Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mov Disord ; 39(3): 546-559, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38173297

ABSTRACT

BACKGROUND: Dementia is common in Parkinson's disease (PD), but there is wide variation in its timing. A critical gap in PD research is the lack of quantifiable markers of progression, and methods to identify early stages of dementia. Atrophy-based magnetic resonance imaging (MRI) has limited sensitivity in detecting or tracking changes relating to PD dementia, but quantitative susceptibility mapping (QSM), sensitive to brain tissue iron, shows potential for these purposes. OBJECTIVE: The objective of the paper is to study, for the first time, the longitudinal relationship between cognition and QSM in PD in detail. METHODS: We present a longitudinal study of clinical severity in PD using QSM, including 59 PD patients (without dementia at study onset), and 22 controls over 3 years. RESULTS: In PD, increased baseline susceptibility in the right temporal cortex, nucleus basalis of Meynert, and putamen was associated with greater cognitive severity after 3 years; and increased baseline susceptibility in basal ganglia, substantia nigra, red nucleus, insular cortex, and dentate nucleus was associated with greater motor severity after 3 years. Increased follow-up susceptibility in these regions was associated with increased follow-up cognitive and motor severity, with further involvement of hippocampus relating to cognitive severity. However, there were no consistent increases in susceptibility over 3 years. CONCLUSIONS: Our study suggests that QSM may predict changes in cognitive severity many months prior to overt cognitive involvement in PD. However, we did not find robust longitudinal changes in QSM over the course of the study. Additional tissue metrics may be required together with QSM for it to monitor progression in clinical practice and therapeutic trials. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Alzheimer Disease , Parkinson Disease , Humans , Parkinson Disease/diagnostic imaging , Parkinson Disease/pathology , Longitudinal Studies , Basal Ganglia/pathology , Substantia Nigra/pathology , Magnetic Resonance Imaging/methods
2.
Mov Disord ; 39(2): 438-444, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38226430

ABSTRACT

BACKGROUND: Although some systemic infections are associated with Parkinson's disease (PD), the relationship between herpes zoster (HZ) and PD is unclear. OBJECTIVE: The objective is to investigate whether HZ is associated with incident PD risk in a matched cohort study using data from the US Department of Veterans Affairs. METHODS: We compared the risk of PD between individuals with incident HZ matched to up to five individuals without a history of HZ using Cox proportional hazards regression. In sensitivity analyses, we excluded early outcomes. RESULTS: Among 198,099 individuals with HZ and 976,660 matched individuals without HZ (median age 67.0 years (interquartile range [IQR 61.4-75.7]); 94% male; median follow-up 4.2 years [IQR 1.9-6.6]), HZ was not associated with an increased risk of incident PD overall (adjusted HR 0.95, 95% CI 0.90-1.01) or in any sensitivity analyses. CONCLUSION: We found no evidence that HZ was associated with increased risk of incident PD in this cohort. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Herpes Zoster , Parkinson Disease , Veterans , Humans , Male , Aged , Female , Cohort Studies , Parkinson Disease/epidemiology , Parkinson Disease/complications , Risk Factors , Herpes Zoster/complications , Herpes Zoster/epidemiology
3.
Mov Disord ; 39(2): 433-438, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38140767

ABSTRACT

BACKGROUND: Clinical trials of disease-modifying therapies in PD require valid and responsive primary outcome measures that are relevant to patients. OBJECTIVES: The objective is to select a patient-centered primary outcome measure for disease-modification trials over three or more years. METHODS: Experts in Parkinson's disease (PD), statistics, and health economics and patient and public involvement and engagement (PPIE) representatives reviewed and discussed potential outcome measures. A larger PPIE group provided input on their key considerations for such an endpoint. Feasibility, clinimetric properties, and relevance to patients were assessed and synthesized. RESULTS: Although initial considerations favored the Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS) Part III in Off, feasibility, PPIE input, and clinimetric properties supported the MDS-UPDRS Part II. However, PPIE input also highlighted the importance of nonmotor symptoms, especially in the longer term, leading to the selection of the MDS-UPDRS Parts I + II sum score. CONCLUSIONS: The MDS-UPDRS Parts I + II sum score was chosen as the primary outcome for large 3-year disease-modification trials. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/therapy , Parkinson Disease/diagnosis , Severity of Illness Index , Mental Status and Dementia Tests , Societies, Medical
4.
Brain ; 146(10): 4065-4076, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37184986

