Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 192
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 145(7): 1088-101, 2011 Jun 24.
Article in English | MEDLINE | ID: mdl-21703451

ABSTRACT

INAD is a scaffolding protein that regulates signaling in Drosophila photoreceptors. One of its PDZ domains, PDZ5, cycles between reduced and oxidized forms in response to light, but it is unclear how light affects its redox potential. Through biochemical and structural studies, we show that the redox potential of PDZ5 is allosterically regulated by its interaction with another INAD domain, PDZ4. Whereas isolated PDZ5 is stable in the oxidized state, formation of a PDZ45 "supramodule" locks PDZ5 in the reduced state by raising the redox potential of its Cys606/Cys645 disulfide bond by ∼330 mV. Acidification, potentially mediated via light and PLCß-mediated hydrolysis of PIP(2), disrupts the interaction between PDZ4 and PDZ5, leading to PDZ5 oxidation and dissociation from the TRP Ca(2+) channel, a key component of fly visual signaling. These results show that scaffolding proteins can actively modulate the intrinsic redox potentials of their disulfide bonds to exert regulatory roles in signaling.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Eye Proteins/metabolism , Amino Acid Sequence , Animals , Drosophila Proteins/chemistry , Eye/metabolism , Eye Proteins/chemistry , Models, Molecular , Oxidation-Reduction , PDZ Domains , Photoreceptor Cells, Invertebrate/metabolism , Signal Transduction
2.
Mol Cell ; 72(1): 48-59.e4, 2018 10 04.
Article in English | MEDLINE | ID: mdl-30220562

ABSTRACT

The signaling of prostaglandin D2 (PGD2) through G-protein-coupled receptor (GPCR) CRTH2 is a major pathway in type 2 inflammation. Compelling evidence suggests the therapeutic benefits of blocking CRTH2 signaling in many inflammatory disorders. Currently, a number of CRTH2 antagonists are under clinical investigation, and one compound, fevipiprant, has advanced to phase 3 clinical trials for asthma. Here, we present the crystal structures of human CRTH2 with two antagonists, fevipiprant and CAY10471. The structures, together with docking and ligand-binding data, reveal a semi-occluded pocket covered by a well-structured amino terminus and different binding modes of chemically diverse CRTH2 antagonists. Structural analysis suggests a ligand entry port and a binding process that is facilitated by opposite charge attraction for PGD2, which differs significantly from the binding pose and binding environment of lysophospholipids and endocannabinoids, revealing a new mechanism for lipid recognition by GPCRs.


Subject(s)
Prostaglandin D2/chemistry , Receptors, G-Protein-Coupled/chemistry , Receptors, Immunologic/chemistry , Receptors, Prostaglandin/chemistry , Carbazoles/chemistry , Humans , Indoleacetic Acids/chemistry , Ligands , Molecular Docking Simulation , Prostaglandin D2/genetics , Protein Binding , Pyridines/chemistry , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/genetics , Receptors, Immunologic/antagonists & inhibitors , Receptors, Immunologic/genetics , Receptors, Prostaglandin/antagonists & inhibitors , Receptors, Prostaglandin/genetics , Signal Transduction , Sulfonamides/chemistry
3.
J Biol Chem ; 299(6): 104808, 2023 06.
Article in English | MEDLINE | ID: mdl-37172719

ABSTRACT

ELKS proteins play a key role in organizing intracellular vesicle trafficking and targeting in both neurons and non-neuronal cells. While it is known that ELKS interacts with the vesicular traffic regulator, the Rab6 GTPase, the molecular basis governing ELKS-mediated trafficking of Rab6-coated vesicles, has remained unclear. In this study, we solved the Rab6B structure in complex with the Rab6-binding domain of ELKS1, revealing that a C-terminal segment of ELKS1 forms a helical hairpin to recognize Rab6B through a unique binding mode. We further showed that liquid-liquid phase separation (LLPS) of ELKS1 allows it to compete with other Rab6 effectors for binding to Rab6B and accumulate Rab6B-coated liposomes to the protein condensate formed by ELKS1. We also found that the ELKS1 condensate recruits Rab6B-coated vesicles to vesicle-releasing sites and promotes vesicle exocytosis. Together, our structural, biochemical, and cellular analyses suggest that ELKS1, via the LLPS-enhanced interaction with Rab6, captures Rab6-coated vesicles from the cargo transport machine for efficient vesicle release at exocytotic sites. These findings shed new light on the understanding of spatiotemporal regulation of vesicle trafficking through the interplay between membranous structures and membraneless condensates.


Subject(s)
Adaptor Proteins, Signal Transducing , Coated Vesicles , Nerve Tissue Proteins , rab GTP-Binding Proteins , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/metabolism , Coated Vesicles/chemistry , Coated Vesicles/metabolism , Exocytosis , Liposomes , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/metabolism , Neurons/cytology , Neurons/metabolism , rab GTP-Binding Proteins/chemistry , rab GTP-Binding Proteins/metabolism
4.
Opt Express ; 32(5): 7907-7918, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38439460

ABSTRACT

In this paper, the optimal solution of effective nonlinear coefficient of quasi-phase-matching (QPM) crystals for coupled third harmonic generation (CTHG) was numerically investigated. The effective nonlinear coefficient of CTHG was converted to an Ising model for optimizing domain distributions of aperiodically poled lithium niobate (APPLN) crystals with lengths as 0.5 mm and 1 mm, and fundamental wavelengths ranging from 1000 nm to 6000 nm. A method for reconstructing crystal domain poling weight curve of coupled nonlinear processes was also proposed, which demonstrated the optimal conversion ratio between two coupled nonlinear processes at each place along the crystal. In addition, by applying the semidefinite programming, the upper bound on the effective nonlinear coefficients deff for different fundamental wavelengths were calculated. The research can be extended to any coupled dual χ(2) process and will help us to understand better the dynamics of coupled nonlinear interactions based on QPM crystals.

5.
Opt Express ; 32(7): 11534-11547, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38570998

ABSTRACT

Femtosecond optical parametric oscillators (OPOs) are widely used in ultrafast nonlinear frequency conversion and quantum information. However, conventional OPOs based on quasi-phase-matching (QPM) crystals have many parasitic non-phase-matched processes which decrease the conversion efficiency. Here, we propose nine-wave coupled equations (NWCEs) to simulate all phase-matched and non-phase-matched interactions in QPM crystals to improve conventional three-wave coupled equations (TWCEs), especially for the situation of high intensity ultrashort pulses and complexly structured crystals. We discuss how to design the poling period of QPM crystal to maximize the conversion efficiency of signal light for a given OPO system. The simulation reveals that the OPO based on chirped periodically poled lithium niobate (CPPLN) with a certain chirp rate has higher signal wave conversion efficiency than that of a PPLN, and demonstrates that NWCEs illustrate more details of the pulse evolution in the OPO cavity. Starting from a CPPLN, an aperiodically poled lithium niobate (APPLN) design is available by modifying the domain lengths of the crystal and optimizing the OPO output power via dynamical optimization algorithm. The results show that by using a properly designed APPLN crystal, a 1600 nm OPO, when pumped by a femtosecond laser with 1030 nm central wavelength, 150 femtosecond pulse duration and 5 GW/cm2 power intensity at the focus, can achieve very efficient output with a signal light conversion efficiency of 50.6%, which is higher than that of PPLN (25.2%) and CPPLN (40.2%). The scheme in this paper will provide a reference for the design of nonlinear QPM crystals of OPOs and will help to understand the complex nonlinear dynamical behavior in OPO cavities.

6.
Cell ; 138(3): 537-48, 2009 Aug 07.
Article in English | MEDLINE | ID: mdl-19665975

ABSTRACT

Myosin VI is the only known molecular motor that moves toward the minus ends of actin filaments; thus, it plays unique roles in diverse cellular processes. The processive walking of myosin VI on actin filaments requires dimerization of the motor, but the protein can also function as a nonprocessive monomer. The molecular mechanism governing the monomer-dimer conversion is not clear. We report the high-resolution NMR structure of the cargo-free myosin VI cargo-binding domain (CBD) and show that it is a stable monomer in solution. The myosin VI CBD binds to a fragment of the clathrin-coated vesicle adaptor Dab2 with a high affinity, and the X-ray structure of the myosin VI CBD in complex with Dab2 reveals that the motor undergoes a cargo-binding-mediated dimerization. The cargo-binding-induced dimerization may represent a general paradigm for the regulation of processivity for myosin VI as well as other myosins, including myosin VII and myosin X.


Subject(s)
Myosin Heavy Chains/chemistry , Myosin Heavy Chains/metabolism , Adaptor Proteins, Signal Transducing , Adaptor Proteins, Vesicular Transport/metabolism , Amino Acid Sequence , Animals , Apoptosis Regulatory Proteins , Clathrin-Coated Vesicles/metabolism , Crystallography, X-Ray , Dimerization , Mice , Models, Molecular , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Sequence Alignment
7.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 289-294, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38814200

ABSTRACT

Collagen sponge and epidermal growth factor (EGF) promote wound healing. However, the effect of collagen sponge combined with EGF in repairing maxillofacial head and neck wounds remains unclear. The rats were divided into 3 groups, including experimental group 1 (Vaseline gauze+EGF), experimental group 2 (collagen sponge+EGF) with control group (Vaseline+normal saline), and maxillofacial head and neck wounds were simulated. Wound pathological morphology was detected by HE staining; wound EGF, IL-1ß, IL-6 along with TNF-α contents by ELISA and MMP1 level by western blot. At 7 and 14 days after treatment, wound healing rate of two experimental groups was higher than that of control group, and that of experimental group 2 presented higher than that of experimental group 1. Compared with control group, experimental group 1 had significantly fewer inflammatory cells in the wound tissue, local erythrocyte spillage outside the vascular walls, more collagen deposition and more granulation tissue. Compared with experimental group 1, inflammatory cells in wound tissues of experimental group 2 were significantly reduced, the collagen tissues were visible and arranged, and the growth of the wound granulation tissue was obvious. IL-1ß, IL-6 along with TNF-α levels in two experimental groups presented lower than control group, and EGF level was higher. More importantly, in contrast to experimental group 1, IL-1ß, IL-6 along with TNF-α in experimental group 2 presented lower, and EGF level presented higher. At 14 days after treatment, MMP1 level in two experimental groups was lower than control group. In contrast to experimental group 1, MMP1 level in experimental group 2 was lower. In summary, collagen sponge combined with EGF for the first time significantly improved the healing speed of maxillofacial head and neck wounds and reduced the scar left after wound healing.


Subject(s)
Collagen , Epidermal Growth Factor , Matrix Metalloproteinase 1 , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha , Wound Healing , Animals , Epidermal Growth Factor/pharmacology , Epidermal Growth Factor/metabolism , Wound Healing/drug effects , Collagen/metabolism , Matrix Metalloproteinase 1/metabolism , Male , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Rats , Interleukin-1beta/metabolism , Granulation Tissue/drug effects , Granulation Tissue/pathology
8.
J Craniofac Surg ; 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39283081

ABSTRACT

OBJECTIVE: To investigate the clinical efficacy of negative pressure wound therapy (NPWT) in the treatment of odontogenic cervical Necrotizing fasciitis (CNF). METHODS: Sixteen cases of odontogenic cervical necrotizing fasciitis were randomly divided into observation group and control group after routine debridement and disinfection. The patients in the control group were treated with drainage tube and regular dressing changes, while those in the observation group were treated with NPWT. The therapeutic effects of the 2 groups were compared. RESULTS: The frequency of operation, treatment length, and cost of treatment in the observation group were significantly less than those in the control group (P<0.05). During the treatment, the VAS (visual analog scale of pain) in the observation group was significantly lower than that in the control group (P<0.05). The levels of WBC, CRP, PCT, IL-6, and TNF-α in the observation group were lower than those in the control group (P<0.05). The levels of Il-10 and VEGF in the observation group were higher than those in the control group (P<0.05), the difference was statistically significant. CONCLUSIONS: The condition of odontogenic cervical necrotizing fasciitis progresses rapidly. Compared with conventional drainage and dressing change, NPWT can control infection in a short time, reduce operation frequency and treatment cost, and promote wound healing, shorten the treatment time, ease the pain of patients, improve the quality of life. The therapeutic scheme is safe, effective, and suitable for clinical application.

9.
J Craniofac Surg ; 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38408325

ABSTRACT

OBJECTIVES: To observe the clinical effect of recombinant human alkaline fibroblast growth factor (rh-bFGF) combined with collagen sponge in the treatment of maxillofacial deepⅡ degree burn. METHODS: From January 2019 to January 2022, 96 patients with maxillofacial deep Ⅱ degree burns were randomly divided into a control group (N=48) and an observation group (N=48). The observation group was treated with rh-bFGF and collagen sponge after debridement, whereas the control group was treated with silver sulfadiazine ointment after debridement. The healing rate and healing time of the wounds were observed, interleukin (IL)-6, tumor necrosis factor (TNF)-α, IL-10, epidermal growth factor (EGF), endothelial growth factor growth factor (VEGF), and metalloproteinase tissue inhibitor 1 (TIMP-1) were measured. Vancouver Scar Scale (VSS) was used to evaluate the local scar at 6 months after wound healing in both groups. RESULTS: On the 10th, 14th, and 21st day of treatment, the wound healing rate in the observation group was higher than that in the control group (P<0.05), the wound healing time in the observation group was lower than that in the control group (P<0.05), and on the 14th day of treatment, the levels of TNF-α and IL-6 in the observation group were lower than those in the control group (P<0.05). The levels of IL-10 in the observation group were higher than those in the control group (P<0.05). The levels of EGF, VEGF, and TIMP-1 in the observation group were higher than those in the control group (P<0.05), and the scores of VSS in the observation group were lower than those in the control group (P<0.05). CONCLUSIONS: Rh-bFGF combined with collagen sponge can decrease the levels of TNF-α and IL-6 and increase the levels of IL-10, which can control the inflammation effectively, at the same time, it can increase the level of EGF, VEGF, and TIMP-1, promote wound healing, and reduce scar hyperplasia. The treatment protocol is simple, safe, effective, and suitable for clinical application.

10.
Opt Express ; 31(8): 12212-12219, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37157385

ABSTRACT

In this paper, we demonstrated the direct amplification of femtosecond pulses with the Yb:CaYAlO4 crystal for the first time. A compact and simple two-stage amplifier delivered amplified pulses with the average powers of 55.4 W for σ-polarization and 39.4 W for π-polarization at the center wavelengthes of 1032 nm and 1030 nm, corresponding to 28.3% and 16.3% optical-to-optical efficiencies, respectively. These are to the best of our knowledge the highest value achieved with a Yb:CaYAlO4 amplifier. Upon using a compressor consisting of prisms and GTI mirrors, a pulse duration of 166-fs was measured. Thanks to the good thermal management, the beam quality (M2) parameters <1.3 along each axis were maintained in each stage.

11.
Opt Express ; 31(20): 32813-32823, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37859075

ABSTRACT

Optical frequency combs with more than 10 W have paved the way for extreme ultraviolet combs generation by interaction with inert gases, leading to extreme nonlinear spectroscopy and the ultraviolet nuclear clock. Recently, the demand for an ultra-long-distance time and frequency space transfer via optical dual-comb proposes a new challenge for high power frequency comb in respect of power scaling and optical frequency stability. Here we present a frequency comb based on fiber chirped pulse amplification (CPA), which can offer more than 20 W output power. We further characterize the amplifier branch noise contribution by comparing two methods of locking to an optical reference and measure the out-of-loop frequency instability by heterodyning two identical high-power combs. Thanks to the low noise CPA, reasonable locking method, and optical path-controlled amplifiers, the out-of-loop beat note between two combs demonstrates the unprecedented frequency stability of 4.35 × 10-17 at 1s and 6.54 × 10-19 at 1000 s.

