Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
J Cell Sci ; 133(14)2020 07 15.
Article in English | MEDLINE | ID: mdl-32546533

ABSTRACT

Nuclear factor erythroid 2-related factor 2 (NFE2L2, also known as NRF2) is a transcription factor and master regulator of cellular antioxidant response. Aberrantly high NRF2-dependent transcription is recurrent in human cancer, but conversely NRF2 activity diminishes with age and in neurodegenerative and metabolic disorders. Although NRF2-activating drugs are clinically beneficial, NRF2 inhibitors do not yet exist. Here, we describe use of a gain-of-function genetic screen of the kinome to identify new druggable regulators of NRF2 signaling. We found that the under-studied protein kinase brain-specific kinase 2 (BRSK2) and the related BRSK1 kinases suppress NRF2-dependent transcription and NRF2 protein levels in an activity-dependent manner. Integrated phosphoproteomics and RNAseq studies revealed that BRSK2 drives 5'-AMP-activated protein kinase α2 (AMPK) signaling and suppresses the mTOR pathway. As a result, BRSK2 kinase activation suppresses ribosome-RNA complexes, global protein synthesis and NRF2 protein levels. Collectively, our data illuminate the BRSK2 and BRSK1 kinases, in part by functionally connecting them to NRF2 signaling and mTOR. This signaling axis might prove useful for therapeutically targeting NRF2 in human disease.This article has an associated First Person interview with the first author of the paper.


Subject(s)
NF-E2-Related Factor 2 , Receptor, EphA5 , AMP-Activated Protein Kinases/metabolism , Gain of Function Mutation , Humans , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/genetics
2.
J Pathol ; 252(2): 125-137, 2020 10.
Article in English | MEDLINE | ID: mdl-32619021

ABSTRACT

Activation of the nuclear factor (erythroid-derived 2)-like 2 (NFE2L2 or NRF2) transcription factor is a critical and evolutionarily conserved cellular response to oxidative stress, metabolic stress, and xenobiotic insult. Deficiency of NRF2 results in hypersensitivity to a variety of stressors, whereas its aberrant activation contributes to several cancer types, most commonly squamous cell carcinomas of the esophagus, oral cavity, bladder, and lung. Between 10% and 35% of patients with squamous cell carcinomas display hyperactive NRF2 signaling, harboring activating mutations and copy number amplifications of the NFE2L2 oncogene or inactivating mutations or deletions of KEAP1 or CUL3, the proteins of which co-complex to ubiquitylate and degrade NRF2 protein. To better understand the role of NRF2 in tumorigenesis and more broadly in development, we engineered the endogenous Nfe2l2 genomic locus to create a conditional mutant LSL-Nrf2E79Q mouse model. The E79Q mutation, one of the most commonly observed NRF2-activating mutations in human squamous cancers, codes for a mutant protein that does not undergo KEAP1/CUL3-dependent degradation, resulting in its constitutive activity. Expression of NRF2 E79Q protein in keratin 14 (KRT14)-positive murine tissues resulted in hyperplasia of squamous cell tissues of the tongue, forestomach, and esophagus, a stunted body axis, decreased weight, and decreased visceral adipose depots. RNA-seq profiling and follow-up validation studies of cultured NRF2E79Q murine esophageal epithelial cells revealed known and novel NRF2-regulated transcriptional programs, including genes associated with squamous cell carcinoma (e.g. Myc), lipid and cellular metabolism (Hk2, Ppard), and growth factors (Areg, Bmp6, Vegfa). These data suggest that in addition to decreasing adipogenesis, KRT14-restricted NRF2 activation drives hyperplasia of the esophagus, forestomach, and tongue, but not formation of squamous cell carcinoma. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Adipose Tissue, White/pathology , Carcinogenesis/genetics , Disease Models, Animal , NF-E2-Related Factor 2/genetics , Precancerous Conditions/genetics , Upper Gastrointestinal Tract/pathology , Animals , Carcinoma, Squamous Cell/genetics , Esophagus/pathology , Humans , Hyperplasia/genetics , Mice , Mutation , Tongue/pathology
3.
Neuropharmacology ; 242: 109762, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37871677

ABSTRACT

A key facet of alcohol use disorder is continuing to drink alcohol despite negative consequences (so called "aversion-resistant drinking"). In this study, we sought to assess the degree to which head-fixed mice exhibit aversion-resistant drinking and to leverage behavioral analysis techniques available in head-fixture to relate non-consummatory behaviors to aversion-resistant drinking. We assessed aversion-resistant drinking in head-fixed female and male C57BL/6 J mice. We adulterated 20% (v/v) alcohol with varying concentrations of the bitter tastant quinine to measure the degree to which mice would continue to drink despite this aversive stimulus. We recorded high-resolution video of the mice during head-fixed drinking, tracked body parts with machine vision tools, and analyzed body movements in relation to consumption. Female and male head-fixed mice exhibited heterogenous levels of aversion-resistant drinking. Additionally, non-consummatory behaviors, such as paw movement and snout movement, were related to the intensity of aversion-resistant drinking. These studies demonstrate that head-fixed mice exhibit aversion-resistant drinking and that non-consummatory behaviors can be used to assess perceived aversiveness in this paradigm. Furthermore, these studies lay the groundwork for future experiments that will utilize advanced electrophysiological techniques to record from large populations of neurons during aversion-resistant drinking to understand the neurocomputational processes that drive this clinically relevant behavior. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".


Subject(s)
Alcohol Drinking , Alcoholism , Mice , Male , Female , Animals , Mice, Inbred C57BL , Alcohol Drinking/psychology , Ethanol/pharmacology , Quinine
4.
Methods Mol Biol ; 2583: 83-97, 2023.
Article in English | MEDLINE | ID: mdl-36418727

ABSTRACT

Single-cell RNA sequencing (scRNA-seq) allows for the transcriptomic profiling of a sample tissue with single-cell resolution. The concept of scRNA-seq builds on traditional, "bulk" RNA-seq by recording and preserving the cellular origin of each transcript throughout library preparation. Here we describe an adaptation of the Drop-Seq method (Macosko et al. Cell 161, 1202-1214, 2015), in which nanoliter-scale droplets are used to physically separate dissociated cells, while a cell-specific DNA barcode is simultaneously introduced. Following barcoding, cDNAs can be mixed and pooled while retaining the identity of the cell of origin. The benefit of the Drop-Seq approach is high throughput from relatively small samples of tissue. The method described here is appropriate for processing an input of as few as 150,000 cells, with a final yield of as many as 5000 single-cell transcripts captured.


Subject(s)
Microcephaly , Humans , DNA, Complementary/genetics , RNA, Messenger/genetics , Single-Cell Analysis , Exome Sequencing
5.
Methods Mol Biol ; 2583: 99-104, 2023.
Article in English | MEDLINE | ID: mdl-36418728

ABSTRACT

Droplet-based single-cell RNA-seq (scRNA-seq) requires the addition of bar codes that mark the cell and transcript of origin. Cell-specific bar codes, typically added by cDNA elongation on beads, label each transcript derived from an individual cell. Transcript-specific bar codes serve as unique molecular identifiers and allow for the maintenance of transcript proportions after PCR-based amplification of cDNA. This chapter provides methods for generating bar-coded scRNA-seq libraries after droplet encapsulation.


Subject(s)
Microcephaly , Single-Cell Analysis , Humans , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , DNA, Complementary/genetics , Gene Library
6.
bioRxiv ; 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37873153

ABSTRACT

A key facet of alcohol use disorder is continuing to drink alcohol despite negative consequences (so called "aversion-resistant drinking"). In this study, we sought to assess the degree to which head-fixed mice exhibit aversion-resistant drinking and to leverage behavioral analysis techniques available in head-fixture to relate non-consummatory behaviors to aversion-resistant drinking. We assessed aversion-resistant drinking in head-fixed female and male C57BL/6J mice. We adulterated 20% (v/v) alcohol with varying concentrations of the bitter tastant quinine to measure the degree to which mice would continue to drink despite this aversive stimulus. We recorded high-resolution video of the mice during head-fixed drinking, tracked body parts with machine vision tools, and analyzed body movements in relation to consumption. Female and male head-fixed mice exhibited heterogenous levels of aversion-resistant drinking. Additionally, non-consummatory behaviors, such as paw movement and snout movement, were related to the intensity of aversion-resistant drinking. These studies demonstrate that head-fixed mice exhibit aversion-resistant drinking and that non-consummatory behaviors can be used to assess perceived aversiveness in this paradigm. Furthermore, these studies lay the groundwork for future experiments that will utilize advanced electrophysiological techniques to record from large populations of neurons during aversion-resistant drinking to understand the neurocomputational processes that drive this clinically relevant behavior.

7.
Neuro Oncol ; 24(2): 273-286, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34077540

ABSTRACT

BACKGROUND: Medulloblastoma (MB) is a heterogeneous disease in which neoplastic cells and associated immune cells contribute to disease progression. We aimed to determine the influence of neoplastic and immune cell diversity on MB biology in patient samples and animal models. METHODS: To better characterize cellular heterogeneity in MB we used single-cell RNA sequencing, immunohistochemistry, and deconvolution of transcriptomic data to profile neoplastic and immune populations in patient samples and animal models across childhood MB subgroups. RESULTS: Neoplastic cells cluster primarily according to individual sample of origin which is influenced by chromosomal copy number variance. Harmony alignment reveals novel MB subgroup/subtype-associated subpopulations that recapitulate neurodevelopmental processes, including photoreceptor and glutamatergic neuron-like cells in molecular subgroups GP3 and GP4, and a specific nodule-associated neuronally differentiated subpopulation in the sonic hedgehog subgroup. We definitively chart the spectrum of MB immune cell infiltrates, which include subpopulations that recapitulate developmentally related neuron-pruning and antigen-presenting myeloid cells. MB cellular diversity matching human samples is mirrored in subgroup-specific mouse models of MB. CONCLUSIONS: These findings provide a clearer understanding of the diverse neoplastic and immune cell subpopulations that constitute the MB microenvironment.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Animals , Cerebellar Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Hedgehog Proteins/genetics , Humans , Medulloblastoma/genetics , Mice , Transcriptome , Tumor Microenvironment/genetics
8.
Commun Biol ; 4(1): 616, 2021 05 21.
Article in English | MEDLINE | ID: mdl-34021242

ABSTRACT

It is unclear why medulloblastoma patients receiving similar treatments experience different outcomes. Transcriptomic profiling identified subgroups with different prognoses, but in each subgroup, individuals remain at risk of incurable recurrence. To investigate why similar-appearing tumors produce variable outcomes, we analyzed medulloblastomas triggered in transgenic mice by a common driver mutation expressed at different points in brain development. We genetically engineered mice to express oncogenic SmoM2, starting in multipotent glio-neuronal stem cells, or committed neural progenitors. Both groups developed medulloblastomas with similar transcriptomic profiles. We compared medulloblastoma progression, radiosensitivity, and cellular heterogeneity, determined by single-cell transcriptomic analysis (scRNA-seq). Stem cell-triggered medulloblastomas progressed faster, contained more OLIG2-expressing stem-like cells, and consistently showed radioresistance. In contrast, progenitor-triggered MBs progressed slower, down-regulated stem-like cells and were curable with radiation. Progenitor-triggered medulloblastomas also contained more diverse stromal populations, with more Ccr2+ macrophages and fewer Igf1+ microglia, indicating that developmental events affected the subsequent tumor microenvironment. Reduced mTORC1 activity in M-Smo tumors suggests that differential Igf1 contributed to differences in phenotype. Developmental events in tumorigenesis that were obscure in transcriptomic profiles thus remained cryptic determinants of tumor composition and outcome. Precise understanding of medulloblastoma pathogenesis and prognosis requires supplementing transcriptomic/methylomic studies with analyses that resolve cellular heterogeneity.


Subject(s)
Cell Lineage , Cerebellar Neoplasms/pathology , Gene Expression Regulation, Developmental/radiation effects , Medulloblastoma/pathology , Radiation Tolerance/genetics , Stem Cells/pathology , Transcriptome/radiation effects , Animals , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/radiotherapy , Genetic Heterogeneity , Humans , Medulloblastoma/genetics , Medulloblastoma/radiotherapy , Mice , Mice, Inbred C57BL , Mice, Transgenic , Single-Cell Analysis , Stem Cells/radiation effects , Tumor Microenvironment
9.
Nat Commun ; 10(1): 5829, 2019 12 20.
Article in English | MEDLINE | ID: mdl-31863004

ABSTRACT

Targeting oncogenic pathways holds promise for brain tumor treatment, but inhibition of Sonic Hedgehog (SHH) signaling has failed in SHH-driven medulloblastoma. Cellular diversity within tumors and reduced lineage commitment can undermine targeted therapy by increasing the probability of treatment-resistant populations. Using single-cell RNA-seq and lineage tracing, we analyzed cellular diversity in medulloblastomas in transgenic, medulloblastoma-prone mice, and responses to the SHH-pathway inhibitor vismodegib. In untreated tumors, we find expected stromal cells and tumor-derived cells showing either a spectrum of neural progenitor-differentiation states or glial and stem cell markers. Vismodegib reduces the proliferative population and increases differentiation. However, specific cell types in vismodegib-treated tumors remain proliferative, showing either persistent SHH-pathway activation or stem cell characteristics. Our data show that even in tumors with a single pathway-activating mutation, diverse mechanisms drive tumor growth. This diversity confers early resistance to targeted inhibitor therapy, demonstrating the need to target multiple pathways simultaneously.


Subject(s)
Cerebellar Neoplasms/genetics , Drug Resistance, Neoplasm/genetics , Hedgehog Proteins/antagonists & inhibitors , Medulloblastoma/genetics , Signal Transduction/genetics , Anilides/pharmacology , Anilides/therapeutic use , Animals , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cerebellar Neoplasms/drug therapy , Cerebellar Neoplasms/pathology , Cerebellum/cytology , Cerebellum/pathology , Female , Gain of Function Mutation , Hedgehog Proteins/genetics , Humans , Male , Medulloblastoma/drug therapy , Medulloblastoma/pathology , Mice , Mice, Transgenic , Molecular Targeted Therapy/methods , MyoD Protein/genetics , Neoplastic Stem Cells/drug effects , Pyridines/pharmacology , Pyridines/therapeutic use , RNA-Seq , Signal Transduction/drug effects , Single-Cell Analysis , Smoothened Receptor/genetics , Transcription Factor HES-1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL