Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 146
Filter
Add more filters

Publication year range
1.
Nat Rev Neurosci ; 21(11): 644-659, 2020 11.
Article in English | MEDLINE | ID: mdl-32943779

ABSTRACT

The locus coeruleus (LC), or 'blue spot', is a small nucleus located deep in the brainstem that provides the far-reaching noradrenergic neurotransmitter system of the brain. This phylogenetically conserved nucleus has proved relatively intractable to full characterization, despite more than 60 years of concerted efforts by investigators. Recently, an array of powerful new neuroscience tools have provided unprecedented access to this elusive nucleus, revealing new levels of organization and function. We are currently at the threshold of major discoveries regarding how this tiny brainstem structure exerts such varied and significant influences over brain function and behaviour. All LC neurons receive inputs related to autonomic arousal, but distinct subpopulations of those neurons can encode specific cognitive processes, presumably through more specific inputs from the forebrain areas. This ability, combined with specific patterns of innervation of target areas and heterogeneity in receptor distributions, suggests that activation of the LC has more specific influences on target networks than had initially been imagined.


Subject(s)
Cognition/physiology , Locus Coeruleus/physiology , Neurons/physiology , Animals , Humans , Locus Coeruleus/anatomy & histology , Neural Pathways/physiology , Neuronal Plasticity , Nucleus Accumbens/physiology
2.
Mol Psychiatry ; 29(3): 624-632, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38145984

ABSTRACT

(R,S)-methadone ((R,S)-MTD) is a µ-opioid receptor (MOR) agonist comprised of (R)-MTD and (S)-MTD enantiomers. (S)-MTD is being developed as an antidepressant and is considered an N-methyl-D-aspartate receptor (NMDAR) antagonist. We compared the pharmacology of (R)-MTD and (S)-MTD and found they bind to MORs, but not NMDARs, and induce full analgesia. Unlike (R)-MTD, (S)-MTD was a weak reinforcer that failed to affect extracellular dopamine or induce locomotor stimulation. Furthermore, (S)-MTD antagonized motor and dopamine releasing effects of (R)-MTD. (S)-MTD acted as a partial agonist at MOR, with complete loss of efficacy at the MOR-galanin Gal1 receptor (Gal1R) heteromer, a key mediator of the dopaminergic effects of opioids. In sum, we report novel and unique pharmacodynamic properties of (S)-MTD that are relevant to its potential mechanism of action and therapeutic use. One-sentence summary: (S)-MTD, like (R)-MTD, binds to and activates MORs in vitro, but (S)-MTD antagonizes the MOR-Gal1R heteromer, decreasing its abuse liability.


Subject(s)
Analgesics, Opioid , Methadone , Receptors, Opioid, mu , Receptors, Opioid, mu/metabolism , Receptors, Opioid, mu/drug effects , Animals , Methadone/pharmacology , Male , Analgesics, Opioid/pharmacology , Humans , Mice , Dopamine/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Ligands , Stereoisomerism
3.
Stress ; 27(1): 2312467, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38557197

ABSTRACT

Chronic stress exposure during development can have lasting behavioral consequences that differ in males and females. More specifically, increased depressive behaviors in females, but not males, are observed in both humans and rodent models of chronic stress. Despite these known stress-induced outcomes, the molecular consequences of chronic adolescent stress in the adult brain are less clear. The stress hormone corticosterone activates the glucocorticoid receptor, and activity of the receptor is regulated through interactions with co-chaperones-such as the immunophilin FK506 binding proteins 5 (FKBP5). Previously, it has been reported that the adult stress response is modified by a history of chronic stress; therefore, the current study assessed the impact of chronic adolescent stress on the interactions of the glucocorticoid receptor (GR) with its regulatory co-chaperone FKBP5 in response to acute stress in adulthood. Although protein presence for FKBP5 did not differ by group, assessment of GR-FKBP5 interactions demonstrated that adult females with a history of chronic adolescent stress had elevated GR-FKBP5 interactions in the hippocampus following an acute stress challenge which could potentially contribute to a reduced translocation pattern given previous literature describing the impact of FKBP5 on GR activity. Interestingly, the altered co-chaperone interactions of the GR in the stressed female hippocampus were not coupled to an observable difference in transcription of GR-regulated genes. Together, these studies show that chronic adolescent stress causes lasting changes to co-chaperone interactions with the glucocorticoid receptor following stress exposure in adulthood and highlight the potential role that FKBP5 plays in these modifications. Understanding the long-term implications of adolescent stress exposure will provide a mechanistic framework to guide the development of interventions for adult disorders related to early life stress exposures.


