Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Front Pharmacol ; 11: 569373, 2020.
Article in English | MEDLINE | ID: mdl-33536904

ABSTRACT

New HIV-1 infection rates far outpace the targets set by global health organizations, despite important progress in curbing the progression of the epidemic. Long-acting (LA) formulations delivering antiretroviral (ARV) agents for HIV-1 pre-exposure prophylaxis (PrEP) hold significant promise, potentially facilitating adherence due to reduced dosing frequency compared to oral regimens. We have developed a subdermal implant delivering the potent ARV drug tenofovir alafenamide that could provide protection from HIV-1 infection for 6 months, or longer. Implants from the same lot were investigated in mice and sheep for local safety and pharmacokinetics (PKs). Ours is the first report using these animal models to evaluate subdermal implants for HIV-1 PrEP. The devices appeared safe, and the plasma PKs as well as the drug and metabolite concentrations in dermal tissue adjacent to the implants were studied and contrasted in two models spanning the extremes of the body weight spectrum. Drug and drug metabolite concentrations in dermal tissue are key in assessing local exposure and any toxicity related to the active agent. Based on our analysis, both animal models were shown to hold significant promise in LA product development.

2.
J Am Chem Soc ; 129(10): 2959-66, 2007 Mar 14.
Article in English | MEDLINE | ID: mdl-17302417

ABSTRACT

Ribosomes and nonribosomal peptide synthetases (NRPSs) carry out instructed peptide synthesis through a series of directed intermodular aminoacyl transfer reactions. We recently reported the design of coiled-coil assemblies that could functionally mimic the elementary aminoacyl loading and intermodular aminoacyl transfer steps of NRPSs. These peptides were designed initially to accelerate aminoacyl transfer mainly through catalysis by approximation by closely juxtaposing four active site moieties, two each from adjacent noncovalently associated helical modules. In our designs peptide self-assembly positions a cysteine residue that is used to covalently capture substrates from solution via transthiolesterification (substrate loading step to generate the aminoacyl donor site) adjacent to an aminoacyl acceptor site provided by a covalently tethered amino acid or modeled by the epsilon-amine of an active site lysine. However, through systematic functional analyses of 48 rationally designed peptide sequences, we have now determined that the substrate loading and intermodular aminoacyl transfer steps can be significantly influenced (up to approximately 103-fold) by engineering changes in the active site microenvironment through amino acid substitutions and variations in the inter-residue distances and geometry. Mechanistic studies based on 15N NMR and kinetic analysis further indicate that certain active site constellations furnish an unexpectedly large pK(a) depression (1.5 pH units) of the aminoacyl-acceptor moiety, helping to explain the observed high rates of aminoacyl transfer in those constructs. Taken together, our studies demonstrate the feasibility of engineering efficient de novo peptide sequences possessing active sites and functions reminiscent of those in natural enzymes.


Subject(s)
Biomimetic Materials , Peptide Synthases/chemistry , Peptides/chemical synthesis , Protein Engineering , Amino Acid Sequence , Amino Acids , Binding Sites , Peptides/chemistry , Protein Structure, Secondary
3.
Antimicrob Agents Chemother ; 49(8): 3302-10, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16048940

ABSTRACT

Cyclic peptides with an even number of alternating d,l-alpha-amino acid residues are known to self-assemble into organic nanotubes. Such peptides previously have been shown to be stable upon protease treatment, membrane active, and bactericidal and to exert antimicrobial activity against Staphylococcus aureus and other gram-positive bacteria. The present report describes the in vitro and in vivo pharmacology of selected members of this cyclic peptide family. The intravenous (i.v.) efficacy of six compounds with MICs of less than 12 microg/ml was tested in peritonitis and neutropenic-mouse thigh infection models. Four of the six peptides were efficacious in vivo, with 50% effective doses in the peritonitis model ranging between 4.0 and 6.7 mg/kg against methicillin-sensitive S. aureus (MSSA). In the thigh infection model, the four peptides reduced the bacterial load 2.1 to 3.0 log units following administration of an 8-mg/kg i.v. dose. Activity against methicillin-resistant S. aureus was similar to MSSA. The murine pharmacokinetic profile of each compound was determined following i.v. bolus injection. Interestingly, those compounds with poor efficacy in vivo displayed a significantly lower maximum concentration of the drug in serum and a higher volume of distribution at steady state than compounds with good therapeutic properties. S. aureus was unable to easily develop spontaneous resistance upon prolonged exposure to the peptides at sublethal concentrations, in agreement with the proposed interaction with multiple components of the bacterial membrane canopy. Although additional structure-activity relationship studies are required to improve the therapeutic window of this class of antimicrobial peptides, our results suggest that these amphipathic cyclic d,l-alpha-peptides have potential for systemic administration and treatment of otherwise antibiotic-resistant infections.


Subject(s)
Anti-Bacterial Agents , Muscular Diseases/drug therapy , Peptides, Cyclic , Peritonitis/drug therapy , Staphylococcal Infections/drug therapy , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Female , Mice , Mice, Inbred ICR , Microbial Sensitivity Tests , Muscular Diseases/microbiology , Neutropenia/chemically induced , Peptide Library , Peptides, Cyclic/chemical synthesis , Peptides, Cyclic/pharmacokinetics , Peptides, Cyclic/pharmacology , Peptides, Cyclic/therapeutic use , Peritonitis/microbiology , Staphylococcal Infections/microbiology , Staphylococcus aureus/drug effects , Thigh/microbiology , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL