Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
J Magn Reson Imaging ; 59(3): 1083-1092, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37367938

ABSTRACT

BACKGROUND: Conventional MRI staging can be challenging in the preoperative assessment of rectal cancer. Deep learning methods based on MRI have shown promise in cancer diagnosis and prognostication. However, the value of deep learning in rectal cancer T-staging is unclear. PURPOSE: To develop a deep learning model based on preoperative multiparametric MRI for evaluation of rectal cancer and to investigate its potential to improve T-staging accuracy. STUDY TYPE: Retrospective. POPULATION: After cross-validation, 260 patients (123 with T-stage T1-2 and 134 with T-stage T3-4) with histopathologically confirmed rectal cancer were randomly divided to the training (N = 208) and test sets (N = 52). FIELD STRENGTH/SEQUENCE: 3.0 T/Dynamic contrast enhanced (DCE), T2-weighted imaging (T2W), and diffusion-weighted imaging (DWI). ASSESSMENT: The deep learning (DL) model of multiparametric (DCE, T2W, and DWI) convolutional neural network were constructed for evaluating preoperative diagnosis. The pathological findings served as the reference standard for T-stage. For comparison, the single parameter DL-model, a logistic regression model composed of clinical features and subjective assessment of radiologists were used. STATISTICAL TESTS: The receiver operating characteristic curve (ROC) was used to evaluate the models, the Fleiss' kappa for the intercorrelation coefficients, and DeLong test for compare the diagnostic performance of ROCs. P-values less than 0.05 were considered statistically significant. RESULTS: The Area Under Curve (AUC) of the multiparametric DL-model was 0.854, which was significantly higher than the radiologist's assessment (AUC = 0.678), clinical model (AUC = 0.747), and the single parameter DL-models including T2W-model (AUC = 0.735), DWI-model (AUC = 0.759), and DCE-model (AUC = 0.789). DATA CONCLUSION: In the evaluation of rectal cancer patients, the proposed multiparametric DL-model outperformed the radiologist's assessment, the clinical model as well as the single parameter models. The multiparametric DL-model has the potential to assist clinicians by providing more reliable and precise preoperative T staging diagnosis. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 2.


Subject(s)
Deep Learning , Multiparametric Magnetic Resonance Imaging , Rectal Neoplasms , Humans , Magnetic Resonance Imaging/methods , Multiparametric Magnetic Resonance Imaging/methods , Retrospective Studies
2.
Sheng Li Xue Bao ; 76(2): 233-246, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38658373

ABSTRACT

The high-order cognitive and executive functions are necessary for an individual to survive. The densely bidirectional innervations between the medial prefrontal cortex (mPFC) and the mediodorsal thalamus (MD) play a vital role in regulating high-order functions. Pyramidal neurons in mPFC have been classified into several subclasses according to their morphological and electrophysiological properties, but the properties of the input-specific pyramidal neurons in mPFC remain poorly understood. The present study aimed to profile the morphological and electrophysiological properties of mPFC pyramidal neurons innervated by MD. In the past, the studies for characterizing the morphological and electrophysiological properties of neurons mainly relied on the electrophysiological recording of a large number of neurons and their morphologic reconstructions. But, it is a low efficient method for characterizing the circuit-specific neurons. The present study combined the advantages of traditional morphological and electrophysiological methods with machine learning to address the shortcomings of the past method, to establish a classification model for the morphological and electrophysiological properties of mPFC pyramidal neurons, and to achieve more accurate and efficient identification of the properties from a small size sample of neurons. We labeled MD-innervated pyramidal neurons of mPFC using the trans-synaptic neural circuitry tracing method and obtained their morphological properties using whole-cell patch-clamp recording and morphologic reconstructions. The results showed that the classification model established in the present study could predict the electrophysiological properties of MD-innervated pyramidal neurons based on their morphology. MD-innervated pyramidal neurons exhibit larger basal dendritic length but lower apical dendrite complexity compared to non-MD-innervated neurons in the mPFC. The morphological characteristics of the two subtypes (ET-1 and ET-2) of mPFC pyramidal neurons innervated by MD are different, with the apical dendrites of ET-1 neurons being longer and more complex than those of ET-2 neurons. These results suggest that the electrophysiological properties of MD- innervated pyramidal neurons within mPFC correlate with their morphological properties, indicating that the different roles of these two subclasses in local circuits within PFC, as well as in PFC-cortical/subcortical brain region circuits.


Subject(s)
Prefrontal Cortex , Pyramidal Cells , Pyramidal Cells/physiology , Pyramidal Cells/cytology , Prefrontal Cortex/physiology , Prefrontal Cortex/cytology , Animals , Rats , Mediodorsal Thalamic Nucleus/physiology , Mediodorsal Thalamic Nucleus/cytology , Male , Electrophysiological Phenomena , Neural Pathways/physiology , Neural Pathways/cytology , Machine Learning , Rats, Sprague-Dawley , Patch-Clamp Techniques
3.
Phys Chem Chem Phys ; 21(24): 12905-12915, 2019 Jun 28.
Article in English | MEDLINE | ID: mdl-31157353

