Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Syst Biol ; 72(1): 78-91, 2023 05 19.
Article in English | MEDLINE | ID: mdl-36546866

ABSTRACT

The skuas and jaegers (Stercorariidae) are an enigmatic family of seven seabird species that breed at Arctic and Antarctic latitudes. The phylogenetic relationships amongst the species have been controversial, with one of the biggest enigmas involving the Pomarine Jaeger (Stercorarius pomarinus), which has been proposed to represent a hybrid species originating from the merging of distant lineages within the complex. We inferred a phylogeny for the family using multispecies coalescent methods with whole-genome sequencing for all seven species of Stercorariidae, and document an evolutionary history rich in introgression. We uncover evidence for mitochondrial capture and nuclear introgression between S. pomarinus and Stercorarius skua, providing a potential avenue for adaptive introgression. One candidate for adaptive introgression is the MC1R plumage gene which appears to have introgressed from one of the large skuas into S. pomarinus, where it now forms the basis of the dark-morph color polymorphism of that species. We further highlight a complex biogeographical history of interchange between the Arctic and Antarctic, with unexpected close ancestry between S. skua of the northern hemisphere and Stercorarius antarcticus of the southern hemisphere. These results highlight the dynamic history of introgression during pelagic seabird radiation. [Incomplete lineage sorting; introgression; mitochondrial capture; phylogenomics; skua; species tree; stercorariidae; whole-genome resequencing.].


Subject(s)
Charadriiformes , Animals , Phylogeny , Charadriiformes/genetics , Biological Evolution , Polymorphism, Genetic , Genome
2.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Article in English | MEDLINE | ID: mdl-33963076

ABSTRACT

Coexisting (sympatric) pairs of closely related species are often characterized by exaggerated trait differences. This widespread pattern is consistent with adaptation for reduced similarity due to costly interactions (i.e., "character displacement")-a classic hypothesis in evolutionary theory. But it is equally consistent with a community assembly bias in which lineages with greater trait differences are more likely to establish overlapping ranges in the first place (i.e., "species sorting"), as well as with null expectations of trait divergence through time. Few comparative analyses have explicitly modeled these alternatives, and it remains unclear whether trait divergence is a general prerequisite for sympatry or a consequence of interactions between sympatric species. Here, we develop statistical models that allow us to distinguish the signature of these processes based on patterns of trait divergence in closely related lineage pairs. We compare support for each model using a dataset of bill shape differences in 207 pairs of New World terrestrial birds representing 30 avian families. We find that character displacement models are overwhelmingly supported over species sorting and null expectations, indicating that exaggerated bill shape differences in sympatric pairs result from enhanced divergent selection in sympatry. We additionally detect a latitudinal gradient in character displacement, which appears strongest in the tropics. Our analysis implicates costly species interactions as powerful drivers of trait divergence in a major vertebrate fauna. These results help substantiate a long-standing but equivocally supported linchpin of evolutionary theory.


Subject(s)
Birds/genetics , Genetic Speciation , Genetic Variation , Models, Genetic , Sympatry , Animals , Biological Evolution , Birds/classification , Genetics, Population/methods , Phenotype , Species Specificity
3.
Am Nat ; 201(5): 619-638, 2023 05.
Article in English | MEDLINE | ID: mdl-37130236

ABSTRACT

AbstractResearch over the past three decades has shown that ecology-based extrinsic reproductive barriers can rapidly arise to generate incipient species-but such barriers can also rapidly dissolve when environments change, resulting in incipient species collapse. Understanding the evolution of unconditional, "intrinsic" reproductive barriers is therefore important for understanding the longer-term buildup of biodiversity. In this article, we consider ecology's role in the evolution of intrinsic reproductive isolation. We suggest that this topic has fallen into a gap between disciplines: while evolutionary ecologists have traditionally focused on the rapid evolution of extrinsic isolation between co-occurring ecotypes, speciation geneticists studying intrinsic isolation in other taxa have devoted little attention to the ecological context in which it evolves. We argue that for evolutionary ecology to close this gap, the field will have to expand its focus beyond rapid adaptation and its traditional model systems. Synthesizing data from several subfields, we present circumstantial evidence for and against different forms of ecological adaptation as promoters of intrinsic isolation and discuss alternative forces that may be significant. We conclude by outlining complementary approaches that can better address the role of ecology in the evolution of nonephemeral reproductive barriers and, by extension, less ephemeral species.


Subject(s)
Genetic Speciation , Reproductive Isolation , Reproduction , Adaptation, Physiological , Acclimatization , Ecology
4.
Mol Ecol ; 31(15): 4050-4066, 2022 08.
Article in English | MEDLINE | ID: mdl-35665558

ABSTRACT

Phylogeographical studies of the most species-rich region of the planet-the Amazon basin-have repeatedly uncovered genetically distinctive, allopatric lineages within currently named species, but understanding whether such lineages are reproductively isolated species is challenging. Here we harness the power of genome-wide data sets together with detailed phylogeographical sampling to both characterize the number of unique lineages and infer levels of reproductive isolation for three parapatric manakin species that make up the genus Pipra. The mitochondrial and nuclear genomes both support six distinctive lineages. The youngest lineages are now highly admixed with each other across major portions of their geographical ranges with one lineage now extinct in a genomically unadmixed state. In contrast, the oldest sets of lineages-dated to 1.4 million years-exhibit narrow hybrid zones. By fitting demographic models to parapatric lineage pairs we found that levels of gene flow and genomic homogenization decline with increasing evolutionary age. Only lineages descending from the basal node at 1.4 million years ago in the genus experience negligible gene flow, possess genomes resistant to homogenization and are separated by narrow hybrid zones. We conclude that a million years or more were required for Pipra manakins to become reproductively isolated. We suggest the six lineages be reclassified as two or three reproductively isolated species. Our unique approach to quantifying reproductive isolation in parapatric lineages could be applied broadly to other phylogeographical studies and would help determine species classification of the plethora of newly identified lineages in the Amazon basin and other regions.


Subject(s)
Gene Flow , Passeriformes , Animals , Genetic Speciation , Genomics , Passeriformes/genetics , Phylogeny , Phylogeography , Reproductive Isolation
5.
PLoS Biol ; 17(10): e3000478, 2019 10.
Article in English | MEDLINE | ID: mdl-31639139

ABSTRACT

Genetic data indicate differences in speciation rate across latitudes, but underlying causes have been difficult to assess because a critical phase of the speciation process is initiated in allopatry, in which, by definition, individuals from different taxa do not interact. We conducted song playback experiments between 109 related pairs of mostly allopatric bird species or subspecies in Amazonia and North America to compare the rate of evolution of male discrimination of songs. Relative to local controls, the number of flyovers and approach to the speaker were higher in Amazonia. We estimate that responses to songs of relatives are being lost about 6 times more slowly in Amazonia than in North America. The slow loss of response holds even after accounting for differences in song frequency and song length. Amazonian species with year-round territories are losing aggressive responses especially slowly. We suggest the presence of many species and extensive interspecific territoriality favors recognition of songs sung by sympatric heterospecifics, which results in a broader window of recognition and hence an ongoing response to novel similar songs. These aggressive responses should slow the establishment of sympatry between recently diverged forms. If male responses to novel allopatric taxa reflect female responses, then premating reproductive isolation is also evolving more slowly in Amazonia. The findings are consistent with previously demonstrated slower recent rates of expansion of sister taxa into sympatry, slower rates of evolution of traits important for premating isolation, and slower rates of speciation in general in Amazonia than in temperate North America.


Subject(s)
Genetic Speciation , Phylogeny , Reproduction/genetics , Songbirds/classification , Vocalization, Animal/physiology , Animals , Brazil , Canada , Female , Male , Peru , Phylogeography , Songbirds/genetics , Sympatry , United States , Video Recording
6.
Proc Biol Sci ; 288(1965): 20212362, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34905706

ABSTRACT

Small and fragmented populations may become rapidly differentiated due to genetic drift, making it difficult to distinguish whether neutral genetic structure is a signature of recent demographic events, or of long-term evolutionary processes that could have allowed populations to adaptively diverge. We sequenced 52 whole genomes to examine Holocene demographic history and patterns of adaptation in kiwi (Apteryx), and recovered 11 strongly differentiated genetic clusters corresponding to previously recognized lineages. Demographic models suggest that all 11 lineages experienced dramatic population crashes relative to early- or mid-Holocene levels. Small population size is associated with low genetic diversity and elevated genetic differentiation (FST), suggesting that population declines have strengthened genetic structure and led to the loss of genetic diversity. However, population size is not correlated with inbreeding rates. Eight lineages show signatures of lineage-specific selective sweeps (284 sweeps total) that are unlikely to have been caused by demographic stochasticity. Overall, these results suggest that despite strong genetic drift associated with recent bottlenecks, most kiwi lineages possess unique adaptations and should be recognized as separate adaptive units in conservation contexts. Our work highlights how whole-genome datasets can address longstanding uncertainty about the evolutionary and conservation significance of small and fragmented populations of threatened species.


Subject(s)
Genetic Drift , Inbreeding , Genetic Variation , Genetics, Population , Genome , New Zealand , Population Density
7.
Mol Ecol ; 30(21): 5517-5529, 2021 11.
Article in English | MEDLINE | ID: mdl-34403554

ABSTRACT

Geographically connected species pairs with weakly differentiated genomes could either represent cases of genomic homogenization in progress or of incipient parapatric speciation. Discriminating between these processes is difficult because intermediate stages of either may produce weakly differentiated genomes that diverge at few locations. We used coalescent modelling applied to a genome-wide sample of SNPs to discriminate between speciation with gene flow and genomic homogenization in two phenotypically distinct but genomically weakly diverged species of elevationally replacing Ramphocelus tanagers, forming a hybrid zone in the Andean foothills. We found overwhelming support for a model of genomic homogenization following secondary contact. Simulating under this model suggested that our species pair was differentiated (FST  = 0.30) at secondary contact but that most of the genome has rapidly homogenized during 254 Ky of high gene flow towards the present (FST  = 0.02). Despite extensive genome-wide homogenization, plumage remains distinctive with a narrower than expected geographic cline width, indicating divergent selection on colour. We found two SNPs significantly associated with plumage colour, which retain moderately high FST . We conclude that the majority of the genome has fused, but that divergent selection on select loci probably maintains the geographically structured colour differences between these incipient species.


Subject(s)
Genetic Speciation , Passeriformes , Animals , Gene Flow , Genome , Genomics , Passeriformes/genetics
8.
Mol Ecol ; 30(19): 4833-4844, 2021 10.
Article in English | MEDLINE | ID: mdl-34347907

ABSTRACT

Geographic contact between sister lineages often occurs near the final stages of speciation, but its role in speciation's completion remains debated. Reproductive isolation may be essentially complete prior to secondary contact. Alternatively, costly interactions between partially reproductively isolated species - such as maladaptive hybridization or competition for resources - may select for divergence, increasing reproductive isolation and driving speciation toward completion. Here, we use coalescent demographic modelling and whole-genome data sets to show that a period of contact and elevated hybridization between sympatric eastern North American populations of two cryptic bird species preceded a major increase in reproductive isolation between these populations within the last 10,000 years. In contrast, substantial introgression continues to the present in a western contact zone where geographic overlap is much narrower and probably of more recent origin. In the sympatric eastern region where reproductive isolation has increased, it is not accompanied by character displacement in key morphometric traits, plumage coloration, or ecological traits. While the precise trait and underlying mechanism driving increased reproductive isolation remains unknown, we discuss several possibilities and outline avenues for future research. Overall, our results highlight how demographic models can reveal the geographic context in which reproductive isolation was completed, and demonstrate how contact can accelerate the final stages of speciation.


Subject(s)
Passeriformes , Songbirds , Animals , Genetic Speciation , Passeriformes/genetics , Reproductive Isolation , Songbirds/genetics , Sympatry
9.
Conserv Biol ; 35(2): 654-665, 2021 04.
Article in English | MEDLINE | ID: mdl-32537779

ABSTRACT

Collisions with buildings cause up to 1 billion bird fatalities annually in the United States and Canada. However, efforts to reduce collisions would benefit from studies conducted at large spatial scales across multiple study sites with standardized methods and consideration of species- and life-history-related variation and correlates of collisions. We addressed these research needs through coordinated collection of data on bird collisions with buildings at sites in the United States (35), Canada (3), and Mexico (2). We collected all carcasses and identified species. After removing records for unidentified carcasses, species lacking distribution-wide population estimates, and species with distributions overlapping fewer than 10 sites, we retained 269 carcasses of 64 species for analysis. We estimated collision vulnerability for 40 bird species with ≥2 fatalities based on their North American population abundance, distribution overlap in study sites, and sampling effort. Of 10 species we identified as most vulnerable to collisions, some have been identified previously (e.g., Black-throated Blue Warbler [Setophaga caerulescens]), whereas others emerged for the first time (e.g., White-breasted Nuthatch [Sitta carolinensis]), possibly because we used a more standardized sampling approach than past studies. Building size and glass area were positively associated with number of collisions for 5 of 8 species with enough observations to analyze independently. Vegetation around buildings influenced collisions for only 1 of those 8 species (Swainson's Thrush [Catharus ustulatus]). Life history predicted collisions; numbers of collisions were greatest for migratory, insectivorous, and woodland-inhabiting species. Our results provide new insight into the species most vulnerable to building collisions, making them potentially in greatest need of conservation attention to reduce collisions and into species- and life-history-related variation and correlates of building collisions, information that can help refine collision management.


Correlaciones de las Colisiones de Aves contra Edificios en Tres Países de América del Norte Resumen Las colisiones contra los edificios causan hasta mil millones de fatalidades de aves al año en los Estados Unidos y en Canadá. Sin embargo, los esfuerzos por reducir estas colisiones se beneficiarían con estudios realizados a grandes escalas espaciales en varios sitios de estudio con métodos estandarizados y considerando las variaciones relacionadas a la historia de vida y a la especie y las correlaciones de las colisiones. Abordamos estas necesidades de investigación por medio de una recolección coordinada de datos sobre las colisiones de aves contra edificios en los Estados Unidos (35), Canadá (3) y México (2). Recolectamos todos los cadáveres y los identificamos hasta especie. Después de retirar los registros de cadáveres no identificados, las especies sin estimaciones poblacionales a nivel distribución y las especies con distribuciones traslapadas en menos de diez sitios, nos quedamos con 269 cadáveres de 64 especies para el análisis. Estimamos la vulnerabilidad a colisiones para 40 especies con ≥2 fatalidades con base en la abundancia poblacional para América del Norte, el traslape de su distribución entre los sitios de estudio y el esfuerzo de muestreo. De las diez especies que identificamos como las más vulnerables a las colisiones, algunas han sido identificadas previamente (Setophaga caerulescens), y otras aparecieron por primera vez (Sitta carolinensis), posiblemente debido a que usamos una estrategia de muestreo más estandarizada que en los estudios previos. El tamaño del edificio y el área del vidrio estuvieron asociados positivamente con el número de colisiones para cinco de ocho especies con suficientes observaciones para ser analizadas independientemente. La vegetación alrededor de los edificios influyó sobre las colisiones solamente para una de esas ocho especies Catharus ustulatus). Las historias de vida pronosticaron las colisiones; el número de colisiones fue mayor para las especies migratorias, insectívoras y aquellas que habitan en las zonas boscosas. Nuestros resultados proporcionan una nueva perspectiva hacia las especies más vulnerables a las colisiones contra edificios, lo que las pone en una necesidad potencialmente mayor de atención conservacionista para reducir estas colisiones y de estudio de las variaciones relacionadas con la especie y la historia de vida y las correlaciones de las colisiones contra edificios, información que puede ayudar a refinar el manejo de colisiones.


Subject(s)
Conservation of Natural Resources , Songbirds , Animals , Canada , Mexico , North America , United States
10.
Proc Natl Acad Sci U S A ; 115(2): E218-E225, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29279398

ABSTRACT

Hybrid speciation is rare in vertebrates, and reproductive isolation arising from hybridization is infrequently demonstrated. Here, we present evidence supporting a hybrid-speciation event involving the genetic admixture of the snow-capped (Lepidothrix nattereri) and opal-crowned (Lepidothrix iris) manakins of the Amazon basin, leading to the formation of the hybrid species, the golden-crowned manakin (Lepidothrix vilasboasi). We used a genome-wide SNP dataset together with analysis of admixture, population structure, and coalescent modeling to demonstrate that the golden-crowned manakin is genetically an admixture of these species and does not represent a hybrid zone but instead formed through ancient genetic admixture. We used spectrophotometry to quantify the coloration of the species-specific male crown patches. Crown patches are highly reflective white (snow-capped manakin) or iridescent whitish-blue to pink (opal-crowned manakin) in parental species but are a much less reflective yellow in the hybrid species. The brilliant coloration of the parental species results from nanostructural organization of the keratin matrix feather barbs of the crown. However, using electron microscopy, we demonstrate that the structural organization of this matrix is different in the two parental species and that the hybrid species is intermediate. The intermediate nature of the crown barbs, resulting from past admixture appears to have rendered a duller structural coloration. To compensate for reduced brightness, selection apparently resulted in extensive thickening of the carotenoid-laden barb cortex, producing the yellow crown coloration. The evolution of this unique crown-color signal likely culminated in premating isolation of the hybrid species from both parental species.


Subject(s)
Genetic Speciation , Hybridization, Genetic , Passeriformes/genetics , Animal Distribution , Animals , Carotenoids/metabolism , Feathers/physiology , Female , Genome-Wide Association Study , Keratins/physiology , Male , Passeriformes/physiology , Polymorphism, Single Nucleotide , Sex Characteristics , South Africa , South America
11.
Genomics ; 112(6): 4552-4560, 2020 11.
Article in English | MEDLINE | ID: mdl-32771623

ABSTRACT

Antbirds (Thamnophilidae) are a large neotropical family of passerine bird renowned for the ant-following foraging strategies of several members of this clade. The high diversity of antbirds provides ample opportunity for speciation studies, however these studies can be hindered by the lack of an annotated antbird reference genome. In this study, we produced a high-quality annotated reference genome for the Xingu Scale-backed Antbird (Willisornis vidua nigrigula) using 10X Genomics Chromium linked-reads technology. The assembly is 1.09 Gb, with a scaffold N50 of 12.1 Mb and 17,475 annotated protein coding genes. We compare the proteome of W. v. nigrigula to several other passerines, and produce annotations for two additional antbird genomes in order to identify genes under lineage-specific positive selection and gene families with evidence for significant expansions in antbirds. Several of these genes have functions potentially related to the lineage-specific traits of antbirds, including adaptations for thermoregulation in a humid tropical environment.