Subject(s)
Receptors, Glucocorticoid , Stress, Psychological , Tacrolimus Binding Proteins , Animals , Female , Male , Rats , Corticosterone/metabolism , Hippocampus/metabolism , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Stress, Psychological/metabolism , Tacrolimus Binding Proteins/genetics , Tacrolimus Binding Proteins/metabolism
4.
J Neurochem ; 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37391269

ABSTRACT

Alzheimer's disease (AD) is the most common form of dementia. Obesity in middle age increases AD risk and severity, which is alarming given that obesity prevalence peaks at middle age and obesity rates are accelerating worldwide. Midlife, but not late-life obesity increases AD risk, suggesting that this interaction is specific to preclinical AD. AD pathology begins in middle age, with accumulation of amyloid beta (Aß), hyperphosphorylated tau, metabolic decline, and neuroinflammation occurring decades before cognitive symptoms appear. We used a transcriptomic discovery approach in young adult (6.5 months old) male and female TgF344-AD rats that overexpress mutant human amyloid precursor protein and presenilin-1 and wild-type (WT) controls to determine whether inducing obesity with a high-fat/high-sugar "Western" diet during preclinical AD increases brain metabolic dysfunction in dorsal hippocampus (dHC), a brain region vulnerable to the effects of obesity and early AD. Analyses of dHC gene expression data showed dysregulated mitochondrial and neurotransmission pathways, and up-regulated genes involved in cholesterol synthesis. Western diet amplified the number of genes that were different between AD and WT rats and added pathways involved in noradrenergic signaling, dysregulated inhibition of cholesterol synthesis, and decreased intracellular lipid transporters. Importantly, the Western diet impaired dHC-dependent spatial working memory in AD but not WT rats, confirming that the dietary intervention accelerated cognitive decline. To examine later consequences of early transcriptional dysregulation, we measured dHC monoamine levels in older (13 months old) AD and WT rats of both sexes after long-term chow or Western diet consumption. Norepinephrine (NE) abundance was significantly decreased in AD rats, NE turnover was increased, and the Western diet attenuated the AD-induced increases in turnover. Collectively, these findings indicate obesity during prodromal AD impairs memory, potentiates AD-induced metabolic decline likely leading to an overproduction of cholesterol, and interferes with compensatory increases in NE transmission.

5.
Neurobiol Dis ; 179: 106048, 2023 04.
Article in English | MEDLINE | ID: mdl-36813207

ABSTRACT

BACKGROUND: Freezing of gait (FOG) is a major cause of falling in Parkinson's disease (PD) and can be responsive or unresponsive to levodopa. Pathophysiology is poorly understood. OBJECTIVE: To examine the link between noradrenergic systems, the development of FOG in PD and its responsiveness to levodopa. METHODS: We examined norepinephrine transporter (NET) binding via brain positron emission tomography (PET) to evaluate changes in NET density associated with FOG using the high affinity selective NET antagonist radioligand [11C]MeNER (2S,3S)(2-[α-(2-methoxyphenoxy)benzyl]morpholine) in 52 parkinsonian patients. We used a rigorous levodopa challenge paradigm to characterize PD patients as non-freezing (NO-FOG, N = 16), levodopa responsive freezing (OFF-FOG, N = 10), and levodopa-unresponsive freezing (ONOFF-FOG, N = 21), and also included a non-PD FOG group, primary progressive freezing of gait (PP-FOG, N = 5). RESULTS: Linear mixed models identified significant reductions in whole brain NET binding in the OFF-FOG group compared to the NO-FOG group (-16.8%, P = 0.021) and regionally in the frontal lobe, left and right thalamus, temporal lobe, and locus coeruleus, with the strongest effect in right thalamus (P = 0.038). Additional regions examined in a post hoc secondary analysis including the left and right amygdalae confirmed the contrast between OFF-FOG and NO-FOG (P = 0.003). A linear regression analysis identified an association between reduced NET binding in the right thalamus and more severe New FOG Questionnaire (N-FOG-Q) score only in the OFF-FOG group (P = 0.022). CONCLUSION: This is the first study to examine brain noradrenergic innervation using NET-PET in PD patients with and without FOG. Based on the normal regional distribution of noradrenergic innervation and pathological studies in the thalamus of PD patients, the implications of our findings suggest that noradrenergic limbic pathways may play a key role in OFF-FOG in PD. This finding could have implications for clinical subtyping of FOG as well as development of therapies.


Subject(s)
Gait Disorders, Neurologic , Parkinson Disease , Humans , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging , Parkinson Disease/drug therapy , Levodopa/therapeutic use , Norepinephrine Plasma Membrane Transport Proteins , Gait Disorders, Neurologic/diagnostic imaging , Gait Disorders, Neurologic/drug therapy , Gait Disorders, Neurologic/etiology , Gait
6.
Horm Behav ; 153: 105376, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37244195

ABSTRACT

Trauma-related psychopathology transpires in some individuals after exposure to a life-threatening event. While aberrant adrenergic processes may contribute to this, a clear understanding of how said processes influence trauma-related conditions, remain inadequate. Here, we aimed to develop and describe a novel zebrafish (Danio rerio) model of life-threatening trauma-induced anxiety that may be representative of trauma related anxiety, and to evaluate the impact of stress-paired epinephrine (EPI) exposure in the model system. Four groups of zebrafish were each exposed to different and unique stress-related paradigms, i.e., i) a sham (trauma free), ii) high-intensity trauma (triple hit; THIT), iii) high-intensity trauma in the presence of EPI exposure (EHIT), and iv) EPI exposure on its own, all applied in the presence of a color context. Novel tank anxiety was subsequently assessed at 1, 4, 7 and 14 days after the traumatic event. The present results demonstrate that 1) through day 14, THIT or EPI exposure alone induced persistent anxiety-like behavior, 2) EHIT blunted the delayed anxiety-like sequalae associated with severe trauma, 3) exposure to a trauma-paired color context prior to anxiety testing bolstered the subsequent anxiety-like behavior of THIT, but not EHIT -exposed fish, and 4) despite this, THIT- and EPI-exposed fish showed a lesser degree of contextual avoidance behavior compared to sham- or EHIT-exposed fish. These results indicate that the stressors induced long-lasting anxiety-like behavior reminiscent of post trauma anxiety, while EPI displays complex interactions with the stressor, including a buffering effect to subsequent exposure of a trauma-paired cue.