ABSTRACT

Successful communication in daily life depends on accurate decoding of speech signals that are acoustically degraded by challenging listening conditions. This process presents the brain with a demanding computational task that is vulnerable to neurodegenerative pathologies. However, despite recent intense interest in the link between hearing impairment and dementia, comprehension of acoustically degraded speech in these diseases has been little studied. Here we addressed this issue in a cohort of 19 patients with typical Alzheimer's disease and 30 patients representing the three canonical syndromes of primary progressive aphasia (non-fluent/agrammatic variant primary progressive aphasia; semantic variant primary progressive aphasia; logopenic variant primary progressive aphasia), compared to 25 healthy age-matched controls. As a paradigm for the acoustically degraded speech signals of daily life, we used noise-vocoding: synthetic division of the speech signal into frequency channels constituted from amplitude-modulated white noise, such that fewer channels convey less spectrotemporal detail thereby reducing intelligibility. We investigated the impact of noise-vocoding on recognition of spoken three-digit numbers and used psychometric modelling to ascertain the threshold number of noise-vocoding channels required for 50% intelligibility by each participant. Associations of noise-vocoded speech intelligibility threshold with general demographic, clinical and neuropsychological characteristics and regional grey matter volume (defined by voxel-based morphometry of patients' brain images) were also assessed. Mean noise-vocoded speech intelligibility threshold was significantly higher in all patient groups than healthy controls, and significantly higher in Alzheimer's disease and logopenic variant primary progressive aphasia than semantic variant primary progressive aphasia (all P < 0.05). In a receiver operating characteristic analysis, vocoded intelligibility threshold discriminated Alzheimer's disease, non-fluent variant and logopenic variant primary progressive aphasia patients very well from healthy controls. Further, this central hearing measure correlated with overall disease severity but not with peripheral hearing or clear speech perception. Neuroanatomically, after correcting for multiple voxel-wise comparisons in predefined regions of interest, impaired noise-vocoded speech comprehension across syndromes was significantly associated (P < 0.05) with atrophy of left planum temporale, angular gyrus and anterior cingulate gyrus: a cortical network that has previously been widely implicated in processing degraded speech signals. Our findings suggest that the comprehension of acoustically altered speech captures an auditory brain process relevant to daily hearing and communication in major dementia syndromes, with novel diagnostic and therapeutic implications.


Subject(s)
Alzheimer Disease , Aphasia, Primary Progressive , Aphasia , Humans , Alzheimer Disease/complications , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Comprehension , Speech , Brain/pathology , Aphasia/pathology , Aphasia, Primary Progressive/complications , Neuropsychological Tests
5.
Alzheimers Dement ; 19(1): 318-332, 2023 01.
Article in English | MEDLINE | ID: mdl-36239924

ABSTRACT

Dementia with Lewy bodies (DLB) is clinically defined by the presence of visual hallucinations, fluctuations, rapid eye movement (REM) sleep behavioral disorder, and parkinsonism. Neuropathologically, it is characterized by the presence of Lewy pathology. However, neuropathological studies have demonstrated the high prevalence of coexistent Alzheimer's disease, TAR DNA-binding protein 43 (TDP-43), and cerebrovascular pathologic cases. Due to their high prevalence and clinical impact on DLB individuals, clinical trials should account for these co-pathologies in their design and selection and the interpretation of biomarkers values and outcomes. Here we discuss the frequency of the different co-pathologies in DLB and their cross-sectional and longitudinal clinical impact. We then evaluate the utility and possible applications of disease-specific and disease-nonspecific biomarkers and how co-pathologies can impact these biomarkers. We propose a framework for integrating multi-modal biomarker fingerprints and step-wise selection and assessment of DLB individuals for clinical trials, monitoring target engagement, and interpreting outcomes in the setting of co-pathologies.