ABSTRACT

Suppressors of cytokine signaling (SOCS) act as negative feedback regulators of the Janus kinase/signal transducer (JAK-STAT) signaling pathway by inhibiting the activity of JAK kinase. The kinase inhibitory region (KIR) of SOCS1 targets the substrate binding groove of JAK with high specificity, as demonstrated by significantly higher IC50 following the mutation of any of residue. To gain a greater understanding of the mechanisms of the inhibition of SOCS1 for JAK1, the binding mode, binding free energy decomposition, and desorption mechanism of JAK-SOCS1 complexes as well as a number of mutant systems were identified by extensive molecular dynamics (MD) simulations and the constant pulling velocity (PCV) method. Electrostatic interactions were identified for their contribution to protein-protein binding, which drove interactions between JAK1 and SOCS1. The polar residues Arg56, Arg59, and Asp105 of SOCS1 and Asp1042 and Asp1040 of JAK1 were key components in the binding, and electrostatic interactions of the side chains were prominent. The binding free energies of the six mutant proteins were lower when compared with those of the control proteins, and the side chain interactions were weakened. The residue Asp1040 played a crucial role in KIR close to the binding groove of JAK1. Moreover, salt bridges contributed significantly to JAK1 and SOCS1 binding and cleavage processes. The study presented herein provides a comprehensive understanding of the thermodynamic and dynamic processes of SOCS1 and JAK1 binding that will contribute meaningfully to the design of future studies related to peptide inhibitors based on SOCS1.


Subject(s)
Cytokines/metabolism , Janus Kinase 1/antagonists & inhibitors , Janus Kinase Inhibitors/chemistry , Suppressor of Cytokine Signaling Proteins/chemistry , Humans , Kinetics , Molecular Dynamics Simulation , Mutation , Protein Binding , Protein Conformation , Suppressor of Cytokine Signaling Proteins/genetics , Thermodynamics
4.
Mediators Inflamm ; 2019: 5160694, 2019.
Article in English | MEDLINE | ID: mdl-30718973

ABSTRACT

BACKGROUND: Acute exacerbation of IPF (AE-IPF) is associated with high mortality. We studied changes in pathogen involvement during AE-IPF and explored a possible role of infection in AE-IPF. OBJECTIVES: Our purpose is to investigate the role of infection in AE-IPF. METHODS: Overall, we recruited 170 IPF patients (48 AE-IPF, 122 stable) and 70 controls at Shanghai Pulmonary Hospital. Specific IgM against microbial pathogens and pathogens in sputum were assessed. RNA sequences of pathogens in nasopharyngeal swab of IPF patients were detected by PathChip. A panel of serum parameters reflecting immune function were assessed. RESULTS: Antiviral/bacterial IgM was higher in IPF vs. controls and in AE-IPF vs. stable IPF. Thirty-eight different bacterial strains were detected in IPF patient sputum. Bacteria-positive results were found in 9/48 (18.8%) of AE-IPF and in 26/122 (21.3%) stable IPF. Fifty-seven different viruses were detected in nasopharyngeal swabs of IPF patients. Virus-positive nasopharyngeal swabs were found in 18/30 (60%) of tested AE-IPF and in 13/30 (43.3%) of stable IPF. AE-IPF showed increased inflammatory cytokines (IL-6, IFN-γ, MIG, IL-17, and IL-9) vs. stable IPF and controls. Mortality of AE-IPF in one year (39.5%) was higher compared to stable IPF (28.7%).Conclusions. IPF patients had different colonization with pathogens in sputum and nasopharyngeal swabs; they also displayed abnormally activated immune response, which was exacerbated during AE-IPF.


Subject(s)
Idiopathic Pulmonary Fibrosis/blood , Idiopathic Pulmonary Fibrosis/complications , Infections/blood , Infections/complications , Aged , China , Cytokines/blood , Female , Humans , Immunoglobulin M/immunology , Immunosuppression Therapy , Inflammation , Lung/physiopathology , Male , Middle Aged , Prospective Studies , RNA, Viral/isolation & purification , Sequence Analysis, RNA , Sputum/microbiology , Sputum/virology
5.
Exp Lung Res ; 42(2): 75-86, 2016.
Article in English | MEDLINE | ID: mdl-27070485

ABSTRACT

PURPOSE: To explore and establish an animal model of AE-IPF. METHODS: An animal model of idiopathic pulmonary fibrosis (IPF) was established using bleomycin (BLM). Then, BLM was administered a second time on day 21 to induce AE-IPF (which mimics human AE-IPF). Evaluation of the success of animal model was based on the survival of mice, as well as assessment of pathological changes in lung tissue. Preliminary investigation into the immunological mechanism of AE-IPF was also explored via the detection and identification of the inflammatory cells in mouse bronchoalveolar lavage fluid (BALF) and the concentrations of six cytokines (IL-4, IL-6, IL-10, IL-17A, MIG, and TGF-ß1) in BALF supernatants, which were closely associated with IPF and AE-IPF. The intervention role of IL-17A antibody to AE was explored. RESULTS: By week 4 after the second BLM administration, the mortality in the AE-IPF group was significantly greater (45%, 9/20) than that in stable-IPF group (0/18) (P = .0017). The average body weight in AE-IPF group was significantly lower than that in stable group (P < .0001). In AE-IPF group, inflammation and fibrosis were severer by histopathology analysis. In BALF, IL-17A, MIG (CXCL-9), IL-6, and TGF-ß1 levels in AE group were significantly higher. The percentages of neutrophils and Th17 cells in BALF were significantly higher in AE group (P < .01; P = .0281). IL-17A antibody could attenuated the lung inflammation induced by twice BLM challenges. CONCLUSION: A mouse model of AE-IPF can be established using two administrations of BLM; Th17 cells may play a key role during the pathological process of AE-IPF.


Subject(s)
Idiopathic Pulmonary Fibrosis/pathology , Lung/pathology , Animals , Bleomycin/pharmacology , Bronchoalveolar Lavage Fluid , Chemokine CXCL9/metabolism , Disease Models, Animal , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/metabolism , Interleukin-10/metabolism , Interleukin-17/metabolism , Interleukin-4/metabolism , Interleukin-6/metabolism , Lung/metabolism , Male , Mice , Mice, Inbred C57BL , Pneumonia/metabolism , Pneumonia/pathology , Th17 Cells/metabolism , Th17 Cells/pathology , Transforming Growth Factor beta1/metabolism
6.
Inhal Toxicol ; 27(14): 802-9, 2015.
Article in English | MEDLINE | ID: mdl-26572172

ABSTRACT

OBJECTIVE: The purpose of this study was to investigate the effects of cigaret smoke (CS) on a mouse model of emphysema and examine the protective role of N-acetylcysteine (NAC) in the CS-induced exacerbation of pulmonary damage in the mice. METHOD: Particulate matter (PM) in sidestream cigaret smoke aerosol was analyzed by a scanning mobility particle sizer spectrometer. A mouse model of emphysema was established by an injection of porcine pancreatic elastase (PPE) into the trachea. Mice with emphysema were then exposed to filtered air, or sidestream CS with intragastric administration of NAC or normal saline. Mouse body weight, survival, pulmonary tissue histology, total antioxidant capacity (T-AOC) and malonaldehyde (MDA) contents in lung tissue, and inflammatory responses were examined. RESULTS: Particles with a size of ≤346 nm constituted 99.06% of CS PM. Mice exhibited ruptured alveolar septal, alveolar fusion, significantly increased mean lining interval, and reduced mean alveolar number (all p < 0.05), 21 d after PPE injection. Exposure of mice with emphysema to CS exacerbated the pulmonary tissue damage, caused weight loss, significantly increased mortality, decreased T-AOC, elevated MDA contents in lung tissue, and increased interleukin (IL)-1ß levels in bronchoalveolar lavage (BAL) fluids (all p < 0.05). Administration of NAC attenuated those CS-induced adverse effects in the mice and increased anti-inflammatory factor IL-10 levels in BAL fluids significantly (all p < 0.05). CONCLUSIONS: Exposure of mice with emphysema to CS exacerbated the pulmonary damage, and NAC reduced the CS-mediated pulmonary damage by preventing oxidative damage and reducing inflammatory responses.


Subject(s)
Acetylcysteine/therapeutic use , Emphysema/chemically induced , Emphysema/drug therapy , Smoke/adverse effects , Tobacco Products/adverse effects , Animals , Bronchoalveolar Lavage Fluid/chemistry , Female , Gene Expression Regulation/drug effects , Interleukin-10/chemistry , Interleukin-10/metabolism , Interleukin-1beta/chemistry , Interleukin-1beta/metabolism , Mice , Mice, Inbred C57BL
7.
Insights Imaging ; 15(1): 211, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39186173

ABSTRACT

OBJECTIVES: To explore the performance differences of multiple annotations in radiomics analysis and provide a reference for tumour annotation in large-scale medical image analysis. METHODS: A total of 342 patients from two centres who underwent radical resection for rectal cancer were retrospectively studied and divided into training, internal validation, and external validation cohorts. Three predictive tasks of tumour T-stage (pT), lymph node metastasis (pLNM), and disease-free survival (pDFS) were performed. Twelve radiomics models were constructed using Lasso-Logistic or Lasso-Cox to evaluate and four annotation methods, 2D detailed annotation along tumour boundaries (2D), 3D detailed annotation along tumour boundaries (3D), 2D bounding box (2DBB), and 3D bounding box (3DBB) on T2-weighted images, were compared. Radiomics models were used to establish combined models incorporating clinical risk factors. The DeLong test was performed to compare the performance of models using the receiver operating characteristic curves. RESULTS: For radiomics models, the area under the curve values ranged from 0.627 (0.518-0.728) to 0.811 (0.705-0.917) in the internal validation cohort and from 0.619 (0.469-0.754) to 0.824 (0.689-0.918) in the external validation cohort. Most radiomics models based on four annotations did not differ significantly, except between the 3D and 3DBB models for pLNM (p = 0.0188) in the internal validation cohort. For combined models, only the 2D model significantly differed from the 2DBB (p = 0.0372) and 3D models (p = 0.0380) for pDFS. CONCLUSION: Radiomics and combined models constructed with 2D and bounding box annotations showed comparable performances to those with 3D and detailed annotations along tumour boundaries in rectal cancer characterisation and prognosis prediction. CRITICAL RELEVANCE STATEMENT: For quantitative analysis of radiological images, the selection of 2D maximum tumour area or bounding box annotation is as representative and easy to operate as 3D whole tumour or detailed annotations along tumour boundaries. KEY POINTS: There is currently a lack of discussion on whether different annotation efforts in radiomics are predictively representative. No significant differences were observed in radiomics and combined models regardless of the annotations (2D, 3D, detailed, or bounding box). Prioritise selecting the more time and effort-saving 2D maximum area bounding box annotation.