Subject(s)
Anxiety , Zebrafish , Animals , Anxiety/chemically induced , Anxiety Disorders , Epinephrine/pharmacology , Behavior, Animal
7.
Brain ; 145(6): 1924-1938, 2022 06 30.
Article in English | MEDLINE | ID: mdl-34919634

ABSTRACT

The locus coeruleus is the initial site of Alzheimer's disease neuropathology, with hyperphosphorylated Tau appearing in early adulthood followed by neurodegeneration in dementia. Locus coeruleus dysfunction contributes to Alzheimer's pathobiology in experimental models, which can be rescued by increasing norepinephrine transmission. To test norepinephrine augmentation as a potential disease-modifying therapy, we performed a biomarker-driven phase II trial of atomoxetine, a clinically-approved norepinephrine transporter inhibitor, in subjects with mild cognitive impairment due to Alzheimer's disease. The design was a single-centre, 12-month double-blind crossover trial. Thirty-nine participants with mild cognitive impairment and biomarker evidence of Alzheimer's disease were randomized to atomoxetine or placebo treatment. Assessments were collected at baseline, 6- (crossover) and 12-months (completer). Target engagement was assessed by CSF and plasma measures of norepinephrine and metabolites. Prespecified primary outcomes were CSF levels of IL1α and TECK. Secondary/exploratory outcomes included clinical measures, CSF analyses of amyloid-ß42, Tau, and pTau181, mass spectrometry proteomics and immune-based targeted inflammation-related cytokines, as well as brain imaging with MRI and fluorodeoxyglucose-PET. Baseline demographic and clinical measures were similar across trial arms. Dropout rates were 5.1% for atomoxetine and 2.7% for placebo, with no significant differences in adverse events. Atomoxetine robustly increased plasma and CSF norepinephrine levels. IL-1α and TECK were not measurable in most samples. There were no significant treatment effects on cognition and clinical outcomes, as expected given the short trial duration. Atomoxetine was associated with a significant reduction in CSF Tau and pTau181 compared to placebo, but not associated with change in amyloid-ß42. Atomoxetine treatment also significantly altered CSF abundances of protein panels linked to brain pathophysiologies, including synaptic, metabolism and glial immunity, as well as inflammation-related CDCP1, CD244, TWEAK and osteoprotegerin proteins. Treatment was also associated with significantly increased brain-derived neurotrophic factor and reduced triglycerides in plasma. Resting state functional MRI showed significantly increased inter-network connectivity due to atomoxetine between the insula and the hippocampus. Fluorodeoxyglucose-PET showed atomoxetine-associated increased uptake in hippocampus, parahippocampal gyrus, middle temporal pole, inferior temporal gyrus and fusiform gyrus, with carry-over effects 6 months after treatment. In summary, atomoxetine treatment was safe, well tolerated and achieved target engagement in prodromal Alzheimer's disease. Atomoxetine significantly reduced CSF Tau and pTau, normalized CSF protein biomarker panels linked to synaptic function, brain metabolism and glial immunity, and increased brain activity and metabolism in key temporal lobe circuits. Further study of atomoxetine is warranted for repurposing the drug to slow Alzheimer's disease progression.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Adolescent , Adult , Alzheimer Disease/pathology , Amyloid beta-Peptides , Antigens, Neoplasm , Atomoxetine Hydrochloride/therapeutic use , Biomarkers , Cell Adhesion Molecules , Cognitive Dysfunction/pathology , Cross-Over Studies , Double-Blind Method , Drug Repositioning , Humans , Inflammation , Middle Aged , Neuroprotection , Norepinephrine , tau Proteins
8.
Alzheimers Dement ; 19(5): 2182-2196, 2023 05.
Article in English | MEDLINE | ID: mdl-36642985

ABSTRACT

The neuromodulatory subcortical system (NSS) nuclei are critical hubs for survival, hedonic tone, and homeostasis. Tau-associated NSS degeneration occurs early in Alzheimer's disease (AD) pathogenesis, long before the emergence of pathognomonic memory dysfunction and cortical lesions. Accumulating evidence supports the role of NSS dysfunction and degeneration in the behavioral and neuropsychiatric manifestations featured early in AD. Experimental studies even suggest that AD-associated NSS degeneration drives brain neuroinflammatory status and contributes to disease progression, including the exacerbation of cortical lesions. Given the important pathophysiologic and etiologic roles that involve the NSS in early AD stages, there is an urgent need to expand our understanding of the mechanisms underlying NSS vulnerability and more precisely detail the clinical progression of NSS changes in AD. Here, the NSS Professional Interest Area of the International Society to Advance Alzheimer's Research and Treatment highlights knowledge gaps about NSS within AD and provides recommendations for priorities specific to clinical research, biomarker development, modeling, and intervention. HIGHLIGHTS: Neuromodulatory nuclei degenerate in early Alzheimer's disease pathological stages. Alzheimer's pathophysiology is exacerbated by neuromodulatory nuclei degeneration. Neuromodulatory nuclei degeneration drives neuropsychiatric symptoms in dementia. Biomarkers of neuromodulatory integrity would be value-creating for dementia care. Neuromodulatory nuclei present strategic prospects for disease-modifying therapies.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/pathology , Brain/pathology , Biomarkers , Disease Progression
9.
J Biol Chem ; 296: 100024, 2021.
Article in English | MEDLINE | ID: mdl-33410399

ABSTRACT

The human genome contains vast genetic diversity as naturally occurring coding variants, yet the impact of these variants on protein function and physiology is poorly understood. RGS14 is a multifunctional signaling protein that suppresses synaptic plasticity in dendritic spines of hippocampal neurons. RGS14 also is a nucleocytoplasmic shuttling protein, suggesting that balanced nuclear import/export and dendritic spine localization are essential for RGS14 functions. We identified genetic variants L505R (LR) and R507Q (RQ) located within the nuclear export sequence (NES) of human RGS14. Here we report that RGS14 encoding LR or RQ profoundly impacts protein functions in hippocampal neurons. RGS14 membrane localization is regulated by binding Gαi-GDP, whereas RGS14 nuclear export is regulated by Exportin 1 (XPO1). Remarkably, LR and RQ variants disrupt RGS14 binding to Gαi1-GDP and XPO1, nucleocytoplasmic equilibrium, and capacity to inhibit long-term potentiation (LTP). Variant LR accumulates irreversibly in the nucleus, preventing RGS14 binding to Gαi1, localization to dendritic spines, and inhibitory actions on LTP induction, while variant RQ exhibits a mixed phenotype. When introduced into mice by CRISPR/Cas9, RGS14-LR protein expression was detected predominantly in the nuclei of neurons within hippocampus, central amygdala, piriform cortex, and striatum, brain regions associated with learning and synaptic plasticity. Whereas mice completely lacking RGS14 exhibit enhanced spatial learning, mice carrying variant LR exhibit normal spatial learning, suggesting that RGS14 may have distinct functions in the nucleus independent from those in dendrites and spines. These findings show that naturally occurring genetic variants can profoundly alter normal protein function, impacting physiology in unexpected ways.


Subject(s)
Cell Nucleus/metabolism , Hippocampus/metabolism , Long-Term Potentiation , Mutation , Neurons/metabolism , RGS Proteins/genetics , Animals , Hippocampus/cytology , Hippocampus/physiology , Humans , Karyopherins/metabolism , Mice , Neuronal Plasticity , Protein Transport , RGS Proteins/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Signal Transduction , Spatial Learning , Exportin 1 Protein
10.
Mol Psychiatry ; 26(3): 772-783, 2021 03.
Article in English | MEDLINE | ID: mdl-30976085

ABSTRACT

The 3q29 deletion confers increased risk for neuropsychiatric phenotypes including intellectual disability, autism spectrum disorder, generalized anxiety disorder, and a >40-fold increased risk for schizophrenia. To investigate consequences of the 3q29 deletion in an experimental system, we used CRISPR/Cas9 technology to introduce a heterozygous deletion into the syntenic interval on C57BL/6 mouse chromosome 16. mRNA abundance for 20 of the 21 genes in the interval was reduced by ~50%, while protein levels were reduced for only a subset of these, suggesting a compensatory mechanism. Mice harboring the deletion manifested behavioral impairments in multiple domains including social interaction, cognitive function, acoustic startle, and amphetamine sensitivity, with some sex-dependent manifestations. In addition, 3q29 deletion mice showed reduced body weight throughout development consistent with the phenotype of 3q29 deletion syndrome patients. Of the genes within the interval, DLG1 has been hypothesized as a contributor to the neuropsychiatric phenotypes. However, we show that Dlg1+/- mice did not exhibit the behavioral deficits seen in mice harboring the full 3q29 deletion. These data demonstrate the following: the 3q29 deletion mice are a valuable experimental system that can be used to interrogate the biology of 3q29 deletion syndrome; behavioral manifestations of the 3q29 deletion may have sex-dependent effects; and mouse-specific behavior phenotypes associated with the 3q29 deletion are not solely due to haploinsufficiency of Dlg1.


Subject(s)
Autism Spectrum Disorder , Intellectual Disability , Schizophrenia , Animals , Child , Chromosome Deletion , Clustered Regularly Interspaced Short Palindromic Repeats , Developmental Disabilities/genetics , Disease Models, Animal , Humans , Intellectual Disability/genetics , Mice , Mice, Inbred C57BL , Phenotype , Schizophrenia/genetics
11.
Horm Behav ; 137: 105086, 2022 01.
Article in English | MEDLINE | ID: mdl-34808463

ABSTRACT

In biparental species, in which both parents care for their offspring, the neural and endocrine mediators of paternal behavior appear to overlap substantially with those underlying maternal behavior. Little is known, however, about the roles of classical neurotransmitters, such as norepinephrine (NE), in paternal care and whether they resemble those in maternal care. We tested the hypothesis that NE facilitates the initiation of nurturant behavior toward pups in virgin male and female California mice (Peromyscus californicus), a biparental rodent. Virtually all parents in this species are attracted to familiar and unfamiliar pups, while virgins either attack, avoid, or nurture pups, suggesting that the neurochemical control of pup-related behavior changes as mice transition into parenthood. We injected virgin males and females with nepicastat, a selective dopamine ß-hydroxylase inhibitor that blocks NE synthesis (75 mg/kg, i.p.), or vehicle 2 h before exposing them to a novel pup, estrous female (males only), or pup-sized novel object for 60 min. Nepicastat significantly reduced the number of males and females that approached the pup and that displayed parental behavior. In contrast, nepicastat did not alter virgins' interactions with an estrous female or a novel object, suggesting that nepicastat-induced inhibition of interactions with pups was not mediated by changes in generalized neophobia, arousal, or activity. Nepicastat also significantly reduced NE levels in the amygdala and prefrontal cortex and increased the ratio of dopamine to NE in the hypothalamus. Our results suggest that NE may facilitate the initiation of parental behavior in male and female California mice.


Subject(s)
Dopamine beta-Hydroxylase , Peromyscus , Animals , Cognition , Female , Inhibition, Psychological , Male , Paternal Behavior
12.
Horm Behav ; 144: 105205, 2022 08.
Article in English | MEDLINE | ID: mdl-35660247

ABSTRACT

Exposure to unfamiliar odorants induces an array of repetitive defensive and non-defensive behaviors in rodents which likely reflect adaptive stress responses to the uncertain valence of novel stimuli. Mice genetically deficient for dopamine ß-hydroxylase (Dbh-/-) lack the enzyme required to convert dopamine (DA) into norepinephrine (NE), resulting in globally undetectable NE and supranormal DA levels. Because catecholamines modulate novelty detection and reactivity, we investigated the effects of novel plant-derived odorants on repetitive behaviors in Dbh-/- mice and Dbh+/- littermate controls, which have catecholamine levels comparable to wild-type mice. Unlike Dbh+/- controls, which exhibited vigorous digging in response to novel odorants, Dbh-/- mice displayed excessive grooming. Drugs that block NE synthesis or neurotransmission suppressed odorant-induced digging in Dbh+/- mice, while a DA receptor antagonist attenuated grooming in Dbh-/- mice. The testing paradigm elicited high circulating levels of corticosterone regardless of Dbh genotype, indicating that NE is dispensable for this systemic stress response. Odorant exposure increased NE and DA abundance in the prefrontal cortex (PFC) of Dbh+/- mice, while Dbh-/- animals lacked NE and had elevated PFC DA levels that were unaffected by novel smells. Together, these findings suggest that novel odorant-induced increases in central NE tone contribute to repetitive digging and reflect psychological stress, while central DA signaling contributes to repetitive grooming. Further, we have established a simple method for repeated assessment of stress-induced repetitive behaviors in mice, which may be relevant for modeling neuropsychiatric disorders like Tourette syndrome or obsessive-compulsive disorder that are characterized by stress-induced exacerbation of compulsive symptoms.


Subject(s)
Dopamine , Norepinephrine , Animals , Dopamine/pharmacology , Dopamine beta-Hydroxylase/genetics , Dopamine beta-Hydroxylase/metabolism , Mice , Norepinephrine/pharmacology , Odorants , Prefrontal Cortex
13.
Pharmacol Res ; 182: 106322, 2022 08.
Article in English | MEDLINE | ID: mdl-35750299

ABSTRACT

Recent studies have proposed that heteromers of µ-opioid receptors (MORs) and galanin Gal1 receptors (Gal1Rs) localized in the mesencephalon mediate the dopaminergic effects of opioids. The present study reports converging evidence, using a peptide-interfering approach combined with biophysical and biochemical techniques, including total internal reflection fluorescence microscopy, for a predominant homodimeric structure of MOR and Gal1R when expressed individually, and for their preference to form functional heterotetramers when co-expressed. Results show that a heteromerization-dependent change in the Gal1R homodimeric interface leads to a switch in G-protein coupling from inhibitory Gi to stimulatory Gs proteins. The MOR-Gal1R heterotetramer, which is thus bound to Gs via the Gal1R homodimer and Gi via the MOR homodimer, provides the framework for a canonical Gs-Gi antagonist interaction at the adenylyl cyclase level. These novel results shed light on the intense debate about the oligomeric quaternary structure of G protein-coupled receptors, their predilection for heteromer formation, and the resulting functional significance.


Subject(s)
Analgesics, Opioid , Galanin , Analgesics, Opioid/pharmacology , Mesencephalon , Peptides , Receptors, Opioid
14.
J Neurosci ; 40(39): 7464-7474, 2020 09 23.
Article in English | MEDLINE | ID: mdl-32868458