Subject(s)
Lewy Body Disease , Humans , Alzheimer Disease/pathology , Biomarkers , Clinical Trials as Topic , Cross-Sectional Studies , Lewy Body Disease/complications , Lewy Body Disease/pathology , Parkinsonian Disorders/etiology , REM Sleep Behavior Disorder/etiology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism
6.
J Neurol Neurosurg Psychiatry ; 93(5): 555-562, 2022 05.
Article in English | MEDLINE | ID: mdl-34930778

ABSTRACT

BACKGROUND: Neuropsychiatric symptoms are common in Parkinson's disease (PD) and predict poorer outcomes. Reward processing dysfunction is a candidate mechanism for the development of psychiatric symptoms including depression and impulse control disorders (ICDs). We aimed to determine whether reward processing is impaired in PD and its relationship with neuropsychiatric syndromes and dopamine replacement therapy. METHODS: The Ovid MEDLINE/PubMed, Embase and PsycInfo databases were searched for articles published up to 5 November 2020. Studies reporting reward processing task performance by patients with PD and healthy controls were included. Summary statistics comparing reward processing between groups were converted to standardised mean difference (SMD) scores and meta-analysed using a random effects model. RESULTS: We identified 55 studies containing 2578 participants (1638 PD and 940 healthy controls). Studies assessing three subcomponent categories of reward processing tasks were included: option valuation (n=12), reinforcement learning (n=37) and reward response vigour (n=6). Across all studies, patients with PD on medication exhibited a small-to-medium impairment versus healthy controls (SMD=0.34; 95% CI 0.14 to 0.53), with greater impairments observed off dopaminergic medication in within-subjects designs (SMD=0.43, 95% CI 0.29 to 0.57). Within-subjects subcomponent analysis revealed impaired processing off medication on option valuation (SMD=0.57, 95% CI 0.39 to 0.75) and reward response vigour (SMD=0.36, 95% CI 0.13 to 0.59) tasks. However, the opposite applied for reinforcement learning, which relative to healthy controls was impaired on-medication (SMD=0.45, 95% CI 0.25 to 0.65) but not off-medication (SMD=0.28, 95% CI -0.03 to 0.59). ICD was the only neuropsychiatric syndrome with sufficient studies (n=13) for meta-analysis, but no significant impairment was identified compared tonon-ICD patients (SMD=-0.02, 95% CI -0.43 to 0.39). CONCLUSION: Reward processing disruption in PD differs according to subcomponent and dopamine medication state, and warrants further study as a potential treatment target and mechanism underlying associated neuropsychiatric syndromes.


Subject(s)
Disruptive, Impulse Control, and Conduct Disorders , Parkinson Disease , Disruptive, Impulse Control, and Conduct Disorders/complications , Dopamine , Dopamine Agents/therapeutic use , Humans , Parkinson Disease/complications , Reward , Syndrome
7.
Brain ; 144(2): 391-401, 2021 03 03.
Article in English | MEDLINE | ID: mdl-33351095

ABSTRACT

The association between hearing impairment and dementia has emerged as a major public health challenge, with significant opportunities for earlier diagnosis, treatment and prevention. However, the nature of this association has not been defined. We hear with our brains, particularly within the complex soundscapes of everyday life: neurodegenerative pathologies target the auditory brain, and are therefore predicted to damage hearing function early and profoundly. Here we present evidence for this proposition, based on structural and functional features of auditory brain organization that confer vulnerability to neurodegeneration, the extensive, reciprocal interplay between 'peripheral' and 'central' hearing dysfunction, and recently characterized auditory signatures of canonical neurodegenerative dementias (Alzheimer's disease, Lewy body disease and frontotemporal dementia). Moving beyond any simple dichotomy of ear and brain, we argue for a reappraisal of the role of auditory cognitive dysfunction and the critical coupling of brain to peripheral organs of hearing in the dementias. We call for a clinical assessment of real-world hearing in these diseases that moves beyond pure tone perception to the development of novel auditory 'cognitive stress tests' and proximity markers for the early diagnosis of dementia and management strategies that harness retained auditory plasticity.


