Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Med Internet Res ; 24(1): e31549, 2022 01 21.
Article in English | MEDLINE | ID: mdl-34951865

ABSTRACT

BACKGROUND: The current COVID-19 pandemic is unprecedented; under resource-constrained settings, predictive algorithms can help to stratify disease severity, alerting physicians of high-risk patients; however, there are only few risk scores derived from a substantially large electronic health record (EHR) data set, using simplified predictors as input. OBJECTIVE: The objectives of this study were to develop and validate simplified machine learning algorithms that predict COVID-19 adverse outcomes; to evaluate the area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and calibration of the algorithms; and to derive clinically meaningful thresholds. METHODS: We performed machine learning model development and validation via a cohort study using multicenter, patient-level, longitudinal EHRs from the Optum COVID-19 database that provides anonymized, longitudinal EHR from across the United States. The models were developed based on clinical characteristics to predict 28-day in-hospital mortality, intensive care unit (ICU) admission, respiratory failure, and mechanical ventilator usages at inpatient setting. Data from patients who were admitted from February 1, 2020, to September 7, 2020, were randomly sampled into development, validation, and test data sets; data collected from September 7, 2020, to November 15, 2020, were reserved as the postdevelopment prospective test data set. RESULTS: Of the 3.7 million patients in the analysis, 585,867 patients were diagnosed or tested positive for SARS-CoV-2, and 50,703 adult patients were hospitalized with COVID-19 between February 1 and November 15, 2020. Among the study cohort (n=50,703), there were 6204 deaths, 9564 ICU admissions, 6478 mechanically ventilated or EMCO patients, and 25,169 patients developed acute respiratory distress syndrome or respiratory failure within 28 days since hospital admission. The algorithms demonstrated high accuracy (AUC 0.89, 95% CI 0.89-0.89 on the test data set [n=10,752]), consistent prediction through the second wave of the pandemic from September to November (AUC 0.85, 95% CI 0.85-0.86) on the postdevelopment prospective test data set [n=14,863], great clinical relevance, and utility. Besides, a comprehensive set of 386 input covariates from baseline or at admission were included in the analysis; the end-to-end pipeline automates feature selection and model development. The parsimonious model with only 10 input predictors produced comparably accurate predictions; these 10 predictors (age, blood urea nitrogen, SpO2, systolic and diastolic blood pressures, respiration rate, pulse, temperature, albumin, and major cognitive disorder excluding stroke) are commonly measured and concordant with recognized risk factors for COVID-19. CONCLUSIONS: The systematic approach and rigorous validation demonstrate consistent model performance to predict even beyond the period of data collection, with satisfactory discriminatory power and great clinical utility. Overall, the study offers an accurate, validated, and reliable prediction model based on only 10 clinical features as a prognostic tool to stratifying patients with COVID-19 into intermediate-, high-, and very high-risk groups. This simple predictive tool is shared with a wider health care community, to enable service as an early warning system to alert physicians of possible high-risk patients, or as a resource triaging tool to optimize health care resources.


Subject(s)
COVID-19 , Adult , Algorithms , Cohort Studies , Humans , Machine Learning , Pandemics , Prognosis , Prospective Studies , Retrospective Studies , SARS-CoV-2
2.
J Med Internet Res ; 22(10): e22550, 2020 10 16.
Article in English | MEDLINE | ID: mdl-32956069

ABSTRACT

BACKGROUND: Fractures as a result of osteoporosis and low bone mass are common and give rise to significant clinical, personal, and economic burden. Even after a fracture occurs, high fracture risk remains widely underdiagnosed and undertreated. Common fracture risk assessment tools utilize a subset of clinical risk factors for prediction, and often require manual data entry. Furthermore, these tools predict risk over the long term and do not explicitly provide short-term risk estimates necessary to identify patients likely to experience a fracture in the next 1-2 years. OBJECTIVE: The goal of this study was to develop and evaluate an algorithm for the identification of patients at risk of fracture in a subsequent 1- to 2-year period. In order to address the aforementioned limitations of current prediction tools, this approach focused on a short-term timeframe, automated data entry, and the use of longitudinal data to inform the predictions. METHODS: Using retrospective electronic health record data from over 1,000,000 patients, we developed Crystal Bone, an algorithm that applies machine learning techniques from natural language processing to the temporal nature of patient histories to generate short-term fracture risk predictions. Similar to how language models predict the next word in a given sentence or the topic of a document, Crystal Bone predicts whether a patient's future trajectory might contain a fracture event, or whether the signature of the patient's journey is similar to that of a typical future fracture patient. A holdout set with 192,590 patients was used to validate accuracy. Experimental baseline models and human-level performance were used for comparison. RESULTS: The model accurately predicted 1- to 2-year fracture risk for patients aged over 50 years (area under the receiver operating characteristics curve [AUROC] 0.81). These algorithms outperformed the experimental baselines (AUROC 0.67) and showed meaningful improvements when compared to retrospective approximation of human-level performance by correctly identifying 9649 of 13,765 (70%) at-risk patients who did not receive any preventative bone-health-related medical interventions from their physicians. CONCLUSIONS: These findings indicate that it is possible to use a patient's unique medical history as it changes over time to predict the risk of short-term fracture. Validating and applying such a tool within the health care system could enable automated and widespread prediction of this risk and may help with identification of patients at very high risk of fracture.


Subject(s)
Deep Learning/standards , Electronic Health Records/standards , Fractures, Bone/epidemiology , Algorithms , Female , Humans , Male , Middle Aged , Reproducibility of Results , Retrospective Studies , Risk Factors
3.
Development ; 136(15): 2579-89, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19570849

ABSTRACT

The optic vesicle is a multipotential primordium of the retina, which becomes subdivided into the neural retina and retinal pigmented epithelium domains. Although the roles of several paracrine factors in patterning the optic vesicle have been studied extensively, little is known about cell-autonomous mechanisms that regulate coordinated cell morphogenesis and cytodifferentiation of the retinal pigmented epithelium. Here we demonstrate that members of the SoxB1 gene family, Sox1, Sox2 and Sox3, are all downregulated in the presumptive retinal pigmented epithelium. Constitutive maintenance of SoxB1 expression in the presumptive retinal pigmented epithelium both in vivo and in vitro resulted in the absence of cuboidal morphology and pigmentation, and in concomitant induction of neural differentiation markers. We also demonstrate that exogenous Fgf4 inhibits downregulation all SoxB1 family members in the presumptive retinal pigment epithelium. These results suggest that retinal pigment epithelium morphogenesis and cytodifferentiation requires SoxB1 downregulation, which depends on the absence of exposure to an FGF-like signal.


Subject(s)
Cell Differentiation , Chickens/genetics , Down-Regulation/genetics , Morphogenesis , Retinal Pigment Epithelium/cytology , Retinal Pigment Epithelium/embryology , SOXB1 Transcription Factors/genetics , Animals , Biomarkers/metabolism , Cell Differentiation/drug effects , Down-Regulation/drug effects , Fibroblast Growth Factors/pharmacology , Gene Expression Regulation, Developmental/drug effects , Morphogenesis/drug effects , Neurons/cytology , Neurons/drug effects , Neurons/metabolism , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/metabolism , Transcriptional Activation/drug effects , Transcriptional Activation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL