Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Journal
Affiliation country
Publication year range
1.
Cell ; 183(6): 1650-1664.e15, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33125898

ABSTRACT

Correction of disease-causing mutations in human embryos holds the potential to reduce the burden of inherited genetic disorders and improve fertility treatments for couples with disease-causing mutations in lieu of embryo selection. Here, we evaluate repair outcomes of a Cas9-induced double-strand break (DSB) introduced on the paternal chromosome at the EYS locus, which carries a frameshift mutation causing blindness. We show that the most common repair outcome is microhomology-mediated end joining, which occurs during the first cell cycle in the zygote, leading to embryos with non-mosaic restoration of the reading frame. Notably, about half of the breaks remain unrepaired, resulting in an undetectable paternal allele and, after mitosis, loss of one or both chromosomal arms. Correspondingly, Cas9 off-target cleavage results in chromosomal losses and hemizygous indels because of cleavage of both alleles. These results demonstrate the ability to manipulate chromosome content and reveal significant challenges for mutation correction in human embryos.


Subject(s)
Alleles , CRISPR-Associated Protein 9/metabolism , Chromosomes, Human/genetics , Embryo, Mammalian/metabolism , Animals , Base Sequence , Blastocyst/metabolism , Cell Cycle/genetics , Cell Line , Chromosome Deletion , DNA Breaks, Double-Stranded , DNA End-Joining Repair/genetics , Embryo Implantation/genetics , Eye Proteins/genetics , Fertilization , Gene Editing , Gene Rearrangement/genetics , Genetic Loci , Genome, Human , Genotype , Heterozygote , Human Embryonic Stem Cells/metabolism , Humans , INDEL Mutation/genetics , Mice , Mitosis , Open Reading Frames/genetics , Polymorphism, Single Nucleotide/genetics
SELECTION OF CITATIONS
SEARCH DETAIL