Subject(s)
Dementia/physiopathology , Hearing Loss/physiopathology , Aged , Aged, 80 and over , Alzheimer Disease/complications , Auditory Perception/physiology , Brain/physiopathology , Cognitive Dysfunction/complications , Comorbidity , Dementia/complications , Frontotemporal Dementia/complications , Hearing/physiology , Hearing Loss/complications , Humans , Lewy Body Disease/complications , Middle Aged
8.
Brain ; 144(6): 1787-1798, 2021 07 28.
Article in English | MEDLINE | ID: mdl-33704443

ABSTRACT

The mechanisms responsible for the selective vulnerability of specific neuronal populations in Parkinson's disease are poorly understood. Oxidative stress secondary to brain iron accumulation is one postulated mechanism. We measured iron deposition in 180 cortical regions of 96 patients with Parkinson's disease and 35 control subjects using quantitative susceptibility mapping. We estimated the expression of 15 745 genes in the same regions using transcriptomic data from the Allen Human Brain Atlas. Using partial least squares regression, we then identified the profile of gene transcription in the healthy brain that underlies increased cortical iron in patients with Parkinson's disease relative to controls. Applying gene ontological tools, we investigated the biological processes and cell types associated with this transcriptomic profile and identified the sets of genes with spatial expression profiles in control brains that correlated significantly with the spatial pattern of cortical iron deposition in Parkinson's disease. Gene ontological analyses revealed that these genes were enriched for biological processes relating to heavy metal detoxification, synaptic function and nervous system development and were predominantly expressed in astrocytes and glutamatergic neurons. Furthermore, we demonstrated that the genes differentially expressed in Parkinson's disease are associated with the pattern of cortical expression identified in this study. Our findings provide mechanistic insights into regional selective vulnerabilities in Parkinson's disease, particularly the processes involving iron accumulation.


Subject(s)
Brain/metabolism , Brain/pathology , Iron/metabolism , Parkinson Disease/metabolism , Parkinson Disease/pathology , Aged , Aged, 80 and over , Female , Humans , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging , Male , Middle Aged , Nerve Degeneration/metabolism , Nerve Degeneration/pathology , Neuroimaging/methods , Oxidative Stress/physiology , Transcriptome
9.
Brain ; 144(3): 975-988, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33543247

ABSTRACT

Dementia is one of the most debilitating aspects of Parkinson's disease. There are no validated biomarkers that can track Parkinson's disease progression, nor accurately identify patients who will develop dementia and when. Understanding the sequence of observable changes in Parkinson's disease in people at elevated risk for developing dementia could provide an integrated biomarker for identifying and managing individuals who will develop Parkinson's dementia. We aimed to estimate the sequence of clinical and neurodegeneration events, and variability in this sequence, using data-driven statistical modelling in two separate Parkinson's cohorts, focusing on patients at elevated risk for dementia due to their age at symptom onset. We updated a novel version of an event-based model that has only recently been extended to cope naturally with clinical data, enabling its application in Parkinson's disease for the first time. The observational cohorts included healthy control subjects and patients with Parkinson's disease, of whom those diagnosed at age 65 or older were classified as having high risk of dementia. The model estimates that Parkinson's progression in patients at elevated risk for dementia starts with classic prodromal features of Parkinson's disease (olfaction, sleep), followed by early deficits in visual cognition and increased brain iron content, followed later by a less certain ordering of neurodegeneration in the substantia nigra and cortex, neuropsychological cognitive deficits, retinal thinning in dopamine layers, and further deficits in visual cognition. Importantly, we also characterize variation in the sequence. We found consistent, cross-validated results within cohorts, and agreement between cohorts on the subset of features available in both cohorts. Our sequencing results add powerful support to the increasing body of evidence suggesting that visual processing specifically is affected early in patients with Parkinson's disease at elevated risk of dementia. This opens a route to earlier and more precise detection, as well as a more detailed understanding of the pathological mechanisms underpinning Parkinson's dementia.


Subject(s)
Dementia/etiology , Dementia/physiopathology , Models, Neurological , Parkinson Disease/physiopathology , Age of Onset , Aged , Disease Progression , Female , Humans , Male , Middle Aged , Nerve Degeneration/etiology , Nerve Degeneration/physiopathology , Parkinson Disease/complications
10.
Mov Disord ; 36(5): 1191-1202, 2021 05.
Article in English | MEDLINE | ID: mdl-33421201