Subject(s)
Genome , Passeriformes/genetics , Animals , Avian Proteins/genetics , Evolution, Molecular , Interspersed Repetitive Sequences , Male , Multigene Family , Selection, Genetic , Species Specificity
12.
Am Nat ; 196(4): 429-442, 2020 10.
Article in English | MEDLINE | ID: mdl-32970469

ABSTRACT

AbstractEcological differentiation between lineages is widely considered to be an important driver of speciation, but support for this hypothesis is mainly derived from the detailed study of a select set of model species pairs. Mounting evidence from nonmodel taxa, meanwhile, suggests that speciation often occurs with minimal differentiation in ecology or ecomorphology, calling into question the true contribution of divergent adaptation to species richness in nature. To better understand divergent ecological adaptation and its role in speciation generally, researchers require a comparative approach that can distinguish its signature from alternative processes, such as drift and parallel selection, in data sets containing many species pairs. Here we introduce new statistical models of divergent adaptation in the continuous traits of paired lineages. In these models, ecomorphological characters diverge as two lineages adapt toward alternative phenotypic optima following their departure from a common ancestor. The absolute distance between optima measures the extent of divergent selection and provides a basis for interpretation. We encode the models in the new R package diverge and extend them to allow the distance between optima to vary across continuous and categorical variables. We test model performance using simulation and demonstrate model application using published data sets of trait divergence in birds and mammals. Our framework provides the first explicit test for signatures of divergent selection in trait divergence data sets, and it will enable empiricists from a wide range of fields to better understand the dynamics of divergent adaptation and its prevalence in nature beyond just our best-studied model systems.


Subject(s)
Adaptation, Biological/genetics , Genetic Speciation , Selection, Genetic , Animals , Birds/genetics , Computer Simulation , Ecosystem , Mammals/genetics , Models, Statistical , Phylogeny
13.
Mol Ecol ; 29(7): 1235-1249, 2020 04.
Article in English | MEDLINE | ID: mdl-32202354

ABSTRACT

Since the early Holocene, fish population genetics in the Laurentian Great Lakes have been shaped by the dual influences of habitat structure and post-glacial dispersal. Riverscape genetics theory predicts that longitudinal habitat corridors and unidirectional downstream water-flow drive the downstream accumulation of genetic diversity, whereas post-glacial dispersal theory predicts that fish genetic diversity should decrease with increasing distance from glacial refugia. This study examines populations of seven native fish species codistributed above and below the 58 m high Niagara Falls - a hypothesized barrier to gene flow in aquatic species. A better understanding of Niagara Falls' role as a barrier to gene flow and dispersal is needed to identify drivers of Great Lakes genetic diversity and guide strategies to limit exotic species invasions. We used genome-wide SNPs and coalescent models to test whether populations are: (a) genetically distinct, consistent with the Niagara Falls barrier hypothesis; (b) more genetically diverse upstream, consistent with post-glacial expansion theory, or downstream, consistent with the riverscape habitat theory; and (c) have migrated either upstream or downstream past Niagara Falls. We found that genetic diversity is consistently greater below Niagara Falls and the falls are an effective barrier to migration, but two species have probably dispersed upstream past the falls after glacial retreat yet before opening of the Welland Canal. Models restricting migration to after opening of the Welland Canal were generally rejected. These results help explain how river habitat features affect aquatic species' genetic diversity and highlight the need to better understand post-glacial dispersal pathways.


Subject(s)
Fishes/genetics , Gene Flow , Genetics, Population , Polymorphism, Single Nucleotide , Rivers , Animal Distribution , Animals , Ecosystem , Fishes/classification , Models, Genetic
14.
Ecol Lett ; 22(4): 624-633, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30714311

ABSTRACT

The importance of ecologically mediated divergent selection in accelerating trait evolution has been poorly studied in the most species-rich biome of the planet, the continental Neotropics. We performed macroevolutionary analyses of trait divergence and diversification rates across closely related pairs of Andean and Amazonian passerine birds, to assess whether the difference in elevational range separating species pairs - a proxy for the degree of ecological divergence - influences the speed of trait evolution and diversification rates. We found that elevational differentiation is associated with faster divergence of song frequency, a trait important for pre-mating isolation, and several morphological traits, which may contribute to extrinsic post-mating isolation. However, elevational differentiation did not increase recent speciation rates, possibly due to early bursts of diversification during the uplift of the eastern Andes followed by a slow-down in speciation rate. Our results suggest that ecological differentiation may speed up trait evolution, but not diversification of Neotropical birds.


Subject(s)
Altitude , Biological Evolution , Birds , Ecosystem , Genetic Speciation , Animals , Birds/genetics , Birds/physiology , Ecology , Phenotype , Phylogeny
15.
Proc Natl Acad Sci U S A ; 113(38): E5580-7, 2016 09 20.
Article in English | MEDLINE | ID: mdl-27573837

ABSTRACT

Molecular dating largely overturned the paradigm that global cooling during recent Pleistocene glacial cycles resulted in a burst of species diversification although some evidence exists that speciation was commonly promoted in habitats near the expanding and retracting ice sheets. Here, we used a genome-wide dataset of more than half a million base pairs of DNA to test for a glacially induced burst of diversification in kiwi, an avian family distributed within several hundred kilometers of the expanding and retracting glaciers of the Southern Alps of New Zealand. By sampling across the geographic range of the five kiwi species, we discovered many cryptic lineages, bringing the total number of kiwi taxa that currently exist to 11 and the number that existed just before human arrival to 16 or 17. We found that 80% of kiwi diversification events date to the major glacial advances of the Middle and Late Pleistocene. During this period, New Zealand was repeatedly fragmented by glaciers into a series of refugia, with the tiny geographic ranges of many kiwi lineages currently distributed in areas adjacent to these refugia. Estimates of effective population size through time show a dramatic bottleneck during the last glacial cycle in all but one kiwi lineage, as expected if kiwi were isolated in glacially induced refugia. Our results support a fivefold increase in diversification rates during key glacial periods, comparable with levels observed in classic adaptive radiations, and confirm that at least some lineages distributed near glaciated regions underwent rapid ice age diversification.


Subject(s)
DNA, Mitochondrial/genetics , Evolution, Molecular , Genetic Speciation , Palaeognathae/genetics , Animals , Ecosystem , Humans , Ice Cover , New Zealand , Phylogeny , Sequence Analysis, DNA
16.
Proc Biol Sci ; 285(1874)2018 03 14.
Article in English | MEDLINE | ID: mdl-29514967

ABSTRACT

We possess limited understanding of how speciation unfolds in the most species-rich region of the planet-the Amazon basin. Hybrid zones provide valuable information on the evolution of reproductive isolation, but few studies of Amazonian vertebrate hybrid zones have rigorously examined the genome-wide underpinnings of reproductive isolation. We used genome-wide genetic datasets to show that two deeply diverged, but morphologically cryptic sister species of forest understorey birds show little evidence for prezygotic reproductive isolation, but substantial postzygotic isolation. Patterns of heterozygosity and hybrid index revealed that hybrid classes with heavily recombined genomes are rare and closely match simulations with high levels of selection against hybrids. Genomic and geographical clines exhibit a remarkable similarity across loci in cline centres, and have exceptionally narrow cline widths, suggesting that postzygotic isolation is driven by genetic incompatibilities at many loci, rather than a few loci of strong effect. We propose Amazonian understorey forest birds speciate slowly via gradual accumulation of postzygotic genetic incompatibilities, with prezygotic barriers playing a less important role. Our results suggest old, cryptic Amazonian taxa classified as subspecies could have substantial postzygotic isolation deserving species recognition and that species richness is likely to be substantially underestimated in Amazonia.


Subject(s)
Genetic Speciation , Genome , Passeriformes/physiology , Reproductive Isolation , Animals , Brazil , Female , Male , Passeriformes/anatomy & histology , Passeriformes/genetics
17.
Ecol Lett ; 20(7): 863-871, 2017 07.
Article in English | MEDLINE | ID: mdl-28513066

ABSTRACT

The role of sexual selection as a driver of speciation remains unresolved, not least because we lack a clear empirical understanding of its influence on different phases of the speciation process. Here, using data from 1306 recent avian speciation events, we show that plumage dichromatism (a proxy for sexual selection) does not predict diversification rates, but instead explains the rate at which young lineages achieve geographical range overlap. Importantly, this effect is only significant when range overlap is narrow (< 20%). These findings are consistent with a 'differential fusion' model wherein sexual selection reduces rates of fusion among lineages undergoing secondary contact, facilitating parapatry or limited co-existence, whereas more extensive sympatry is contingent on additional factors such as ecological differentiation. Our results provide a more mechanistic explanation for why sexual selection appears to drive early stages of speciation while playing a seemingly limited role in determining broad-scale patterns of diversification.


Subject(s)
Birds , Genetic Speciation , Sympatry , Animals , Ecology , Geography
18.
Proc Biol Sci ; 283(1827): 20160047, 2016 03 30.
Article in English | MEDLINE | ID: mdl-27009226

ABSTRACT

Evolutionary biologists since Darwin have hypothesized that closely related species compete more intensely and are therefore less likely to coexist. However, recent theory posits that species diverge in two ways: either through the evolution of 'stabilizing differences' that promote coexistence by causing individuals to compete more strongly with conspecifics than individuals of other species, or through the evolution of 'fitness differences' that cause species to differ in competitive ability and lead to exclusion of the weaker competitor. We tested macroevolutionary patterns of divergence by competing pairs of annual plant species that differ in their phylogenetic relationships, and in whether they have historically occurred in the same region or different regions (sympatric versus allopatric occurrence). For sympatrically occurring species pairs, stabilizing differences rapidly increased with phylogenetic distance. However, fitness differences also increased with phylogenetic distance, resulting in coexistence outcomes that were unpredictable based on phylogenetic relationships. For allopatric species, stabilizing differences showed no trend with phylogenetic distance, whereas fitness differences increased, causing coexistence to become less likely among distant relatives. Our results illustrate the role of species' historical interactions in shaping how phylogenetic relationships structure competitive dynamics, and offer an explanation for the evolution of invasion potential of non-native species.


Subject(s)
Biological Evolution , Genetic Fitness , Magnoliopsida/physiology , California , Ecosystem , Magnoliopsida/classification , Magnoliopsida/genetics , Phylogeny , Plant Dispersal , Spain , Species Specificity , Sympatry
20.
Ecol Lett ; 17(11): 1427-36, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25168260

ABSTRACT

Despite the importance of divergent selection to the speed of evolution, it remains poorly understood if divergent selection is more prevalent in the tropics (where species richness is highest), or at high latitudes (where paleoclimate change has been most intense). We tested whether the rate of climatic-niche evolution - one proxy for divergent selection - varies with latitude for 111 pairs of bird species. Using Brownian motion and Ornsetin-Ulhenbeck models, we show that evolutionary rates along two important axes of the climatic-niche - temperature and seasonality - have been faster at higher latitudes. We then tested whether divergence of the climatic-niche was associated with evolution in traits important in ecological differentiation (body mass) and reproductive isolation (song), and found that climatic divergence is associated with faster rates in both measures. These results highlight the importance of climate-mediated divergent selection pressures in driving evolutionary divergence and reproductive isolation at high latitudes.


Subject(s)
Biological Evolution , Birds/genetics , Climate , Selection, Genetic , Animals , Birds/classification , Body Size , Geography , Models, Biological , Reproductive Isolation , Vocalization, Animal
SELECTION OF CITATIONS
SEARCH DETAIL