8.
Chin J Integr Med ; 30(7): 608-615, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38386252

ABSTRACT

OBJECTIVE: To investigate the potential role of Tongxinluo (TXL) in attenuating myocardial fibrosis after myocardial ischemia-reperfusion injury (MIRI) in mice. METHODS: A MIRI mouse model was established by left anterior descending coronary artery ligation for 45 min. According to a random number table, 66 mice were randomly divided into 6 groups (n=11 per group): the sham group, the model group, the LY-294002 group, the TXL group, the TXL+LY-294002 group and the benazepril (BNPL) group. The day after modeling, TXL and BNPL were administered by gavage. Intraperitoneal injection of LY-294002 was performed twice a week for 4 consecutive weeks. Echocardiography was used to measure cardiac function in mice. Masson staining was used to evaluate the degree of myocardial fibrosis in mice. Qualitative and quantitative analysis of endothelial mesenchymal transition (EndMT) after MIRI was performed by immunohistochemistry, immunofluorescence staining and flow cytometry, respectively. The protein expressions of platelet endothelial cell adhesion molecule-1 (CD31), α-smoth muscle actin (α-SMA), phosphatidylinositol-3-kinase (PI3K) and phospho protein kinase B (p-AKT) were assessed using Western blot. RESULTS: TXL improved cardiac function in MIRI mice, reduced the degree of myocardial fibrosis, increased the expression of CD31 and inhibited the expression of α-SMA, thus inhibited the occurrence of EndMT (P<0.05 or P<0.01). TXL significantly increased the protein expressions of PI3K and p-AKT (P<0.05 or P<0.01). There was no significant difference between TXL and BNPL group (P>0.05). In addition, the use of the PI3K/AKT pathway-specific inhibitor LY-294002 to block this pathway and combination with TXL intervention, eliminated the protective effect of TXL, further supporting the protective effect of TXL. CONCLUSION: TXL activated the PI3K/AKT signaling pathway to inhibit EndMT and attenuated myocardial fibrosis after MIRI in mice.


Subject(s)
Drugs, Chinese Herbal , Fibrosis , Myocardial Reperfusion Injury , Myocardium , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/drug effects , Male , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/pathology , Myocardium/pathology , Mice, Inbred C57BL , Mice , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Endothelial-Mesenchymal Transition
9.
Phytomedicine ; 130: 155537, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38823344

ABSTRACT

BACKGROUND: Aberrant activation of autophagy in triple-negative breast cancer (TNBC) has led researchers to investigate potential therapeutic strategies targeting this process. The regulation of autophagy is significantly influenced by METTL3. Our previous research has shown that the Panax ginseng-derived compound, 20(R)-panaxatriol (PT), has potential as an anti-tumor agent. However, it remains unclear whether PT can modulate autophagy through METTL3 to exert its anti-tumor effects. OBJECTIVE: Our objective is to investigate whether PT can regulate autophagy in TNBC cells and elucidate the molecular mechanisms. STUDY DESIGN: For in vitro experiments, we employed SUM-159-PT and MDA-MB-231 cells. While in vivo experiments involved BALB/c nude mice and NOD/SCID mice. METHODS: In vitro, TNBC cells were treated with PT, and cell lines with varying expression levels of METTL3 were established. We assessed the impact on tumor cell activity and autophagy by analyzing autophagic flux, Western Blot (WB), and methylation levels. In vivo, subcutaneous transplantation models were established in BALB/c nude and NOD/SCID mice to observe the effect of PT on TNBC growth. HE staining and immunofluorescence were employed to analyze histopathological changes in tumor tissues. MeRIP-seq and dual-luciferase reporter gene assays were used to identify key downstream targets. Additionally, the silencing of STIP1 Homology And U-Box Containing Protein 1 (STUB1) explored PT's effects. The mechanism of PT's action on STUB1 via METTL3 was elucidated through mRNA stability assays, mRNA alternative splicing analysis, and nuclear-cytoplasmic mRNA separation. RESULTS: In both in vivo and in vitro experiments, it was discovered that PT significantly upregulates the expression of METTL3, leading to autophagy inhibition and therapeutic effects in TNBC. Simultaneously, through MeRIP-seq analysis and dual-luciferase reporter gene assays, we have demonstrated that PT modulates STUB1 via METTL3, influencing autophagy in TNBC cells. Furthermore, intriguingly, PT extends the half-life of STUB1 mRNA by enhancing its methylation modification, thereby enhancing its stability. CONCLUSION: In summary, our research reveals that PT increases STUB1 m6A modification through a METTL3-mediated mechanism in TNBC cells, inhibiting autophagy and further accentuating its anti-tumor properties. Our study provides novel mechanistic insights into TNBC pathogenesis and potential drug targets for TNBC.


Subject(s)
Autophagy , Methyltransferases , Mice, Inbred BALB C , Mice, Nude , Triple Negative Breast Neoplasms , Ubiquitin-Protein Ligases , Animals , Triple Negative Breast Neoplasms/drug therapy , Humans , Autophagy/drug effects , Female , Cell Line, Tumor , Methyltransferases/metabolism , Ubiquitin-Protein Ligases/metabolism , Mice, SCID , Mice, Inbred NOD , Mice , Antineoplastic Agents, Phytogenic/pharmacology , Xenograft Model Antitumor Assays , Panax/chemistry , Adenosine/analogs & derivatives , Adenosine/pharmacology
10.
Article in English | MEDLINE | ID: mdl-38343495

ABSTRACT

Purpose: Acute Exacerbation of Chronic Obstructive Pulmonary Disease (AECOPD) is a sudden worsening of symptoms in patients with Chronic Obstructive Pulmonary Disease (COPD), such as cough, increased sputum volume, and sputum purulence. COPD and AECOPD are characterized by damage to cilia and increased mucus secretion. Mucociliary clearance (MCC) functions as part of the primary innate system of the lung to remove harmful particles and pathogens together with airway mucus and is therefore crucial for patients with COPD. Methods: AECOPD was induced by cigarette smoke exposure (80 cigarettes/day, 5 days/week for 12 weeks) and lipopolysaccharide (LPS) instillation (200 µg, on days 1, 14, and 84). Rats administered Lianhua Qingke (LHQK) (0.367, 0.732, and 1.465 g/kg/d) or Eucalyptol, Limonene, and Pinene Enteric Soft Capsules (ELP, 0.3 g/kg/d) intragastrically. Pulmonary pathology, Muc5ac+ goblet cell and ß-tubulin IV+ ciliated cells, and mRNA levels of forkhead box J1 (Foxj1) and multiciliate differentiation and DNA synthesis associated cell cycle protein (MCIDAS) were assessed by hematoxylin and eosin staining, immunofluorescence staining, and RT-qPCR, respectively. Ciliary morphology and ultrastructure were examined through scanning electron microscopy and transmission electron microscopy. Ciliary beat frequency (CBF) was recorded using a high-speed camera. Results: Compared to the model group, LHQK treatment groups showed a reduction in inflammatory cell infiltration, significantly reduced goblet cell and increased ciliated cell proportion. LHQK significantly upregulated mRNA levels of MCIDAS and Foxj1, indicating promoted ciliated cell differentiation. LHQK protected ciliary structure and maintained ciliary function via increasing the ciliary length and density, reducing ciliary ultrastructure damage, and ameliorating random ciliary oscillations, consequently enhancing CBF. Conclusion: LHQK enhances the MCC capability of ciliated cells in rat with AECOPD by preserving the structural integrity and beating function of cilia, indicating its therapeutic potential on promoting sputum expulsion in patients with AECOPD.


Subject(s)
Cilia , Pulmonary Disease, Chronic Obstructive , Humans , Rats , Animals , Cilia/pathology , Cilia/ultrastructure , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/pathology , Mucociliary Clearance , Epithelial Cells , RNA, Messenger
11.
J Cancer ; 14(15): 2798-2810, 2023.
Article in English | MEDLINE | ID: mdl-37781084

ABSTRACT

Tripartite motif-containing protein 28 (TRIM28), as a transcriptional cofactor, has pleiotropic biological effects, such as silencing genes, promoting cellular proliferation and differentiation, and facilitating DNA repair. It is reported that TRIM28 is also correlated with immune infiltration in liver cancer that highlights an unnoticed function of TRIM28 in immune system. However, the prognostic and immunotherapeutic role of TRIM28 in human cancer has not been elucidated. In this study, we conducted a systematic pan-cancer analysis and partial experimental validation of TRIM28 as an immunological and prognostic predictor and its involvement in immunotherapy resistance. We found that TRIM28 expression was higher in various tumor tissues than in normal tissues. Higher TRIM28 expression was associated with poorer prognosis in multiple cancers. The expression of TRIM28 was positively correlated with the presence of T cells, macrophages and neutrophils, and TRIM28 also promoted the infiltration of a series of immune cell. Moreover, TRIM28 affected a wide range of cancer-related scores, and the abnormal expression of TRIM28 was also involved in tumor mutational burden, drug sensitivity, and microsatellite instability in cancer. The results suggest that TRIM28 is a potentially valuable immune response indicator and a molecular biomarker for predicting the prognosis of cancer patients.

12.
Chin J Integr Med ; 29(7): 608-616, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36959433

ABSTRACT

OBJECTIVE: To investigate the effects of Tongxinluo (TXL) on thromboangiitis obliterans (TAO) and the underlying mechanisms. METHODS: Ninety male C57/BL6J mice were randomly divided into 6 groups according to a random number table: the sham group, TAO model group, Compound Danshen Tablet (CDT) group, and the high-, medium-, and low-dose TXL groups. All mice except the sham group were injected with sodium laurate (0.1 mL, 5 mg/mL) in the femoral artery to establish TAO mouse model. After modeling, mice in the sham and TAO model groups were intragastrically administered 0.5% (w/v) sodium carboxymethylcellulose, mice in the CDT group were intragastrically administered 0.52 g/kg CDT, and mice in the TXL-H, TXL-M, and TXL-L groups were intragastrically administered 1.5, 0.75, and 0.38 g/kg TXL, respectively. After 4 weeks of gavage, the recovery of blood flow in the lower limbs of mice was detected by Laser Doppler Imaging. The pathological changes and thrombosis of the femoral artery were observed by morphological examination. The expressions of tumor necrosis factor α (TNF-α) and inducible nitric oxide synthase (iNOS) in the femoral artery wall were detected by HE staining. Levels of thromboxane B2 (TXB2), 6-keto-prostaglandin F1α (6-keto-PGF1α), endothelin-1 (ET-1), interleukin (IL)-1ß and IL-6 were measured using enzyme-linked immunosorbent assay (ELISA). Levels of activated partial thromboplastin time (APTT), prothrombin time (PT), thrombin time (TT) and fibrinogen (FIB) were detected by a fully automated biochemical analyzer. RESULTS: TXL promoted the restoration of blood flow in the lower limbs, reduced the area of thrombosis in the femoral artery, and alleviated the pathological changes in the femoral artery wall. Moreover, the levels of TXB2, ET-1, IL-6, IL-1ß, TNF-α and iNOS were significantly lower in the TXL groups compared with the model group (P<0.05 or P<0.01), while the level of 6-keto-PGF1α was significantly higher (P<0.01). In addition, APTT, PT, and TT were significantly prolonged in TXL groups compared with the model group (P<0.05 or P<0.01), and FIB levels were significantly decreased compared with the model group (P<0.01). CONCLUSIONS: TXL had a protective effect on TAO mice, and the mechanism may involve inhibition of thrombosis and inflammatory responses. TXL may be a potential drug for the treatment of TAO.


Subject(s)
Thromboangiitis Obliterans , Thrombosis , Mice , Male , Animals , Thromboangiitis Obliterans/drug therapy , Thromboangiitis Obliterans/chemically induced , Interleukin-6/metabolism , Tumor Necrosis Factor-alpha/metabolism
13.
Clin Breast Cancer ; 23(7): e451-e457.e1, 2023 10.
Article in English | MEDLINE | ID: mdl-37640598

ABSTRACT

OBJECTIVES: To evaluate the influence of menstrual cycle timing on quantitative background parenchymal enhancement and to assess an optimal timing of breast MRI in premenopausal women. METHODS: A total of 197 premenopausal women were enrolled, 120 of which were in the malignant group and 77 in the benign group. Two radiologists depicted the regions of interest (ROI) of the three consecutive biggest slices of glandular tissue in the unaffected side and calculated the ratio (=[SIpost - SIpre]/SIpre) in ROI from the precontrast and early phase to assess BPE quantitatively. Association of BPE with menstrual cycle timing was compared in three categories. The relationships between BPE and age /body mass index (BMI) were also explored. RESULTS: We found that the BPE ratio presented lower in patients with the follicular phase (day1-14) compared to the luteal phase (day15-30) in the benign group (P = .036). Also, the BPE ratio presented significantly lower in the proliferative phase (day5-14) than the menstrual phase (day1-4) and the secretory phase(day15-30) in the benign group (P = .006). While the BPE ratio was not significantly different among the respective weeks (1-4) of the menstrual cycle in the benign group (P > .05). In the malignant group, the BPE ratio did not significantly differ between/among any menstrual cycle phase or week (all P > .05). CONCLUSION: It seems more suitable for Asian women whose lesions need to follow up or are suspected of malignant to undergo breast MRI within the 1st to 14th day of the menstrual cycle, especially on the 5th to 14th day.


Subject(s)
Breast Neoplasms , Contrast Media , Female , Humans , Image Enhancement , Breast Neoplasms/diagnostic imaging , Menstrual Cycle , Magnetic Resonance Imaging , Retrospective Studies
14.
World J Diabetes ; 14(3): 234-254, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-37035233

ABSTRACT

BACKGROUND: Peripheral arterial disease (PAD) has become one of the leading causes of disa-bility and death in diabetic patients. Restoring blood supply to the hindlimbs, especially by promoting arteriogenesis, is currently the most effective strategy, in which endothelial cells play an important role. Tongxinluo (TXL) has been widely used for the treatment of cardio-cerebrovascular diseases and extended for diabetes-related vascular disease. AIM: To investigate the effect of TXL on diabetic PAD and its underlying mechanisms. METHODS: An animal model of diabetic PAD was established by ligating the femoral artery of db/db mice. Laser Doppler imaging and micro-computed tomography (micro-CT) were performed to assess the recovery of blood flow and arteriogenesis. Endothelial cell function related to arteriogenesis and cellular pyroptosis was assessed using histopathology, Western blot analysis, enzyme-linked immuno-sorbent assay and real-time polymerase chain reaction assays. In vitro, human vascular endothelial cells (HUVECs) and human vascular smooth muscle cells (VSMCs) were pretreated with TXL for 4 h, followed by incubation in high glucose and hypoxia conditions to induce cell injury. Then, indicators of HUVEC pyroptosis and function, HUVEC-VSMC interactions and the migration of VSMCs were measured. RESULTS: Laser Doppler imaging and micro-CT showed that TXL restored blood flow to the hindlimbs and enhanced arteriogenesis. TXL also inhibited endothelial cell pyroptosis via the reactive oxygen species/nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3/Caspase-1/GSDMD signaling pathway. In addition, TXL restored endothelial cell functions, including maintaining the balance of vasodilation, acting as a barrier to reduce inflammation, and enhancing endothelial-smooth muscle cell interactions through the Jagged-1/Notch-1/ephrin-B2 signaling pathway. Similar results were observed in vitro. CONCLUSION: TXL has a pro-arteriogenic effect in the treatment of diabetic PAD, and the mechanism may be related to the inhibition of endothelial cell pyroptosis, restoration of endothelial cell function and promotion of endothelial cell-smooth muscle cell interactions.

15.
Chin Med ; 18(1): 145, 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37924136

ABSTRACT

BACKGROUND: Lianhua Qingke (LHQK) is an effective traditional Chinese medicine used for treating acute tracheobronchitis. In this study, we evaluated the effectiveness of LHQK in managing airway mucus hypersecretion in the acute exacerbation of chronic obstructive pulmonary disease (AECOPD). METHODS: The AECOPD model was established by subjecting male Wistar rats to 12 weeks of cigarette smoke (CS) exposure (80 cigarettes/day, 5 days/week for 12 weeks) and intratracheal lipopolysaccharide (LPS) exposure (200 µg, on days 1, 14, and 84). The rats were divided into six groups: control (room air exposure), model (CS + LPS exposure), LHQK (LHQK-L, LHQK-M, and LHQK-H), and a positive control group (Ambroxol). H&E staining, and AB-PAS staining were used to evaluate lung tissue pathology, inflammatory responses, and goblet cell hyperplasia. RT-qPCR, immunohistochemistry, immunofluorescence and ELISA were utilized to analyze the transcription, expression and secretion of proteins related to mucus production in vivo and in the human airway epithelial cell line NCI-H292 in vitro. To predict and screen the active ingredients of LHQK, network pharmacology analysis and NF-κB reporter system analysis were employed. RESULTS: LHQK treatment could ameliorate AECOPD-triggered pulmonary structure damage, inflammatory cell infiltration, and pro-inflammatory cytokine production. AB-PAS and immunofluorescence staining with CCSP and Muc5ac antibodies showed that LHQK reduced goblet cell hyperplasia, probably by inhibiting the transdifferentiation of Club cells into goblet cells. RT-qPCR and immunohistochemistry of Muc5ac and APQ5 showed that LHQK modulated mucus homeostasis by suppressing Muc5ac transcription and hypersecretion in vivo and in vitro, and maintaining the balance between Muc5ac and AQP5 expression. Network pharmacology analysis and NF-κB luciferase reporter system analysis provided insights into the active ingredients of LHQK that may help control airway mucus hypersecretion and regulate inflammation. CONCLUSION: LHQK demonstrated therapeutic effects in AECOPD by reducing inflammation, suppressing goblet cell hyperplasia, preventing Club cell transdifferentiation, reducing Muc5ac hypersecretion, and modulating airway mucus homeostasis. These findings support the clinical use of LHQK as a potential treatment for AECOPD.

16.
Ann Transl Med ; 10(16): 868, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36111038

ABSTRACT

Background: Intercellular communication in the environments of mature or aged cells can restore and regenerate their function and promote the expression of pluripotency markers. The regeneration of dental tissue is stimulated by periodontal ligament cells (PDLCs) and dental pulp cells (DPCs). However, the communication networks between the cells and their microenvironments are poorly understood. Methods: In this study, gene expression was analyzed by polymerase chain reaction, and chromatin immunoprecipitation assays, dual-luciferase assays, and electrophoretic mobility shift assays were used to analyze the signaling pathways associated with pluripotency after the knockdown or overexpression of caudal-type homeobox transcription factor 2 (CDX2). Results: Elevated levels of SRY-box transcription factor 2 (Sox2) and octamer-binding transcription factor 4 (Oct-4) were observed in the co-culture system, while the levels of CDX2 were significantly reduced. The overexpression of CDX2 promoted cell apoptosis and reduced the synthesis stage of the cell cycle. CDX2 was shown to bind directly to the promoter regions of Sox2 and Oct-4. The silencing of CDX2 promoted calcium deposition, adipogenic differentiation, and elevated alkaline phosphatase (ALP) activity in the DPCs. Conclusions: These findings demonstrate the enhancement of DPC and PDLC pluripotency by intercellular communication. CDX2 plays a significant part in the regulation of DPC and PDLC pluripotency via its regulation of Oct-4 and Sox2 expression.

17.
Ann Transl Med ; 10(18): 993, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36267728

ABSTRACT

Background: Periodontitis is an inflammatory destructive bone disease and is the most critical cause of tooth loss in adults. Recent studies have reported that circular RNAs (circRNAs) are essential in periodontitis. However, the influence and mechanism of hsa_circ_0099630 on periodontitis are not clear. Methods: Normal periodontal tissues and inflammatory periodontal tissues were obtained from healthy patients and patients with periodontitis, respectively. Hsa_circ_0099630 was 1st identified by polymerase chain reaction (PCR) and sanger sequencing, and hsa_circ_0099630 expression was determined by real-time (RT)-quantitative PCR in periodontitis. Porphyromonas gingivalis-lipopolysaccharide (Pg-LPS) was used to construct an inflammation model in vitro. Next, cell proliferation, apoptosis, and osteogenic differentiation were monitored using Cell Counting Kit-8, flow cytometry, and western blot in the Pg-LPS-induced human periodontal ligament fibroblasts (HPLFs). The microRNA (miRNA)/messenger RNA (mRNA) axis of hsa_circ_0099630 was predicted and screened, and the function of the target genes was analyzed by a Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. Results: The identified hsa_circ_0099630 was upregulated in the gingival tissue of patients with periodontitis. Next, an inflammation model was constructed using Pg-LPS in the HPLFs. We discovered that Pg-LPS or hsa_circ_0099630 overexpression suppressed cell proliferation and osteogenic differentiation, and induced apoptosis in HPLFs. Additionally, hsa_circ_0099630 knockdown induced proliferation and osteogenic differentiation and prevented apoptosis in the Pg-LPS-induced HPLFs. We also screened the vast miRNA/mRNA axis associated with hsa_circ_0099630. Conclusions: The current study uncovered the crucial role of hsa_circ_0099630 in periodontitis.

18.
Article in English | MEDLINE | ID: mdl-35742478

ABSTRACT

There is an increasing consensus that exercise is a medicine and that regular exercise can effectively improve and prevent metabolic diseases such as diabetes. Islet cells are the endocrine of the pancreas and vital to the development of diabetes. Decades of developmental research in exercise intervention and the health of islet cells confirmed that exercise exerts beneficial effects on the function, proliferation, and survival rate of islet cells. However, the precise exercise reference scheme is still elusive. To accomplish this goal, we searched and analyzed relevant articles, and concluded the precise exercise prescription treatments for various species such as humans, rats, and mice. Each exercise protocol is shown in the tables below. These exercise protocols form a rich pipeline of therapeutic development for exercise on the health of islet cells.


Subject(s)
Insulin-Secreting Cells , Islets of Langerhans , Physical Conditioning, Animal , Animals , Exercise Therapy , Humans , Insulin/metabolism , Mice , Pancreas/metabolism , Rats
19.
Research (Wash D C) ; 2022: 9765121, 2022.
Article in English | MEDLINE | ID: mdl-35392429

ABSTRACT

Interlayer van der Waals interactions play an important role in two-dimensional (2D) materials on various occasions. The interlayer binding force is often directly measured and is considered more closely related to the exfoliation condition. However, a binding force database from accurate theoretical calculations does not yet exist. In this work, the critical interlayer binding force and energy are directly calculated for 230 2D materials, which exhibit divergent trends. A linear relationship that links the two quantities with the equilibrium interlayer distance is found and checked. Experiments are carried out for three different materials using atomic force microscopy. The measured forces show a consistent trend with the calculated results, and the estimated binding strengths are of the same order of magnitude as the predicted values. Our work can provide a reliable reference for interlayer adhesion studies and help establish accurate models of exfoliation processes.

20.
Biomed Pharmacother ; 145: 112367, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34740097

ABSTRACT

Cardiovascular comorbidities are pervasive in chronic obstructive pulmonary disease (COPD) and often result in serious adverse cardiovascular events. Tongxinluo (TXL) has been clinically verified to treat atherosclerosis (AS), improve lung function and alleviate dyspnoea. The present study aimed to explore the effect of lung microvascular barrier dysfunction on AS in COPD and the potential pulmonary protective mechanisms of TXL in COPD complicated with AS. COPD complicated with AS was induced in mice by cigarette smoke (CS) exposure and high-fat diet (HFD) feeding. The mice were treated with atorvastatin (ATO), TXL or combination therapy (ATO+TXL) for 20 weeks. Pulmonary function, lung pathology, serum lipid levels, atherosclerotic plaque area and indicators of barrier function, oxidative stress and ferroptosis in lung tissue were evaluated. In vitro, human pulmonary microvascular endothelial cells (HPMECs) were pretreated with TXL for 4 h and then incubated with cigarette smoke extract (CSE) and homocysteine (Hcy) for 36 h to induce barrier dysfunction. Then the indicators of barrier function, oxidative stress and ferroptosis were measured. The results demonstrate that CS aggravated dyslipidaemia, atherosclerotic plaque formation, pulmonary function decline, pathological injury, barrier dysfunction, oxidative stress and ferroptosis in the HFD-fed mice. However, these abnormalities were partially reversed by ATO and TXL. Similar results were observed in vitro. In conclusion, pulmonary microvascular barrier dysfunction plays an important role by which COPD affects the progression of AS, and ferroptosis may be involved. Moreover, TXL delays the progression of AS and reduces cardiovascular events by protecting the pulmonary microvascular barrier and inhibiting ferroptosis.


Subject(s)
Atherosclerosis/drug therapy , Drugs, Chinese Herbal/pharmacology , Endothelial Cells/drug effects , Pulmonary Disease, Chronic Obstructive/drug therapy , Animals , Atherosclerosis/pathology , Cells, Cultured , Diet, High-Fat , Disease Models, Animal , Disease Progression , Ferroptosis/drug effects , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout, ApoE , Oxidative Stress/drug effects , Plaque, Atherosclerotic/drug therapy , Plaque, Atherosclerotic/pathology , Pulmonary Disease, Chronic Obstructive/pathology
SELECTION OF CITATIONS
SEARCH DETAIL