ABSTRACT

BACKGROUND: Visual dysfunction predicts dementia in Parkinson's disease (PD), but whether this translates to structural change is not known. The objectives of this study were to identify longitudinal white matter changes in patients with Parkinson's disease and low visual function and also in those who developed mild cognitive impairment. METHODS: We used fixel-based analysis to examine longitudinal white matter change in PD. Diffusion MRI and clinical assessments were performed in 77 patients at baseline (22 low visual function/55 intact vision and 13 PD-mild cognitive impairment/51 normal cognition) and 25 controls and again after 18 months. We compared microstructural changes in fiber density, macrostructural changes in fiber bundle cross-section and combined fiber density and cross-section, across white matter, adjusting for age, sex, and intracranial volume. RESULTS: Patients with PD and visual dysfunction showed worse cognitive performance at follow-up and were more likely to develop mild cognitive impairment compared with those with normal vision (P = 0.008). Parkinson's with poor visual function showed diffuse microstructural and macrostructural changes at baseline, whereas those with mild cognitive impairment showed fewer baseline changes. At follow-up, Parkinson's with low visual function showed widespread macrostructural changes, involving the fronto-occipital fasciculi, external capsules, and middle cerebellar peduncles bilaterally. No longitudinal change was seen in those with mild cognitive impairment at baseline or converters, even when the 2 groups were combined. CONCLUSION: Parkinson's patients with poor visual function show increased white matter damage over time, providing further evidence for visual function as a marker of imminent cognitive decline. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Cognitive Dysfunction , Parkinson Disease , White Matter , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Diffusion Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging , Neuropsychological Tests , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging , White Matter/diagnostic imaging
11.
Brain ; 143(11): 3435-3448, 2020 12 05.
Article in English | MEDLINE | ID: mdl-33118028

ABSTRACT

Visual hallucinations are common in Parkinson's disease and are associated with poorer prognosis. Imaging studies show white matter loss and functional connectivity changes with Parkinson's visual hallucinations, but the biological factors underlying selective vulnerability of affected parts of the brain network are unknown. Recent models for Parkinson's disease hallucinations suggest they arise due to a shift in the relative effects of different networks. Understanding how structural connectivity affects the interplay between networks will provide important mechanistic insights. To address this, we investigated the structural connectivity changes that accompany visual hallucinations in Parkinson's disease and the organizational and gene expression characteristics of the preferentially affected areas of the network. We performed diffusion-weighted imaging in 100 patients with Parkinson's disease (81 without hallucinations, 19 with visual hallucinations) and 34 healthy age-matched controls. We used network-based statistics to identify changes in structural connectivity in Parkinson's disease patients with hallucinations and performed an analysis of controllability, an emerging technique that allows quantification of the influence a brain region has across the rest of the network. Using these techniques, we identified a subnetwork of reduced connectivity in Parkinson's disease hallucinations. We then used the Allen Institute for Brain Sciences human transcriptome atlas to identify regional gene expression patterns associated with affected areas of the network. Within this network, Parkinson's disease patients with hallucinations showed reduced controllability (less influence over other brain regions), than Parkinson's disease patients without hallucinations and controls. This subnetwork appears to be critical for overall brain integration, as even in controls, nodes with high controllability were more likely to be within the subnetwork. Gene expression analysis of gene modules related to the affected subnetwork revealed that down-weighted genes were most significantly enriched in genes related to mRNA and chromosome metabolic processes (with enrichment in oligodendrocytes) and upweighted genes to protein localization (with enrichment in neuronal cells). Our findings provide insights into how hallucinations are generated, with breakdown of a key structural subnetwork that exerts control across distributed brain regions. Expression of genes related to mRNA metabolism and membrane localization may be implicated, providing potential therapeutic targets.


Subject(s)
Gene Expression Regulation/genetics , Hallucinations/genetics , Hallucinations/physiopathology , Nerve Net/physiopathology , Parkinson Disease/genetics , Parkinson Disease/physiopathology , Aged , Algorithms , Chromosome Mapping , Connectome , Diffusion Magnetic Resonance Imaging , Female , Hallucinations/etiology , Humans , Image Processing, Computer-Assisted , Male , Middle Aged , Nerve Net/diagnostic imaging , Neuropsychological Tests , Parkinson Disease/complications , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcriptome
12.
Sensors (Basel) ; 21(16)2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34450879

