yeast Yarrowia lipolytica offers enormous potential as a microbial chassis for the production of terpenoids, such as carotenoid, limonene, linalool, and farnesene, as the yeast provides ample storage space for hydrophobic products. Here, we present a metabolic design that allows the enhanced accumulation of squalene in Y. lipolytica. First, we improved squalene accumulation in Y. lipolytica by overexpressing the genes (ERG and HMG) coding for the mevalonate pathway enzymes. Second, we increased the production of lipid where squalene is accumulated by overexpressing DGA1 (encoding diacylglycerol acyltransferase) and deleting PEX10 (for peroxisomal membrane E3 ubiquitin ligase). Third, we deleted URE2 (coding for a transcriptional regulator in charge of nitrogen catabolite repression [NCR]) to induce lipid accumulation regardless of the carbon-to-nitrogen ratio in culture media. The resulting engineered Y. lipolytica exhibited a 115-fold higher squalene content (22.0 mg/g dry cell weight) than the parental strain. These results suggest that the biological function of Ure2p in Y. lipolytica is similar to that in Saccharomyces cerevisiae, and its deletion can be utilized to enhance the production of hydrophobic target products in oleaginous yeast strains. IMPORTANCE This study demonstrated a novel strategy for increasing squalene production in Y. lipolytica. URE2, a bifunctional protein that is involved in both nitrogen catabolite repression and oxidative stress response, was identified and demonstrated correlation to squalene production. The data suggest that double deletion of PEX10 and URE2 can serve as a positive synergistic effect to help yeast cells in boosting squalene production. This discovery can be combined with other strategies to engineer cell factories to efficiently produce terpenoid in the future.


Subject(s)
Bacterial Proteins/genetics , Squalene/metabolism , Transcription Factors/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Yarrowia/genetics , Yarrowia/metabolism , Bacterial Proteins/metabolism , Gene Deletion , Metabolic Engineering , Transcription Factors/metabolism , Yarrowia/enzymology
4.
Appl Environ Microbiol ; 87(15): e0059321, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34047636

ABSTRACT

The filamentous fungus Trichoderma reesei is a model strain for cellulase production. Cellulase gene expression in T. reesei is controlled by multiple transcription factors. Here, we identified by comparative genomic screening a novel transcriptional activator, ACE4 (activator of cellulase expression 4), that positively regulates cellulase gene expression on cellulose in T. reesei. Disruption of the ace4 gene significantly decreased expression of four main cellulase genes and the essential cellulase transcription factor-encoding gene ace3. Overexpression of ace4 increased cellulase production by approximately 22% compared to that in the parental strain. Further investigations using electrophoretic mobility shift assays, DNase I footprinting assays, and chromatin immunoprecipitation assays indicated that ACE4 directly binds to the promoter of cellulase genes by recognizing the two adjacent 5'-GGCC-3' sequences. Additionally, ACE4 directly binds to the promoter of ace3 and, in turn, regulates the expression of ACE3 to facilitate cellulase production. Collectively, these results demonstrate an important role for ACE4 in regulating cellulase gene expression, which will contribute to understanding the mechanism underlying cellulase expression in T. reesei. IMPORTANCET. reesei is commonly utilized in industry to produce cellulases, enzymes that degrade lignocellulosic biomass for the production of bioethanol and bio-based products. T. reesei is capable of rapidly initiating the biosynthesis of cellulases in the presence of cellulose, which has made it useful as a model fungus for studying gene expression in eukaryotes. Cellulase gene expression is controlled through multiple transcription factors at the transcriptional level. However, the molecular mechanisms by which transcription is controlled remain unclear. In the present study, we identified a novel transcription factor, ACE4, which regulates cellulase expression on cellulose by binding to the promoters of cellulase genes and the cellulase activator gene ace3. Our study not only expands the general functional understanding of the novel transcription factor ACE4 but also provides evidence for the regulatory mechanism mediating gene expression in T. reesei.


Subject(s)
Cellulase/genetics , Trans-Activators/genetics , Trichoderma/genetics , Cellulase/metabolism , Cellulose/metabolism , Cellulose 1,4-beta-Cellobiosidase/metabolism , Endo-1,4-beta Xylanases/metabolism , Gene Expression Regulation, Fungal , Trichoderma/growth & development , Trichoderma/metabolism
5.
Appl Microbiol Biotechnol ; 105(21-22): 8561-8573, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34661706

ABSTRACT

Given the grave concerns over increasing consumption of petroleum resources and dramatic environmental changes arising from carbon dioxide emissions worldwide, microbial biosynthesis of fatty acid ethyl ester (FAEE) biofuels as renewable and sustainable replacements for petroleum-based fuels has attracted much attention. As one of the most important microbial chassis, the nonconventional oleaginous yeast Yarrowia lipolytica has emerged as a paradigm organism for the production of several advanced biofuels and chemicals. Here, we report the engineering of Y. lipolytica for use as an efficient dual biocatalytic system for in situ and one-pot production of FAEEs from renewable feedstock. Compared to glucose with 5.7% (w/w) conversion rate to FAEEs, sunflower seed oil in the culture medium was efficiently used to generate FAEEs with 84% (w/w) conversion rate to FAEEs by the engineered Y. lipolytica strain GQY20 that demonstrates an optimized intercellular heterologous FAEE synthesis pathway. In particular, the titer of extracellular FAEEs from sunflower seed oil reached 9.9 g/L, 10.9-fold higher than that with glucose as a carbon source. An efficient dual biocatalytic system combining ex vivo and strengthened in vitro FAEE production routes was constructed by overexpression of a lipase (Lip2) variant in the background strain GQY20, which further increased FAEEs levels to 13.5 g/L. Notably, deleting the ethanol metabolism pathway had minimal impact on FAEE production. Finally, waste cooking oil, a low-cost oil-based substance, was used as a carbon source for FAEE production in the Y. lipolytica dual biocatalytic system, resulting in production of 12.5 g/L FAEEs. Thus, the developed system represents a promising green and sustainable process for efficient biodiesel production. KEY POINTS: • FAEEs were produced by engineered Yarrowia lipolytica. • A Lip2 variant was overexpressed in the yeast to create a dual biocatalytic system. • Waste cooking oil as a substrate resulted in a high titer of 12.5 g/L FAEEs.


Subject(s)
Yarrowia , Biofuels , Esters , Fatty Acids , Metabolic Engineering , Yarrowia/genetics
6.
Biotechnol Lett ; 43(7): 1277-1287, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33797654

ABSTRACT

OBJECTIVE: Erythritol (1,2,3,4-butanetetrol) is a 4-carbon sugar alcohol that occurs in nature as a metabolite or storage compound. In this study, a multiple gene integration strategy was employed to enhance erythritol production in Y. lipolytica. RESULTS: The effects on the production of erythritol in Y. lipolytica of seven key genes involved in the erythritol synthesis pathway were evaluated individually, among which transketolase (TKL1) and transaldolase (TAL1) showed important roles in enhancing erythritol production. The combined overexpression of four genes (GUT1, TPI1, TKL1, TAL1) and disruption of the EYD1 gene (encoding erythritol dehydrogenase), resulted in produce approximately 40 g/L erythritol production from glycerol. Further enhanced erythritol synthesis was obtained by overexpressing the RKI1 gene (encoding ribose 5-phosphate isomerase) and the AMPD gene (encoding AMP deaminase), indicating for the first time that these two genes are also related to the enhancement of erythritol production in Y. lipolytica. CONCLUSIONS: A combined gene overexpression strategy was developed to efficiently improve the production of erythritol in Y. lipolytica, suggesting a great capacity and promising potential of this non-conventional yeast in converting glycerol into erythritol.


Subject(s)
Erythritol/biosynthesis , Fungal Proteins/genetics , Metabolic Engineering/methods , Yarrowia/growth & development , AMP Deaminase/genetics , Aldose-Ketose Isomerases/genetics , Batch Cell Culture Techniques , Glycerol/metabolism , Transaldolase/genetics , Transketolase/genetics , Yarrowia/genetics , Yarrowia/metabolism
7.
FEMS Yeast Res ; 20(6)2020 09 01.
Article in English | MEDLINE | ID: mdl-32840573

ABSTRACT

Limonene, a valuable cyclic monoterpene, has been broadly studied in recent decades due to its wide application in the food, cosmetics and pharmaceutical industries. Engineering of the yeast Yarrowia lipolytica for fermentation of renewable biomass lignocellulosic hydrolysate may reduce the cost and improve the economics of bioconversion for the production of limonene. The aim of this study was to engineer Y. lipolytica to produce limonene from xylose and low-cost lignocellulosic feedstock. The heterologous genes XR and XDH and native gene XK encoding xylose assimilation enzymes, along with the heterologous genes tNDPS1 and tLS encoding orthogonal limonene biosynthetic enzymes, were introduced into the Po1f strain to facilitate xylose fermentation to limonene. The initially developed strain produced 0.44 mg/L of limonene in 72 h with 20 g/L of xylose. Overexpression of genes from the mevalonate pathway, including HMG1 and ERG12, significantly increased limonene production from xylose to ∼9.00 mg/L in 72 h. Furthermore, limonene production peaked at 20.57 mg/L with 50% hydrolysate after 72 h when detoxified lignocellulosic hydrolysate was used. This study is the first to report limonene production by yeast from lignocellulosic feedstock, and these results indicate the initial steps toward economical and sustainable production of isoprenoids from renewable biomass by engineered Y. lipolytica.


Subject(s)
Lignin/metabolism , Limonene/metabolism , Metabolic Engineering , Xylose/metabolism , Yarrowia/metabolism , Fermentation , Industrial Microbiology , Metabolic Networks and Pathways , Yarrowia/genetics
8.
Appl Microbiol Biotechnol ; 104(8): 3555-3568, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32114676

ABSTRACT

Ansamitocin P-3 (AP-3), a 19-membered polyketide macrocyclic lactam, has potent antitumor activity. Our previous study showed that a relatively low organic nitrogen concentration in culture medium could significantly improve AP-3 production of Actinosynnema pretiosum. In the present study, we aimed to reveal the possible reasons for this improvement through metabolomic and gene transcriptional analytical methods. At the same time, a metabolic pathway profile based on metabolome data and pathway correlation information was performed to obtain a systematic view of the metabolic network modulations of A. pretiosum. Orthogonal partial least squares discriminant analysis showed that nine and eleven key metabolites directly associated with AP-3 production at growth phase and ansamitocin production phase, respectively. In-depth pathway analysis results highlighted that low organic nitrogen availability had significant impacts on central carbon metabolism and amino acid metabolic pathways of A. pretiosum and these metabolic responses were found to be beneficial to precursor supply and ansamitocin biosynthesis. Furthermore, real-time PCR results showed that the transcription of genes involved in precursor and ansamitocin biosynthetic pathways were remarkably upregulated under low organic nitrogen condition thus directing increased carbon flux toward ansamitocin biosynthesis. More importantly, the metabolic pathway analysis demonstrated a competitive relationship between fatty acid and AP-3 biosynthesis could significantly affect the accumulation of AP-3. Our findings provided new knowledge on the organic nitrogen metabolism and ansamitocin biosynthetic precursor in A. pretiosum and identified several important rate-limiting steps involved in ansamitocin biosynthesis thus providing a theoretical basis of further improvement in AP-3 production.


Subject(s)
Actinobacteria/growth & development , Actinobacteria/metabolism , Culture Media/chemistry , Maytansine/analogs & derivatives , Metabolic Networks and Pathways , Nitrogen/metabolism , Actinobacteria/genetics , Biosynthetic Pathways/genetics , Carbon/metabolism , Fermentation , Gene Expression Profiling , Maytansine/biosynthesis , Metabolic Engineering/methods , Metabolomics
9.
Biotechnol Lett ; 42(6): 945-956, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32090297

ABSTRACT

OBJECTIVE: Carotenoids, as potent antioxidant compounds, have gained extensive attention, especially in human health. In this study, the combination of CRISPR/Cas9 integration strategy and fermenter cultivation was utilized to obtain efficient ß-carotene-producing Yarrowia lipolytica cell factories for potential industrial application. RESULTS: The introduction of the genes of Mucor circinelloides, encoding phytoene dehydrogenase (carB) and bifunctional phytoene synthase/lycopene cyclase (carRP), contributed to the heterologous production of ß-carotene in Y. lipolytica XK2. Furthermore, ß-carotene production was efficiently enhanced by increasing the copy numbers of the carB and carRP genes and overexpressing of GGS1, ERG13, and HMG, the genes related to the mevalonate (MVA) pathway. Thus, the optimized strain overexpressed a total of eight genes, including three copies of carRP, two copies of carB, and single copies of GGS1, HMG, and ERG13. As a consequence, strain Y. lipolytica XK19 accumulated approximately 408 mg/L ß-carotene in shake flask cultures, a twenty-four-fold increase compared to the parental strain Y. lipolytica XK2. CONCLUSIONS: 4.5 g/L ß-carotene was obtained in a 5-L fermenter through a combination of genetic engineering and culture optimization, suggesting a great capacity and flexibility of Y. lipolytica in the production of carotenoids.


Subject(s)
Metabolic Engineering/methods , Yarrowia/genetics , beta Carotene/metabolism , Bioreactors , CRISPR-Cas Systems/genetics , Fermentation , Glucose/metabolism , Yarrowia/metabolism , beta Carotene/analysis
10.
Biotechnol Bioeng ; 115(7): 1793-1800, 2018 07.
Article in English | MEDLINE | ID: mdl-29573412

ABSTRACT

Squalene, a valuable acyclic triterpene, can be used as a chemical commodity for pharmacology, flavor, and biofuel industries. Microbial production of squalene has been of great interest due to its limited availability, and increasing prices extracted from animal and plant tissues. Here we report genetic perturbations that synergistically improve squalene production in Saccharomyces cerevisiae. As reported previously, overexpression of a truncated HMG-CoA reductase 1 (tHMG1) led to the accumulation 20-fold higher squalene than a parental strain. In order to further increase squalene accumulation in the tHMG1 overexpressing yeast, we introduced genetic perturbations-known to increase lipid contents in yeast-to enhance squalene accumulation as lipid body is a potential storage of squalene. Specifically, DGA1 coding for diacylglycerol acyltranferase was overexpressed to enhance lipid biosynthesis, and POX1 and PXA2 coding for acyl-CoA oxidase and a subunit of peroxisomal ABC transporter were deleted to reduce lipid ß-oxidation. Simultaneous overexpression of tHMG1 and DGA1 coding for rate-limiting enzymes in the mevalonate and lipid biosynthesis pathways led to over 250-fold higher squalene accumulation than a control strain. However, deletion of POX1 and PXA2 in the tHMG1 overexpressing yeast did not improve squalene accumulation additionally. Fed-batch fermentation of the tHMG1 and DGA1 co-overexpressing yeast strain resulted in the production of squalene at a titer of 445.6 mg/L in a nitrogen-limited minimal medium. This report demonstrates that increasing storage capacity for hydrophobic compounds can enhance squalene production, suggesting that increasing lipid content is an effective strategy to overproduce a hydrophobic molecule in yeast.


Subject(s)
Lipid Metabolism , Metabolic Engineering/methods , Metabolic Networks and Pathways/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Squalene/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Acyl-CoA Oxidase/genetics , Acyl-CoA Oxidase/metabolism , Diacylglycerol O-Acyltransferase/genetics , Diacylglycerol O-Acyltransferase/metabolism , Gene Expression , Hydroxymethylglutaryl CoA Reductases/genetics , Hydroxymethylglutaryl CoA Reductases/metabolism , Mutant Proteins/genetics , Mutant Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
11.
Appl Microbiol Biotechnol ; 100(6): 2651-62, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26585444

ABSTRACT

Ansamitocin P-3 (AP-3), an amacrocyclic lactam compound, is produced by Actinosynnema pretiosum. As a group of maytansinoid antibiotics, ansamitocins have an extraordinary antitumor activity by blocking the assembly of tubulin forming into functional microtubules. The biosynthesis of ansamitocins is initialized by the formation of UDP-glucose (UDPG) which is converted from glucose-1-phosphate (G1P). In this study, we focused on the influence of enhancement of UDPG biosynthesis on the production of ansamitocins in A. pretiosum. The homologous overexpressions of phosphoglucomutase, starch phosphorylase, and UTP-G1P uridylyltransferase, respectively, could largely increase the pool sizes of G1P and UDPG and result in improved AP-3 production. The elevated intracellular glucose-6-phosphate (G6P) level provided by the enhanced glyconeogenesis had, however, no significant effects on the biosynthesis of AP-3. The G6P-G1P-UDPG pathway was therefore systematically engineered by multiple genetic modifications, and a significant increase in AP-3 production was achieved (168 mg/L of AP-3 in flask culture, 40 % higher than the control strain). We also found that the enhancement of starch assimilation pathway could also improve the assembly of AP-3 to some extent. In addition, heterologous gene overexpression from Actinosynnema mirum could result in more AP-3 biosynthesis in comparison to the corresponding homologous overexpression, suggesting an alternative and promising avenue of metabolic engineering strategy for improving AP-3 production.


Subject(s)
Actinobacteria/genetics , Actinobacteria/metabolism , Biosynthetic Pathways/genetics , Maytansine/analogs & derivatives , Metabolic Engineering/methods , Tubulin Modulators/metabolism , Uridine Diphosphate Glucose/biosynthesis , Gluconeogenesis , Maytansine/metabolism , Starch/metabolism
12.
J Ind Microbiol Biotechnol ; 41(1): 143-52, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24174216

ABSTRACT

Ansamitocin P-3 (AP-3), a secondary metabolite produced by Actinosynnema pretiosum, is well known for its extraordinary antitumor properties and is broadly utilized in clinical research. Through this work, we found, for the first time, that the combination of glucose and glycerol as a mixed carbon source is an appropriate approach for enhancing the production of AP-3 by A. pretiosum. The amount yielded was about threefold that obtained with glucose as the sole carbon source. In order to better understand the mechanisms that channel glycerol metabolism towards AP-3 production, the activities of some key enzymes such as glucose-6-phosphate dehydrogenase, glucose-6-phosphate isomerase, phosphoglucomutase (PGM), and fructose 1,6-bisphosphatase were assessed. The results showed that glycerol affects the production of AP-3 by increasing PGM activity. Furthermore, qRT-PCR analysis revealed that transcriptional levels of structural genes asm14 and asm24, and primary genes amir5189 and amir6327 were up-regulated in medium containing glycerol.


Subject(s)
Actinomycetales/metabolism , Glucose/metabolism , Glycerol/metabolism , Maytansine/analogs & derivatives , Actinomycetales/enzymology , Actinomycetales/genetics , Carbon/metabolism , Maytansine/biosynthesis , Maytansine/chemistry , Transcription, Genetic
13.
Biotechnol Lett ; 35(12): 2137-45, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24062132

ABSTRACT

Genetic manipulation was undertaken in order to understand the mechanism involved in the heterologous synthesis of lycopene in Escherichia coli. Knockout of the central carbon metabolic gene zwf (glucose-6-phosphate dehydrogenase) resulted in the enhancement of lycopene production (above 130 % relative to control). The amplification and overexpression of rate-limiting steps encoded by idi (isopentenyl diphosphate isomerase), dxs (1-deoxyxylulose-5-phosphate synthase) and ispDF (4-diphosphocytidyl-2C-methyl-D-erythritol synthase and 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase) genes improved lycopene synthesis from 0.89 to 5.39 mg g(-1) DCW. The combination of central metabolic genes knockout with the amplification of MEP pathway genes yielded best amounts of lycopene (6.85-7.55 mg g(-1) DCW). Transcript profiling revealed that idi and dxs were up-regulated in the zwf knock-out strain, providing a plausible explanation for the increase in lycopene yield observed in this strain. An increase in precursor availability might also have contributed to the improved lycopene production.


Subject(s)
Carotenoids/metabolism , Escherichia coli/genetics , Genes, Bacterial/genetics , Glucosephosphate Dehydrogenase/genetics , Metabolic Engineering/methods , Analysis of Variance , Carotenoids/analysis , Carotenoids/genetics , Escherichia coli/metabolism , Gene Knockout Techniques , Lycopene , Metabolic Networks and Pathways/genetics , Plasmids
14.
J Ind Microbiol Biotechnol ; 40(3-4): 379-88, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23381123

ABSTRACT

D-xylose is one of the most abundant carbohydrates in nature. This work focuses on xylose metabolism of Gluconobacter oxydans as revealed by a few studies conducted to understand xylose utilization by this strain. Interestingly, the G. oxydans 621H Δmgdh strain (deficient in membrane-bound glucose dehydrogenase) was greatly inhibited when grown on xylose and no xylonate accumulation was observed in the medium. These experimental observations suggested that the mgdh gene was responsible for the conversion of xylose to xylonate in G. oxydans, which was also verified by whole-cell biotransformation. Since 621H Δmgdh could still grow on xylose in a very small way, two seemingly important genes in the oxo-reductive pathway for xylose metabolism, a xylitol dehydrogenase-encoding gox0865 (xdh) gene and a putative xylulose kinase-encoding gox2214 (xk) gene, were knocked out to investigate the effects of both genes on xylose metabolism. The results showed that the gox2214 gene was not involved in xylose metabolism, and there might be other genes encoding xylulose kinase. Though the gox0865 gene played a less important role in xylose metabolism compared to the mgdh gene, it was significant in xylitol utilization in G. oxydans, which meant that gox0865 was a necessary gene for the oxo-reductive pathway of xylose in vivo. To sum up, when xylose was used as the carbon source, the majority of xylose was directly oxidized to xylonate for further metabolism in G. oxydans, whereas only a minor part of xylose was metabolized by the oxo-reductive pathway.


Subject(s)
Gluconobacter oxydans/genetics , Gluconobacter oxydans/metabolism , Xylose/metabolism , D-Xylulose Reductase/genetics , D-Xylulose Reductase/metabolism , Gluconobacter oxydans/growth & development , Glucose 1-Dehydrogenase/genetics , Mutation , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Xylitol/metabolism
15.
J Agric Food Chem ; 71(16): 6358-6365, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37042195

ABSTRACT

ß-Carotene is an indispensable additive in beverage, cosmetic, feed, and pharmaceutical production. The fermentation industry annually generates abundant waste mycelia from Trichoderma reesei (T. reesei), a pivotal industrial strain for cellulase and heterologous protein production. In this study, we constructed a T. reesei cell factory for ß-carotene production for the first time. Four key enzymes, CarRP, CarB, GGS1/CrtE, and HMG1, were overexpressed in T. reesei. The concentrations of medium components, including tryptone and glucose, were optimized. The modified strain accumulated ß-carotene at a titer of 218.8 mg/L in flask culture. We achieved cellulase production (FPase, 22.33 IU/mL) with the concomitant production of ß-carotene (286.63 mg/L) from T. reesei in a jar. Overall, this study offers a novel and unique approach to address the costly waste mycelium management process using T. reesei industrial strains that simultaneously produce proteins and carotenoids.


Subject(s)
beta Carotene , beta Carotene/biosynthesis , beta Carotene/chemistry , Cellulase/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fermentation , Bioreactors
16.
Bioresour Bioprocess ; 10(1): 70, 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-38647797

ABSTRACT

Nervonic acid, a natural fatty acid compound and also a core component of nerve fibers and nerve cells, has been widely used to prevent and treat related diseases of the brain nervous system. At present, fatty acids and their derivatives are mainly obtained by natural extraction or chemical synthesis which are limited by natural resources and production costs. In this study, the de novo synthetic pathway of nervonic acid was constructed in Yarrowia lipolytica by means of synthetic biology, and the yield of nervonic acid was further improved by metabolic engineering and fermentation optimization. Specially, heterologous elongases and desaturases derived from different organism were successfully expressed and evaluated for their potential for the production of nervonic acid in Y. lipolytica. Meanwhile, we overexpressed the genes involved in the lipid metabolism to increase the nervonic acid titer to 111.6 mg/L. In addition, the potential of adding oil as auxiliary carbon sources for nervonic acid production by the engineered Y. lipolytica was analyzed. The results indicated that supplementation with colleseed oil as an auxiliary carbon source can be beneficial for the nervonic acid productivity, which led to the highest concentration of 185.0 mg/L in this work. To summarize, this study describes that the Y. lipolytica can be used as a promising platform for the production of nervonic acid and other very long-chain fatty acids.

17.
Bioresour Bioprocess ; 10(1): 83, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38647953

ABSTRACT

Because of its potent antioxidant effects, lycopene has been used in various industries including, but not limited to, food, medical, and cosmetic industries. Yarrowia lipolytica, a non-conventional yeast species, is a promising chassis due to its natural mevalonate (MVA) pathway, abundant precursor acetyl coenzyme A content, and oleaginous properties. Several gene editing tools have been developed for Y. lipolytica along with engineering strategies for tetraterpenoid production. In this study, we engineered Y. lipolytica following multi-level strategies for efficient lycopene accumulation. We first evaluated the performance of the key lycopene biosynthetic genes crtE, crtB, and crtI, expressed via ribosomal DNA (rDNA) mediated multicopy random integration in the HMG1- and GGS1-overexpressing background strain. Further improvement in lycopene production was achieved by overexpressing the key genes for MVA synthesis via non-homologous end joining (NHEJ) mediated multi-round iterative transformation. Efficient strategies in the MVA and lipid synthesis pathways were combined to improve lycopene production with a yield of 430.5 mg/L. This strain produced 121 mg/g dry cell weight of lycopene in a 5-L fed-batch fermentation system. Our findings demonstrated iterative gene integration mediated by 26S rDNA and NHEJ for the efficient production of lycopene in Y. lipolytica. These strategies can be applied to induce Y. lipolytica to produce other tetraterpenoids.

18.
Protein Expr Purif ; 82(2): 263-9, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22326798

ABSTRACT

3-Deoxy-d-arabino-heptulosonate-7-phosphate synthase (DAHPS), (EC 2.5.1.54) catalyzes the first step of the shikimate pathway, the route for the biosynthesis of aromatic compounds in plants and microbes. In Actinosynnema pretiosum, the aroF gene (GenBank: AF056968.1) encodes DAHPS to condensate phosphoenolpyruvate (PEP) and d-erythrose 4-phosphate (E4P) to generate DAHP. In this study, a recombinant pET28a-aroF plasmid was constructed and A. pretiosum DAHPS was successfully expressed in soluble form by co-expression with chaperonins GroEL/GroES in Escherichia coli. The purification and kinetic characterization of the expressed protein were then investigated. The DAHPS originated from A. pretiosum demonstrated a pronounced substrate inhibition by PEP but was not sensitive to E4P. The purified enzyme was completely inactivated by EDTA but potently activated by several bivalent metal ions, especially Mn(2+) and Co(2+).


Subject(s)
3-Deoxy-7-Phosphoheptulonate Synthase/biosynthesis , Actinomycetales/enzymology , Bacterial Proteins/biosynthesis , Chaperonin 10/biosynthesis , Chaperonin 60/biosynthesis , Escherichia coli , 3-Deoxy-7-Phosphoheptulonate Synthase/chemistry , 3-Deoxy-7-Phosphoheptulonate Synthase/isolation & purification , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/isolation & purification , Cations, Divalent/chemistry , Chelating Agents/chemistry , Edetic Acid/chemistry , Gene Expression , Kinetics , Molecular Sequence Data , Phylogeny , Recombinant Proteins/biosynthesis , Sequence Analysis, DNA , Sequence Analysis, Protein , Sequence Homology, Amino Acid , Solubility
19.
J Agric Food Chem ; 70(48): 15157-15165, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36444843

ABSTRACT

The low enzymatic capability of terpene synthases and the limited availability of precursors often hinder the productivity of terpenes in microbial hosts. Herein, a systematic approach combining protein engineering and pathway compartmentation was exploited in Yarrowia lipolytica for the high-efficient production of trans-nerolidol, a sesquiterpene with various commercial applications. Through the single-gene overexpression, the reaction catalyzed by nerolidol synthase (FaNES1) was identified as another rate-limiting step. An optimized FaNES1G498Q was then designed by rational protein engineering using homology modeling and docking studies. Additionally, further improvement of trans-nerolidol production was observed as enhancing the expression of an endogenous carnitine acetyltransferase (CAT2) putatively responsible for acetyl-CoA shuttling between peroxisome and cytosol. To harness the peroxisomal acetyl-CoA pool, a parallel peroxisomal pathway starting with acetyl-CoA to trans-nerolidol was engineered. Finally, the highest reported titer of 11.1 g/L trans-nerolidol in the Y. lipolytica platform was achieved in 5 L fed-batch fermentation with the carbon restriction approach.


Subject(s)
Yarrowia , Yarrowia/genetics , Acetyl Coenzyme A
20.
Synth Syst Biotechnol ; 7(4): 1133-1141, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36092272

ABSTRACT

Astaxanthin is a high value carotenoid with a broad range of commercial applications due to its superior antioxidant properties. In this study, ß-carotene-producing Yarrowia lipolytica XK17 constructed in the lab was employed for astaxanthin biosynthesis. The catalytic effects of ß-carotene ketolase CrtW and ß-carotene hydroxylase CrtZ from various species were investigated. The PspCrtW from Paracoccus sp. and HpCrtZ# from Haematococcus pluvialis were confirmed to be the best combination in converting ß-carotene. Several key bottlenecks in biomass and astaxanthin biosynthesis were effectively eliminated by optimizing the expression of the above enzymes and restoring uracil/leucine biosynthesis. In addition, the effects of astaxanthin biosynthesis on cell metabolism were investigated by integrated analysis of pathway modification and transcriptome information. After further optimization, strain DN30 was able to synthesize up to 730.3 mg/L astaxanthin in laboratory 5-L fermenter. This study provides a good metabolic strategy and a sustainable development platform for high-value carotenoid production.

SELECTION OF CITATIONS
SEARCH DETAIL