ABSTRACT

The neuropeptide galanin has been implicated in stress-related neuropsychiatric disorders in humans and rodent models. While pharmacological treatments for these disorders are ineffective for many individuals, physical activity is beneficial for stress-related symptoms. Galanin is highly expressed in the noradrenergic system, particularly the locus coeruleus (LC), which is dysregulated in stress-related disorders and activated by exercise. Galanin expression is elevated in the LC by chronic exercise, and blockade of galanin transmission attenuates exercise-induced stress resilience. However, most research on this topic has been done in rats, so it is unclear whether the relationship between exercise and galanin is species specific. Moreover, use of intracerebroventricular (ICV) galanin receptor antagonists in prior studies precluded defining a causal role for LC-derived galanin specifically. Therefore, the goals of this study were twofold. First, we investigated whether physical activity (chronic wheel running) increases stress resilience and galanin expression in the LC of male and female mice. Next, we used transgenic mice that overexpress galanin in noradrenergic neurons (Gal OX) to determine how chronically elevated noradrenergic-derived galanin, alone, alters anxiogenic-like responses to stress. We found that three weeks of ad libitum access to a running wheel in their home cage increased galanin mRNA in the LC of mice, which was correlated with and conferred resilience to stress. The effects of exercise were phenocopied by galanin overexpression in noradrenergic neurons, and Gal OX mice were resistant to the anxiogenic effect of optogenetic LC activation. These findings support a role for chronically increased noradrenergic galanin in mediating resilience to stress.SIGNIFICANCE STATEMENT Understanding the neurobiological mechanisms underlying behavioral responses to stress is necessary to improve treatments for stress-related neuropsychiatric disorders. Increased physical activity is associated with stress resilience in humans, but the neurobiological mechanisms underlying this effect are not clear. Here, we investigate a potential causal mechanism of this effect driven by the neuropeptide galanin from the main noradrenergic nucleus, the locus coeruleus (LC). We show that chronic voluntary wheel running in mice increases stress resilience and increases galanin expression in the LC. Furthermore, we show that genetic overexpression of galanin in noradrenergic neurons causes resilience to a stressor and the anxiogenic effects of optogenetic LC activation. These findings support a role for chronically increased noradrenergic galanin in mediating resilience to stress.


Subject(s)
Adrenergic Neurons/metabolism , Galanin/metabolism , Stress, Psychological/metabolism , Adrenergic Neurons/physiology , Animals , Female , Galanin/genetics , Male , Mice , Mice, Inbred C57BL , Motor Activity , Stress, Psychological/genetics , Stress, Psychological/physiopathology
15.
J Neurosci ; 40(39): 7559-7576, 2020 09 23.
Article in English | MEDLINE | ID: mdl-32868457

ABSTRACT

Degeneration of locus ceruleus (LC) neurons and dysregulation of noradrenergic signaling are ubiquitous features of Parkinson's disease (PD). The LC is among the first brain regions affected by α-synuclein (asyn) pathology, yet how asyn affects these neurons remains unclear. LC-derived norepinephrine (NE) can stimulate neuroprotective mechanisms and modulate immune cells, while dysregulation of NE neurotransmission may exacerbate disease progression, particularly nonmotor symptoms, and contribute to the chronic neuroinflammation associated with PD pathology. Although transgenic mice overexpressing asyn have previously been developed, transgene expression is usually driven by pan-neuronal promoters and thus has not been selectively targeted to LC neurons. Here we report a novel transgenic mouse expressing human wild-type asyn under control of the noradrenergic-specific dopamine ß-hydroxylase promoter (DBH-hSNCA). These mice developed oligomeric and conformation-specific asyn in LC neurons, alterations in hippocampal and LC microglial abundance, upregulated GFAP expression, degeneration of LC fibers, decreased striatal DA metabolism, and age-dependent behaviors reminiscent of nonmotor symptoms of PD that were rescued by adrenergic receptor antagonists. These mice provide novel insights into how asyn pathology affects LC neurons and how central noradrenergic dysfunction may contribute to early PD pathophysiology.SIGNIFICANCE STATEMENT ɑ-Synuclein (asyn) pathology and loss of neurons in the locus ceruleus (LC) are two of the most ubiquitous neuropathologic features of Parkinson's disease (PD). Dysregulated norepinephrine (NE) neurotransmission is associated with the nonmotor symptoms of PD, including sleep disturbances, emotional changes such as anxiety and depression, and cognitive decline. Importantly, the loss of central NE may contribute to the chronic inflammation in, and progression of, PD. We have generated a novel transgenic mouse expressing human asyn in LC neurons to investigate how increased asyn expression affects the function of the central noradrenergic transmission and associated behaviors. We report cytotoxic effects of oligomeric and conformation-specific asyn, astrogliosis, LC fiber degeneration, disruptions in striatal dopamine metabolism, and age-dependent alterations in nonmotor behaviors without inclusions.


Subject(s)
Adrenergic Neurons/metabolism , Gliosis/genetics , Locus Coeruleus/metabolism , Parkinson Disease/genetics , alpha-Synuclein/metabolism , Adrenergic Neurons/pathology , Animals , Circadian Rhythm , Female , Gliosis/pathology , Hippocampus/metabolism , Hippocampus/pathology , Humans , Locus Coeruleus/pathology , Male , Mice , Mice, Inbred C57BL , Microglia/metabolism , Microglia/pathology , Movement , Parkinson Disease/pathology , Parkinson Disease/physiopathology , alpha-Synuclein/genetics
16.
Acta Neuropathol ; 142(1): 139-158, 2021 07.
Article in English | MEDLINE | ID: mdl-33895869

ABSTRACT

ApoE4 enhances Tau neurotoxicity and promotes the early onset of AD. Pretangle Tau in the noradrenergic locus coeruleus (LC) is the earliest detectable AD-like pathology in the human brain. However, a direct relationship between ApoE4 and Tau in the LC has not been identified. Here we show that ApoE4 selectively binds to the vesicular monoamine transporter 2 (VMAT2) and inhibits neurotransmitter uptake. The exclusion of norepinephrine (NE) from synaptic vesicles leads to its oxidation into the toxic metabolite 3,4-dihydroxyphenyl glycolaldehyde (DOPEGAL), which subsequently activates cleavage of Tau at N368 by asparagine endopeptidase (AEP) and triggers LC neurodegeneration. Our data reveal that ApoE4 boosts Tau neurotoxicity via VMAT2 inhibition, reduces hippocampal volume, and induces cognitive dysfunction in an AEP- and Tau N368-dependent manner, while conversely ApoE3 binds Tau and protects it from cleavage. Thus, ApoE4 exacerbates Tau neurotoxicity by increasing VMAT2 vesicle leakage and facilitating AEP-mediated Tau proteolytic cleavage in the LC via DOPEGAL.


Subject(s)
Alzheimer Disease/pathology , Apolipoprotein E4/pharmacology , Locus Coeruleus/pathology , Tauopathies/pathology , Vesicular Monoamine Transport Proteins/antagonists & inhibitors , Acetaldehyde/analogs & derivatives , Acetaldehyde/metabolism , Aged , Alzheimer Disease/psychology , Animals , Cognition Disorders/psychology , Female , Hippocampus/pathology , Humans , Locus Coeruleus/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Middle Aged , Neurofibrillary Tangles/pathology , Norepinephrine/metabolism , Synaptic Vesicles/metabolism , Tauopathies/psychology
17.
Addict Biol ; 26(5): e13037, 2021 09.
Article in English | MEDLINE | ID: mdl-33768673

ABSTRACT

The neuropeptide galanin is reported to attenuate opioid withdrawal symptoms, potentially by reducing neuronal hyperactivity in the noradrenergic locus coeruleus (LC) via galanin receptor 1 (GalR1). We evaluated this mechanism by using RNAscope in situ hybridization to characterize GalR1 mRNA distribution in the dorsal pons and to compare galanin and GalR1 mRNA expression in tyrosine hydroxylase-positive (TH+) LC cells at baseline and following chronic morphine or precipitated withdrawal. We then used genetically altered mouse lines and pharmacology to test whether noradrenergic galanin (NE-Gal) modulates withdrawal symptoms. RNAscope revealed that, while GalR1 signal was evident in the dorsal pons, 80.7% of the signal was attributable to TH- neurons outside the LC. Galanin and TH mRNA were abundant in LC cells at baseline and were further increased by withdrawal, whereas low basal GalR1 mRNA expression was unaltered by chronic morphine or withdrawal. Naloxone-precipitated withdrawal symptoms in mice lacking NE-Gal (GalcKO-Dbh ) were largely similar to WT littermates, indicating that loss of NE-Gal does not exacerbate withdrawal. Complementary experiments using NE-Gal overexpressor mice (NE-Gal OX) and systemic administration of the galanin receptor agonist galnon revealed that increasing galanin signaling also failed to alter behavioral withdrawal, while suppressing noradrenergic transmission with the alpha-2 adrenergic receptor agonist clonidine attenuated multiple symptoms. These results indicate that galanin does not acutely attenuate precipitated opioid withdrawal via an LC-specific mechanism, which has important implications for the general role of galanin in regulation of somatic and affective opioid responses and LC activity.


Subject(s)
Galanin/pharmacology , Locus Coeruleus/drug effects , Substance Withdrawal Syndrome/drug therapy , Analgesics, Opioid/pharmacology , Animals , Brain/drug effects , Female , In Situ Hybridization , Male , Mice , Morphine/pharmacology , Naloxone/pharmacology , Narcotics/pharmacology , Neurons/metabolism , Neuropeptides/pharmacology , Norepinephrine/metabolism , Opioid-Related Disorders/drug therapy , RNA, Messenger/metabolism , Receptors, Galanin/metabolism , Tyrosine 3-Monooxygenase/metabolism
18.
J Inherit Metab Dis ; 43(3): 518-528, 2020 05.
Article in English | MEDLINE | ID: mdl-31845342

ABSTRACT

Classic galactosemia (CG) is a potentially lethal inborn error of metabolism, if untreated, that results from profound deficiency of galactose-1-phosphate uridylyltransferase (GALT), the middle enzyme of the Leloir pathway of galactose metabolism. While newborn screening and rapid dietary restriction of galactose prevent or resolve the potentially lethal acute symptoms of CG, by mid-childhood, most treated patients experience significant complications. The mechanisms underlying these long-term deficits remain unclear. Here we introduce a new GALT-null rat model of CG and demonstrate that these rats display cataracts, cognitive, motor, and growth phenotypes reminiscent of patients outcomes. We further apply the GALT-null rats to test how well blood biomarkers, typically followed in patients, reflect metabolic perturbations in other, more relevant tissues. Our results document that the relative levels of galactose metabolites seen in GALT deficiency differ widely by tissue and age, and that red blood cell Gal-1P, the marker most commonly followed in patients, shows no significant association with Gal-1P in other tissues. The work reported here establishes our outbred GALT-null rats as an effective model for at least four complications characteristic of CG, and sets the stage for future studies addressing mechanism and testing the efficacy of novel candidate interventions.


Subject(s)
Disease Models, Animal , Galactose/metabolism , Galactosemias/metabolism , Galactosephosphates/metabolism , Animals , Animals, Newborn , Female , Galactosemias/genetics , Male , Phenotype , Rats , Rats, Sprague-Dawley , UTP-Hexose-1-Phosphate Uridylyltransferase/genetics
19.
Addict Biol ; 25(6): e12823, 2020 11.
Article in English | MEDLINE | ID: mdl-31441201

ABSTRACT

Psychostimulants and opioids increase dopamine (DA) neurotransmission, activating D1 and D2 G protein-coupled receptors. ß-arrestin2 (ßarr2) desensitizes and internalizes these receptors and initiates G protein-independent signaling. Previous work revealed that mice with a global or cell-specific knockout of ßarr2 have altered responses to certain drugs; however, the effects of ßarr2 on the excitability of medium spiny neurons (MSNs), and its role in mediating the rewarding effects of drugs of abuse are unknown. D1-Cre and D2-Cre transgenic mice were crossed with floxed ßarr2 mice to eliminate ßarr2 specifically in cells containing either D1 (D1ßarr2-KO ) or D2 (D2ßarr2-KO ) receptors. We used slice electrophysiology to characterize the role of ßarr2 in modulating D1 and D2 nucleus accumbens MSN intrinsic excitability in response to DA and tested the locomotor-activating and rewarding effects of cocaine and morphine in these mice. Eliminating ßarr2 attenuated the ability of DA to inhibit D2-MSNs and altered the DA-induced maximum firing rate in D1-MSNs. While D1ßarr2-KO mice had mostly normal drug responses, D2ßarr2-KO mice showed dose-dependent reductions in acute locomotor responses to cocaine and morphine, attenuated locomotor sensitization to cocaine, and blunted cocaine reward measured with conditioned place preference. Both D2ßarr2-KO and D1ßarr2-KO mice displayed an enhanced conditioned place preference for the highest dose of morphine. These results indicate that D1- and D2-derived ßarr2 functionally contribute to DA-induced changes in MSN intrinsic excitability and behavioral responses to psychostimulants and opioids dose-dependently.


Subject(s)
Analgesics, Opioid/pharmacology , Central Nervous System Stimulants/pharmacology , Nucleus Accumbens/drug effects , Receptors, Dopamine D2/metabolism , Reward , beta-Arrestin 2/metabolism , Analgesics, Opioid/administration & dosage , Animals , Central Nervous System Stimulants/administration & dosage , Cocaine/administration & dosage , Cocaine/pharmacology , Female , Locomotion/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Morphine/administration & dosage , Morphine/pharmacology , Nucleus Accumbens/physiopathology , Receptors, Dopamine D1/genetics , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/genetics
20.
J Neurosci ; 38(1): 74-92, 2018 01 03.
Article in English | MEDLINE | ID: mdl-29133432

ABSTRACT

The brainstem locus coeruleus (LC) supplies norepinephrine to the forebrain and degenerates in Alzheimer's disease (AD). Loss of LC neurons is correlated with increased severity of other AD hallmarks, including ß-amyloid (Aß) plaques, tau neurofibrillary tangles, and cognitive deficits, suggesting that it contributes to the disease progression. Lesions of the LC in amyloid-based transgenic mouse models of AD exacerbate Aß pathology, neuroinflammation, and cognitive deficits, but it is unknown how the loss of LC neurons affects tau-mediated pathology or behavioral abnormalities. Here we investigate the impact of LC degeneration in a mouse model of tauopathy by lesioning the LC of male and female P301S tau transgenic mice with the neurotoxin N-(2-chloroethyl)-N-ethyl-bromobenzylamine (DSP-4) starting at 2 months of age. By 6 months, deficits in hippocampal-dependent spatial (Morris water maze) and associative (contextual fear conditioning) memory were observed in lesioned P301S mice while performance remained intact in all other genotype and treatment groups, indicating that tau and LC degeneration act synergistically to impair cognition. By 10 months, the hippocampal neuroinflammation and neurodegeneration typically observed in unlesioned P301S mice were exacerbated by DSP-4, and mortality was also accelerated. These DSP-4-induced changes were accompanied by only a mild aggravation of tau pathology, suggesting that increased tau burden cannot fully account for the effects of LC degeneration. Combined, these experiments demonstrate that loss of LC noradrenergic neurons exacerbates multiple phenotypes caused by pathogenic tau, and provides complementary data to highlight the dual role LC degeneration has on both tau and Aß pathologies in AD.SIGNIFICANCE STATEMENT Elucidating the mechanisms underlying AD is crucial to developing effective diagnostics and therapeutics. The degeneration of the LC and loss of noradrenergic transmission have been recognized as ubiquitous events in AD pathology, and previous studies demonstrated that LC lesions exacerbate pathology and cognitive deficits in amyloid-based mouse models. Here, we reveal a complementary role of LC degeneration on tau-mediated aspects of the disease by using selective lesions of the LC and the noradrenergic system to demonstrate an exacerbation of cognitive deficits, neuroinflammation, neurodegeneration in a transgenic mouse model of tauopathy. Our data support an integral role for the LC in modulating the severity of both canonical AD-associated pathologies, as well as the detrimental consequences of LC degeneration during disease progression.


Subject(s)
Cognition Disorders/pathology , Cognition Disorders/psychology , Genes, Lethal/genetics , Locus Coeruleus/pathology , Tauopathies/genetics , Tauopathies/pathology , tau Proteins/genetics , Animals , Benzylamines/toxicity , Conditioning, Psychological/drug effects , Fear/drug effects , Female , Hippocampus/pathology , Inflammation/pathology , Male , Maze Learning/drug effects , Memory Disorders/pathology , Memory Disorders/psychology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Norepinephrine/metabolism , Tauopathies/psychology
SELECTION OF CITATIONS
SEARCH DETAIL