12.
Opt Express ; 31(6): 9854-9871, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-37157547

ABSTRACT

High-order harmonic generation (HHG) has a broad spectrum covering vacuum ultraviolet to extreme ultraviolet (XUV) bands, which is useful for applications involving material analyses at different information depths. Such an HHG light source is perfect for time- and angle-resolved photoemission spectroscopy. Here, we demonstrate a high-photon flux HHG source driven by a two-color field. Applying a fused silica compression stage to reduce the driving pulse width, we obtained a high XUV photon flux of 2 × 1012 phs/s @21.6 eV on target. We designed a classical diffraction mounted (CDM) grating monochromator that can achieve a wide range of photon energy from 12 to 40.8 eV, while the time resolution is improved by reducing the pulse front tilt after the harmonic selection. We designed a spatial filtering method to adjust the time resolution using the CDM monochromator and significantly reduced the pulse front tilt of the XUV pulses. We also demonstrate a detailed prediction of the energy resolution broadening which is caused by the space charge effect.

13.
Opt Lett ; 48(4): 1052-1055, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36791008

ABSTRACT

We demonstrate high-power longwave mid-IR ultrafast sources based on a high-power Er-fiber laser system at 1.55 µm with a 32-MHz repetition rate. Compared with previous 1.03-µm-driven difference frequency generation (DFG), our current configuration allows tighter focusing in the GaSe crystal thanks to an increased damage threshold at 1.55 µm. Consequently, the 1.55-µm-driven DFG can operate in the regime of optical parametric amplification (OPA), in which the mid-IR power grows exponentially with respect to the square root of the pumping power. We experimentally demonstrate this operation regime and achieve broadband mid-IR pulses that are tunable in the 7.7-17.3 µm range with a maximum average power of 58.3 mW, which is also confirmed by our numerical simulation.

14.
Opt Lett ; 48(17): 4633-4636, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37656573

ABSTRACT

Kerr-lens mode-locking (KLM) has been widely used in thin-disk oscillators to generate high-power femtosecond pulses. Here we demonstrate a Kerr-lens mode-locked Yb:YAG thin-disk oscillator that can be self-started under two configurations. The first can deliver 13-W, 235-fs pulses at a repetition rate of 103 MHz; the second delivers 49 W at a repetition rate of 46.5 MHz, whose corresponding pulse energy of 1.05 µJ is, to the best of our knowledge, the highest energy ever obtained in self-started Kerr-lens mode-locked oscillators. A new method to initiate KLM in the form of optical perturbation in a thin-disk oscillator has also been demonstrated.

15.
Opt Lett ; 48(18): 4789-4792, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37707903

ABSTRACT

We report on the demonstration of a pure Kerr-lens mode-locked Yb:CALYO laser which can directly deliver sub-200 fs pulses with more than 20-W average power. With an incident pump power of 89 W, 153-fs pulses were generated with an average power of 21.5 W at a repetition rate of 77.9 MHz. The corresponding peak power and single pulse energy were 1.6 MW and 0.27 µJ, respectively. The stable operation of the mode-locking was confirmed by very small fluctuations in both spectrum and output power recorded over an hour. Second harmonic generation (SHG) was conducted with 59% conversion efficiency, which indicated that the high-power mode-locking pulses are of good quality. Stable Kerr-lens mode-locking (KLM) with 156-fs pulse duration and 27.2-W average power was also achieved with 109-W pump power. To the best of our knowledge, this is the highest average output power ever reported from a femtosecond mode-locked bulk oscillator.

16.
Respir Res ; 24(1): 268, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37926845

ABSTRACT

BACKGROUND: Forced vital capacity (FVC) reflects respiratory health, but the long-term trend and heterogeneity in FVC of Chinese students were understudied. METHODS: Data were from Chinese National Survey on Students' Constitution and Health 1985-2019. Super Imposition by Translation and Rotation model was used to draw FVC growth curves. Sex-, region-, and nationality-heterogeneity in FVC was evaluated. Spearman correlation and generalized additive model was used to reveal influencing factors for FVC. RESULTS: Compared to 1985, age at peak FVC velocity was 1.09, 3.17, 0.74, and 1.87 years earlier for urban male, urban female, rural male, and rural female in 2019, respectively. Peak FVC velocity first decreased and then increased during 1985-2019, only male rebounded to larger than 1985 level. FVC declined from 1985 to 2005 and then raised. Males consistently had higher FVC than females, with disparities increasing in the 13-15 age group. Urban students also had higher FVC than rural students. In 2019, FVC difference between 30 Chinese provinces and the national average showed four scenarios: consistently above national average; less than national average until age 18, then above; greater than national average until age 18, then this advantage reversed; less than national average in almost all the age. Most Chinese ethnic minority students had lower FVC levels compared to Han students. Spearman correlation and generalized additive model showed that age, sex, and height were the leading influencing factors of FVC, followed by socioeconomic and environmental factors. CONCLUSIONS: Chinese students experienced advanced FVC spurt, and there was sex-, region- and nationality-heterogeneity in FVC. Routine measurement of FVC is necessary in less developed areas of China.


Subject(s)
Ethnicity , Minority Groups , Adolescent , Female , Humans , Male , Asian People , China/epidemiology , Students , Vital Capacity , Young Adult
17.
Article in English | MEDLINE | ID: mdl-37971435

ABSTRACT

Objective: To evaluate the clinical efficacy of damage control surgery (DCS) in the treatment of odontogenic cervical Necrotizing Fasciitis (CNF) complicated with septic shock. Methods: From January 2019 to January 2022, 8 cases with odontogenic cervical Necrotizing Fasciitis (CNF) complicated with septic shock were selected. According to the concept of damage control surgery (DCS), they were treated with incision and decompression, debridement and sealing vacuum suction (VSD) at the early stage, anti-shock, anti-infection, life support. At the later stage, the patients were treated by skin autograft combined with early rehabilitation. Results: In 8 cases, shock was corrected in a short time, lac decreased rapidly, infection index including white blood cell (WBC), C-reactive protein (CRP), thrombocytocrit (PCT) decreased rapidly, organ function including blood urea nitrogen (BUN), total bilirubin (Tbil), Aspartate aminotransferase (AST), alanine aminotransferase (ALT), albumin (Alb), creatine kinase (CK) was improved effectively, P < .05. The wounds of all the patients were effectively closed and cured. The average days of hospitalization were 21-42 days (27.00±3.20 days). No recurrence was found in the follow-up of 6 months. Conclusion: Odontogenic cervical Necrotizing fasciitis with septic shock progresses rapidly. Damage control surgery can effectively control infection, correct shock and avoid further deterioration of organ function. This scheme has unique advantages, which can make the wound repaired in time and improve the success rate of treatment. It is worth popularizing in clinic.

18.
J Craniofac Surg ; 34(2): 759-763, 2023.
Article in English | MEDLINE | ID: mdl-36730681

ABSTRACT

OBJECTIVES: To investigate the clinical outcome of autogenous dermis combined with local flap transplantation in the treatment of titanium mesh exposure after cranioplasty. METHODS: We studied a total of 8 patients with titanium mesh exposure after cranioplasty. After debridement of the head wound, the autogenous dermal tissue from the lateral thigh was transplanted to the surface of titanium mesh, and the local skin flap was then applied after suturing and fixation to repair the wound on the surface of the dermis. To repair the lateral thigh dermal tissue area, a local skin flap was obtained, and a blade thick skin graft was used. RESULTS: Both dermal tissue and local skin flap survived. In the meanwhile, the donor skin area of the lateral thigh healed well, with only slight scar hyperplasia, and the titanium mesh was preserved. There was no recurrence after 6 months of follow-up. CONCLUSIONS: The application of autogenous dermis combined with local skin flap to repair titanium mesh exposure can effectively avoid skin flap necrosis, potential re-exposure of titanium mesh, sub-flap effusion, infection, and other problems. This method has an ideal effect, has easy access to materials, and reduces patients' economic burden. It is worth popularizing.


Subject(s)
Dental Implants , Perforator Flap , Plastic Surgery Procedures , Soft Tissue Injuries , Humans , Titanium , Surgical Mesh , Skin Transplantation , Treatment Outcome , Soft Tissue Injuries/surgery , Dermis/surgery , Perforator Flap/surgery
19.
Int J Mol Sci ; 24(2)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36674928

ABSTRACT

SH3 domains are common protein binding modules. The target sequence of SH3 domains is usually a proline-rich motif (PRM) containing a minimal "PxxP" sequence. The mechanism of how different SH3 domains specifically choose their targets from vast PxxP-containing sequences is still not very clear, as many reported SH3/PRM interactions are weak and promiscuous. Here, we identified the binding of the SH3 domain of ASAP1 to the PRM of MICAL1 with a sub-µM binding affinity, and determined the crystal structure of ASAP1-SH3 and MICAL1-PRM complex. Our structural and biochemical analyses revealed that the target-binding pocket of ASAP1-SH3 contains two negatively charged patches to recognize the "xPx + Px+" sequence in MICAL1-PRM and consequently strengthen the interaction, differing from the typical SH3/PRM interaction. This unique PRM-binding pocket is also found in the SH3 domains of GTPase Regulator associated with focal adhesion kinase (GRAF) and Src kinase associated phosphoprotein 1 (SKAP1), which we named SH3AGS. In addition, we searched the Swiss-Prot database and found ~130 proteins with the SH3AGS-binding PRM in silico. Finally, gene ontology analysis suggests that the strong interaction between the SH3AGS-containing proteins and their targets may play roles in actin cytoskeleton regulation and vesicle trafficking.


Subject(s)
Proline , src Homology Domains , Binding Sites , Amino Acid Sequence , Proline/metabolism , Protein Binding
20.
J Cell Mol Med ; 26(23): 5846-5857, 2022 12.
Article in English | MEDLINE | ID: mdl-36317703

ABSTRACT

Cutaneous melanoma (CM) is the most fatal type of skin cancer with a high potency of metastasis, yet the treatment for metastatic melanoma remains limited. In this study, we are devoted to addressing the prognostic value and underlying mechanism of DNA damage repair-related genes in CM. We utilized integrated bioinformatic approaches and machine learning models to identify a cluster of convergently expressed DNA damage repair-related genes in melanoma. With multivariate Cox regression, SMARCA4 (also known as BRG1) was identified as an independent prognostic marker for melanoma patients. Yet the expression of SMARCA4 is not altered with the pathological staging or the metastasis condition. SMARCA4 is an essential ATPase subunit of the mammalian SWI/SNF complex. Mechanistically, we demonstrated that SMARCA4 could resolve DNA replication stress and guarantee the proliferation of melanoma cells. Furthermore, we predicted the binding of different transcription factors on the SMARCA4 promoter and unveiled the modulated expression of SMARCA4 by SOX10 in melanoma. Together, we performed integrated approaches to identify SMARCA4 as a promising prognostic marker for melanoma, which was transcriptionally regulated by SOX10 and promoted melanoma cell proliferation by ameliorating DNA replication stress.


Subject(s)
Melanoma , Skin Neoplasms , Humans , DNA Helicases/genetics , DNA Helicases/metabolism , DNA Replication/genetics , Melanoma/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Skin Neoplasms/genetics , SOXE Transcription Factors/genetics , SOXE Transcription Factors/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Melanoma, Cutaneous Malignant
SELECTION OF CITATIONS
SEARCH DETAIL