ABSTRACT

Gait is a core motor function and is impaired in numerous neurological diseases, including Parkinson's disease (PD). Treatment changes in PD are frequently driven by gait assessments in the clinic, commonly rated as part of the Movement Disorder Society (MDS) Unified PD Rating Scale (UPDRS) assessment (item 3.10). We proposed and evaluated a novel approach for estimating severity of gait impairment in Parkinson's disease using a computer vision-based methodology. The system we developed can be used to obtain an estimate for a rating to catch potential errors, or to gain an initial rating in the absence of a trained clinician-for example, during remote home assessments. Videos (n=729) were collected as part of routine MDS-UPDRS gait assessments of Parkinson's patients, and a deep learning library was used to extract body key-point coordinates for each frame. Data were recorded at five clinical sites using commercially available mobile phones or tablets, and had an associated severity rating from a trained clinician. Six features were calculated from time-series signals of the extracted key-points. These features characterized key aspects of the movement including speed (step frequency, estimated using a novel Gamma-Poisson Bayesian model), arm swing, postural control and smoothness (or roughness) of movement. An ordinal random forest classification model (with one class for each of the possible ratings) was trained and evaluated using 10-fold cross validation. Step frequency point estimates from the Bayesian model were highly correlated with manually labelled step frequencies of 606 video clips showing patients walking towards or away from the camera (Pearson's r=0.80, p<0.001). Our classifier achieved a balanced accuracy of 50% (chance = 25%). Estimated UPDRS ratings were within one of the clinicians' ratings in 95% of cases. There was a significant correlation between clinician labels and model estimates (Spearman's ρ=0.52, p<0.001). We show how the interpretability of the feature values could be used by clinicians to support their decision-making and provide insight into the model's objective UPDRS rating estimation. The severity of gait impairment in Parkinson's disease can be estimated using a single patient video, recorded using a consumer mobile device and within standard clinical settings; i.e., videos were recorded in various hospital hallways and offices rather than gait laboratories. This approach can support clinicians during routine assessments by providing an objective rating (or second opinion), and has the potential to be used for remote home assessments, which would allow for more frequent monitoring.


Subject(s)
Gait Disorders, Neurologic , Parkinson Disease , Bayes Theorem , Computers , Gait , Gait Disorders, Neurologic/diagnosis , Humans , Parkinson Disease/diagnosis
13.
Pract Neurol ; 2021 May 13.
Article in English | MEDLINE | ID: mdl-33986117

ABSTRACT

Visual hallucinations have intrigued neurologists and physicians for generations due to patients' vivid and fascinating descriptions. They are most commonly associated with Parkinson's disease and dementia with Lewy bodies, but also occur in people with visual loss, where they are known as Charles Bonnet syndrome. More rarely, they can develop in other neurological conditions, such as thalamic or midbrain lesions, when they are known as peduncular hallucinosis. This review considers the mechanisms underlying visual hallucinations across diagnoses, including visual loss, network dysfunction across the brain and changes in neurotransmitters. We propose a framework to explain why visual hallucinations occur most commonly in Parkinson's disease and dementia with Lewy bodies, and discuss treatment approaches to visual hallucinations in these conditions.

14.
Pract Neurol ; 2021 Jul 02.
Article in English | MEDLINE | ID: mdl-34215701

ABSTRACT

The early and accurate diagnosis of dementia is more important than ever before but remains challenging. Dementia is increasingly the business of neurologists and, with ageing populations worldwide, will become even more so in future. Here we outline a practical, symptom-led, bedside approach to suspecting dementia and its likely diagnosis, inspired by clinical experience and based on recognition of characteristic syndromic patterns. We show how clinical intuition reflects underlying signature profiles of brain involvement by the diseases that cause dementia and suggest next steps that can be taken to define the diagnosis. We propose 'canaries' that provide an early warning signal of emerging dementia and highlight the 'chameleons' that disguise or mimic this, as well as the 'zebras' that herald a rare (and sometimes curable) diagnostic opportunity.

15.
Brain ; 141(9): 2545-2560, 2018 09 01.
Article in English | MEDLINE | ID: mdl-30137209

ABSTRACT

Dementia in Parkinson's disease affects 50% of patients within 10 years of diagnosis but there is wide variation in severity and timing. Thus, robust neuroimaging prediction of cognitive involvement in Parkinson's disease is important: (i) to identify at-risk individuals for clinical trials of potential new treatments; (ii) to provide reliable prognostic information for individuals and populations; and (iii) to shed light on the pathophysiological processes underpinning Parkinson's disease dementia. To date, neuroimaging has not made major contributions to predicting cognitive involvement in Parkinson's disease. This is perhaps unsurprising considering conventional methods rely on macroscopic measures of topographically distributed neurodegeneration, a relatively late event in Parkinson's dementia. However, new technologies are now emerging that could provide important insights through detection of other potentially relevant processes. For example, novel MRI approaches can quantify magnetic susceptibility as a surrogate for tissue iron content, and increasingly powerful mathematical approaches can characterize the topology of brain networks at the systems level. Here, we present an up-to-date overview of the growing role of neuroimaging in predicting dementia in Parkinson's disease. We discuss the most relevant findings to date, and consider the potential of emerging technologies to detect the earliest signs of cognitive involvement in Parkinson's disease.


Subject(s)
Dementia/diagnostic imaging , Neuroimaging/methods , Parkinson Disease/diagnostic imaging , Brain/physiopathology , Cholinergic Neurons/physiology , Cognition/physiology , Cognitive Dysfunction/physiopathology , Dementia/physiopathology , Disease Progression , Dopaminergic Neurons/physiology , Humans , Magnetic Resonance Imaging/methods , Parkinson Disease/physiopathology , Prognosis , Risk Factors
16.
J Neurol Neurosurg Psychiatry ; 89(7): 702-709, 2018 07.
Article in English | MEDLINE | ID: mdl-29378790

ABSTRACT

OBJECTIVES: To examine the influence of the glucocerebrosidase (GBA) mutation carrier state on age at onset of Parkinson's disease (PD), the motor phenotype and cognitive function at baseline assessment in a large cohort of UK patients. We also analysed the prevalence of mood and behavioural problems that may confound the assessment of cognitive function. METHODS: We prospectively recruited patients with PD in the Tracking Parkinson's study. We fully sequenced the GBA gene in all recently diagnosed patients (≤3.5 years). We examined cognitive (Montreal Cognitive Assessment) and motor (Movement Disorder Society Unified Parkinson's Disease Rating Scale part 3) function at a baseline assessment, at an average of 1.3 years after diagnosis. We used logistic regression to determine predictors of PD with mild cognitive impairment and PD with dementia. RESULTS: We studied 1893 patients with PD: 48 (2.5%) were heterozygous carriers for known Gaucher's disease (GD) causing pathogenic mutations; 117 (6.2%) had non-synonymous variants, previously associated with PD, and 28 (1.5%) patients carried variants of unknown significance in the GBA gene. L444P was the most common pathogenic GBA mutation. Patients with pathogenic GBA mutations were on average 5 years younger at disease onset compared with non-carriers (P=0.02). PD patients with GD-causing mutations did not have an increased family risk of PD. Patients with GBA mutations were more likely to present with the postural instability gait difficulty phenotype compared with non-carriers (P=0.02). Patients carrying pathogenic mutations in GBA had more advanced Hoehn and Yahr stage after adjustment for age and disease duration compared with non-carriers (P=0.005). There were no differences in cognitive function between GBA mutation carriers and non-carriers at this early disease stage. CONCLUSIONS: Our study confirms the influence of GBA mutations on the age of onset, disease severity and motor phenotype in patients with PD. Cognition did not differ between GBA mutation carriers and non-carriers at baseline, implying that cognitive impairment/dementia, reported in other studies at a later disease stage, is not present in recently diagnosed cases. This offers an important window of opportunity for potential disease-modifying therapy that may protect against the development of dementia in GBA-PD. CLINICAL TRIAL REGISTRATION: NCT02881099; Results.


Subject(s)
Cognitive Dysfunction/epidemiology , Dementia/epidemiology , Glucosylceramidase/genetics , Heterozygote , Mutation/genetics , Parkinson Disease/genetics , Age of Onset , Aged , Cohort Studies , Female , Humans , Male , Middle Aged , Parkinson Disease/complications , Parkinson Disease/psychology , Prospective Studies , United Kingdom
17.
Mov Disord ; 33(4): 544-553, 2018 04.
Article in English | MEDLINE | ID: mdl-29473691

ABSTRACT

BACKGROUND: People with Parkinson's disease (PD) who develop visuo-perceptual deficits are at higher risk of dementia, but we lack tests that detect subtle visuo-perceptual deficits and can be performed by untrained personnel. Hallucinations are associated with cognitive impairment and typically involve perception of complex objects. Changes in object perception may therefore be a sensitive marker of visuo-perceptual deficits in PD. OBJECTIVE: We developed an online platform to test visuo-perceptual function. We hypothesised that (1) visuo-perceptual deficits in PD could be detected using online tests, (2) object perception would be preferentially affected, and (3) these deficits would be caused by changes in perception rather than response bias. METHODS: We assessed 91 people with PD and 275 controls. Performance was compared using classical frequentist statistics. We then fitted a hierarchical Bayesian signal detection theory model to a subset of tasks. RESULTS: People with PD were worse than controls at object recognition, showing no deficits in other visuo-perceptual tests. Specifically, they were worse at identifying skewed images (P < .0001); at detecting hidden objects (P = .0039); at identifying objects in peripheral vision (P < .0001); and at detecting biological motion (P = .0065). In contrast, people with PD were not worse at mental rotation or subjective size perception. Using signal detection modelling, we found this effect was driven by change in perceptual sensitivity rather than response bias. CONCLUSIONS: Online tests can detect visuo-perceptual deficits in people with PD, with object recognition particularly affected. Ultimately, visuo-perceptual tests may be developed to identify at-risk patients for clinical trials to slow PD dementia. © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Cognition Disorders/diagnosis , Cognition Disorders/etiology , Online Systems , Parkinson Disease/complications , Perceptual Disorders/etiology , Visual Perception/physiology , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Motion Perception/physiology , Neuropsychological Tests , Perceptual Disorders/diagnosis , Psychomotor Performance/physiology , Recognition, Psychology , Signal Detection, Psychological , Visual Acuity/physiology
18.
Curr Neurol Neurosci Rep ; 18(4): 17, 2018 03 10.
Article in English | MEDLINE | ID: mdl-29525906

ABSTRACT

PURPOSE OF REVIEW: Mild cognitive impairment is a common feature of Parkinson's disease, even at the earliest disease stages, but there is variation in the nature and severity of cognitive involvement and in the risk of conversion to Parkinson's disease dementia. This review aims to summarise current understanding of mild cognitive impairment in Parkinson's disease. We consider the presentation, rate of conversion to dementia, underlying pathophysiology and potential biomarkers of mild cognitive impairment in Parkinson's disease. Finally, we discuss challenges and controversies of mild cognitive impairment in Parkinson's disease. RECENT FINDINGS: Large-scale longitudinal studies have shown that cognitive involvement is important and common in Parkinson's disease and can present early in the disease course. Recent criteria for mild cognitive impairment in Parkinson's provide the basis for further study of cognitive decline and for the progression of different cognitive phenotypes and risk of conversion to dementia. Improved understanding of the underlying pathology and progression of cognitive change are likely to lead to opportunities for early intervention for this important aspect of Parkinson's disease.


Subject(s)
Cognitive Dysfunction/etiology , Parkinson Disease/complications , Biomarkers , Cognitive Dysfunction/pathology , Dementia/etiology , Dementia/physiopathology , Disease Progression , Humans , Neuropsychological Tests , Parkinson Disease/physiopathology
20.
Brain ; 139(11): 2827-2843, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27412389

ABSTRACT

Patients with Parkinson's disease have a number of specific visual disturbances. These include changes in colour vision and contrast sensitivity and difficulties with complex visual tasks such as mental rotation and emotion recognition. We review changes in visual function at each stage of visual processing from retinal deficits, including contrast sensitivity and colour vision deficits to higher cortical processing impairments such as object and motion processing and neglect. We consider changes in visual function in patients with common Parkinson's disease-associated genetic mutations including GBA and LRRK2 . We discuss the association between visual deficits and clinical features of Parkinson's disease such as rapid eye movement sleep behavioural disorder and the postural instability and gait disorder phenotype. We review the link between abnormal visual function and visual hallucinations, considering current models for mechanisms of visual hallucinations. Finally, we discuss the role of visuo-perceptual testing as a biomarker of disease and predictor of dementia in Parkinson's disease.


Subject(s)
Parkinson Disease/complications , Vision Disorders/etiology , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Parkinson Disease/genetics , Vision Disorders/genetics , Visual Pathways/pathology , Visual Perception/genetics , beta-Glucosidase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL