Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 168(5): 801-816.e13, 2017 02 23.
Article in English | MEDLINE | ID: mdl-28215704

ABSTRACT

DNMT3A mutations occur in ∼25% of acute myeloid leukemia (AML) patients. The most common mutation, DNMT3AR882H, has dominant negative activity that reduces DNA methylation activity by ∼80% in vitro. To understand the contribution of DNMT3A-dependent methylation to leukemogenesis, we performed whole-genome bisulfite sequencing of primary leukemic and non-leukemic cells in patients with or without DNMT3AR882 mutations. Non-leukemic hematopoietic cells with DNMT3AR882H displayed focal methylation loss, suggesting that hypomethylation antedates AML. Although virtually all AMLs with wild-type DNMT3A displayed CpG island hypermethylation, this change was not associated with gene silencing and was essentially absent in AMLs with DNMT3AR882 mutations. Primary hematopoietic stem cells expanded with cytokines were hypermethylated in a DNMT3A-dependent manner, suggesting that hypermethylation may be a response to, rather than a cause of, cellular proliferation. Our findings suggest that hypomethylation is an initiating phenotype in AMLs with DNMT3AR882, while DNMT3A-dependent CpG island hypermethylation is a consequence of AML progression.


Subject(s)
CpG Islands , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation , Leukemia, Myeloid, Acute/genetics , Bone Marrow Cells/pathology , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methyltransferase 3A , Epigenesis, Genetic , Humans , Leukemia, Myeloid, Acute/pathology , Mutation , Sequence Analysis, DNA
2.
Cell ; 150(2): 264-78, 2012 Jul 20.
Article in English | MEDLINE | ID: mdl-22817890

ABSTRACT

Most mutations in cancer genomes are thought to be acquired after the initiating event, which may cause genomic instability and drive clonal evolution. However, for acute myeloid leukemia (AML), normal karyotypes are common, and genomic instability is unusual. To better understand clonal evolution in AML, we sequenced the genomes of M3-AML samples with a known initiating event (PML-RARA) versus the genomes of normal karyotype M1-AML samples and the exomes of hematopoietic stem/progenitor cells (HSPCs) from healthy people. Collectively, the data suggest that most of the mutations found in AML genomes are actually random events that occurred in HSPCs before they acquired the initiating mutation; the mutational history of that cell is "captured" as the clone expands. In many cases, only one or two additional, cooperating mutations are needed to generate the malignant founding clone. Cells from the founding clone can acquire additional cooperating mutations, yielding subclones that can contribute to disease progression and/or relapse.


Subject(s)
Clonal Evolution , Leukemia, Myeloid, Acute/genetics , Mutation , Adult , Aged , DNA Mutational Analysis , Disease Progression , Female , Genome-Wide Association Study , Hematopoietic Stem Cells/metabolism , Humans , Leukemia, Myeloid, Acute/physiopathology , Male , Middle Aged , Oncogene Proteins, Fusion/genetics , Recurrence , Skin/metabolism , Young Adult
3.
Blood ; 141(6): 592-608, 2023 02 09.
Article in English | MEDLINE | ID: mdl-36347014

ABSTRACT

Hematopoietic stem cells (HSCs) balance self-renewal and differentiation to maintain hematopoietic fitness throughout life. In steady-state conditions, HSC exhaustion is prevented by the maintenance of most HSCs in a quiescent state, with cells entering the cell cycle only occasionally. HSC quiescence is regulated by retinoid and fatty-acid ligands of transcriptional factors of the nuclear retinoid X receptor (RXR) family. Herein, we show that dual deficiency for hematopoietic RXRα and RXRß induces HSC exhaustion, myeloid cell/megakaryocyte differentiation, and myeloproliferative-like disease. RXRα and RXRß maintain HSC quiescence, survival, and chromatin compaction; moreover, transcriptome changes in RXRα;RXRß-deficient HSCs include premature acquisition of an aging-like HSC signature, MYC pathway upregulation, and RNA intron retention. Fitness loss and associated RNA transcriptome and splicing alterations in RXRα;RXRß-deficient HSCs are prevented by Myc haploinsufficiency. Our study reveals the critical importance of RXRs for the maintenance of HSC fitness and their protection from premature aging.


Subject(s)
Hematopoietic Stem Cells , Signal Transduction , Retinoid X Receptors , Hematopoietic Stem Cells/metabolism , Cell Differentiation/genetics , Homeostasis
5.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Article in English | MEDLINE | ID: mdl-34845035

ABSTRACT

Acute myeloid leukemia (AML) patients rarely have long first remissions (LFRs; >5 y) after standard-of-care chemotherapy, unless classified as favorable risk at presentation. Identification of the mechanisms responsible for long vs. more typical, standard remissions may help to define prognostic determinants for chemotherapy responses. Using exome sequencing, RNA-sequencing, and functional immunologic studies, we characterized 28 normal karyotype (NK)-AML patients with >5 y first remissions after chemotherapy (LFRs) and compared them to a well-matched group of 31 NK-AML patients who relapsed within 2 y (standard first remissions [SFRs]). Our combined analyses indicated that genetic-risk profiling at presentation (as defined by European LeukemiaNet [ELN] 2017 criteria) was not sufficient to explain the outcomes of many SFR cases. Single-cell RNA-sequencing studies of 15 AML samples showed that SFR AML cells differentially expressed many genes associated with immune suppression. The bone marrow of SFR cases had significantly fewer CD4+ Th1 cells; these T cells expressed an exhaustion signature and were resistant to activation by T cell receptor stimulation in the presence of autologous AML cells. T cell activation could be restored by removing the AML cells or blocking the inhibitory major histocompatibility complex class II receptor, LAG3. Most LFR cases did not display these features, suggesting that their AML cells were not as immunosuppressive. These findings were confirmed and extended in an independent set of 50 AML cases representing all ELN 2017 risk groups. AML cell-mediated suppression of CD4+ T cell activation at presentation is strongly associated with unfavorable outcomes in AML patients treated with standard chemotherapy.


Subject(s)
Immune Tolerance/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/immunology , Adult , CD4-Positive T-Lymphocytes/immunology , Female , Humans , Immune Tolerance/immunology , Karyotype , Leukemia, Myeloid, Acute/therapy , Male , Middle Aged , Prognosis , Recurrence , Remission Induction , Risk Factors , Sequence Analysis, RNA/methods , Th1 Cells/immunology , Transcriptome/genetics , Treatment Outcome
6.
J Biol Chem ; 297(5): 101240, 2021 11.
Article in English | MEDLINE | ID: mdl-34571009

ABSTRACT

The orphan nuclear receptor Nur77 is an immediate-early response gene that based on tissue and cell context is implicated in a plethora of cellular processes, including proliferation, differentiation, apoptosis, metabolism, and inflammation. Nur77 has a ligand-binding pocket that is obstructed by hydrophobic side groups. Naturally occurring, cell-endogenous ligands have not been identified, and Nur77 transcriptional activity is thought to be regulated through posttranslational modification and modulation of protein levels. To determine whether Nur77 is transcriptionally active in hematopoietic cells in vivo, we used an upstream activating sequence (UAS)-GFP transgenic reporter. We found that Nur77 is transcriptionally inactive in vivo in hematopoietic cells under basal conditions, but that activation occurs following cytokine exposure by G-CSF or IL-3. We also identified a series of serine residues required for cytokine-dependent transactivation of Nur77. Moreover, a kinase inhibitor library screen and proximity labeling-based mass spectrometry identified overlapping kinase pathways that physically interacted with Nur77 and whose inhibition abrogated cytokine-induced activation of Nur77. We determined that transcriptional activation of Nur77 by G-CSF or IL-3 requires functional JAK and mTor signaling since their inhibition leads to Nur77 transcriptional inactivation. Thus, intracellular cytokine signaling networks appear to regulate Nur77 transcriptional activity in mouse hematopoietic cells.


Subject(s)
Granulocyte Colony-Stimulating Factor/pharmacology , Hematopoietic Stem Cells/metabolism , Interleukin-3/pharmacology , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Signal Transduction/drug effects , Transcriptional Activation/drug effects , Animals , Cell Line , Humans , Janus Kinases/genetics , Janus Kinases/metabolism , Mice , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Transcriptional Activation/genetics
7.
Haematologica ; 107(2): 417-426, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34134472

ABSTRACT

RARA and RXRA contribute to myeloid maturation in both mice and humans, and deletion of Rxra and Rxrb augments leukemic growth in mice. While defining the domains of RXRA that are required for anti-leukemic effects in murine KMT2A-MLLT3 leukemia cells, we unexpectedly identified RXRA DT448/9PP as a constitutively active variant capable of inducing maturation and loss of their proliferative phenotype. RXRA DT448/9PP was associated with ligand-independent activity in reporter assays, with enhanced co-activator interactions, reduced engraftment in vivo, and activation of myeloid maturation transcriptional signatures that overlapped with those of cells treated with the potent RXRA agonist bexarotene, suggestive of constitutive activity that leads to leukemic maturation. Phenotypes of RXRA DT448/9PP appear to differ from those of two other RXRA mutations with forms of constitutive activity (F318A and S427F), in that DT448/9PP activity was resistant to mutations at critical ligand-interacting amino acids (R316A/L326A) and was resistant to pharmacological antagonists, suggesting it may be ligand-independent. These data provide further evidence that activated retinoid X receptors can regulate myeloid maturation and provide a novel constitutively active variant that may be germane for broader studies of retinoid X receptors in other settings.


Subject(s)
Leukemia, Myeloid, Acute , Leukemia, Promyelocytic, Acute , Retinoid X Receptor alpha , Animals , DNA-Binding Proteins , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Promyelocytic, Acute/drug therapy , Mice , Retinoid X Receptor alpha/genetics , Retinoid X Receptor alpha/metabolism
8.
Int J Mol Sci ; 23(24)2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36555852

ABSTRACT

Bexarotene is an FDA-approved drug for the treatment of cutaneous T-cell lymphoma (CTCL); however, its use provokes or disrupts other retinoid-X-receptor (RXR)-dependent nuclear receptor pathways and thereby incites side effects including hypothyroidism and raised triglycerides. Two novel bexarotene analogs, as well as three unique CD3254 analogs and thirteen novel NEt-TMN analogs, were synthesized and characterized for their ability to induce RXR agonism in comparison to bexarotene (1). Several analogs in all three groups possessed an isochroman ring substitution for the bexarotene aliphatic group. Analogs were modeled for RXR binding affinity, and EC50 as well as IC50 values were established for all analogs in a KMT2A-MLLT3 leukemia cell line. All analogs were assessed for liver-X-receptor (LXR) activity in an LXRE system to gauge the potential for the compounds to provoke raised triglycerides by increasing LXR activity, as well as to drive LXRE-mediated transcription of brain ApoE expression as a marker for potential therapeutic use in neurodegenerative disorders. Preliminary results suggest these compounds display a broad spectrum of off-target activities. However, many of the novel compounds were observed to be more potent than 1. While some RXR agonists cross-signal the retinoic acid receptor (RAR), many of the rexinoids in this work displayed reduced RAR activity. The isochroman group did not appear to substantially reduce RXR activity on its own. The results of this study reveal that modifying potent, selective rexinoids like bexarotene, CD3254, and NEt-TMN can provide rexinoids with increased RXR selectivity, decreased potential for cross-signaling, and improved anti-proliferative characteristics in leukemia models compared to 1.


Subject(s)
Leukemia , Lymphoma, T-Cell, Cutaneous , Skin Neoplasms , Humans , Bexarotene/pharmacology , Retinoid X Receptors/metabolism , Tetrahydronaphthalenes/pharmacology , Liver X Receptors , Retinoids/pharmacology , Triglycerides
9.
N Engl J Med ; 379(24): 2330-2341, 2018 12 13.
Article in English | MEDLINE | ID: mdl-30380364

ABSTRACT

BACKGROUND: As consolidation therapy for acute myeloid leukemia (AML), allogeneic hematopoietic stem-cell transplantation provides a benefit in part by means of an immune-mediated graft-versus-leukemia effect. We hypothesized that the immune-mediated selective pressure imposed by allogeneic transplantation may cause distinct patterns of tumor evolution in relapsed disease. METHODS: We performed enhanced exome sequencing on paired samples obtained at initial presentation with AML and at relapse from 15 patients who had a relapse after hematopoietic stem-cell transplantation (with transplants from an HLA-matched sibling, HLA-matched unrelated donor, or HLA-mismatched unrelated donor) and from 20 patients who had a relapse after chemotherapy. We performed RNA sequencing and flow cytometry on a subgroup of these samples and on additional samples for validation. RESULTS: On exome sequencing, the spectrum of gained and lost mutations observed with relapse after transplantation was similar to the spectrum observed with relapse after chemotherapy. Specifically, relapse after transplantation was not associated with the acquisition of previously unknown AML-specific mutations or structural variations in immune-related genes. In contrast, RNA sequencing of samples obtained at relapse after transplantation revealed dysregulation of pathways involved in adaptive and innate immunity, including down-regulation of major histocompatibility complex (MHC) class II genes ( HLA-DPA1, HLA-DPB1, HLA-DQB1, and HLA-DRB1) to levels that were 3 to 12 times lower than the levels seen in paired samples obtained at presentation. Flow cytometry and immunohistochemical analysis confirmed decreased expression of MHC class II at relapse in 17 of 34 patients who had a relapse after transplantation. Evidence suggested that interferon-γ treatment could rapidly reverse this phenotype in AML blasts in vitro. CONCLUSIONS: AML relapse after transplantation was not associated with the acquisition of relapse-specific mutations in immune-related genes. However, it was associated with dysregulation of pathways that may influence immune function, including down-regulation of MHC class II genes, which are involved in antigen presentation. These epigenetic changes may be reversible with appropriate therapy. (Funded by the National Cancer Institute and others.).


Subject(s)
Genes, MHC Class II/physiology , Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/immunology , Mutation , Adolescent , Adult , Aged , Down-Regulation , Epigenesis, Genetic , Female , Flow Cytometry , Humans , Immunity/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Male , Middle Aged , RNA, Neoplasm/analysis , Recurrence , Sequence Analysis, RNA , T-Lymphocytes/immunology , Transplantation, Homologous , Exome Sequencing
10.
N Engl J Med ; 379(11): 1028-1041, 2018 Sep 13.
Article in English | MEDLINE | ID: mdl-30207916

ABSTRACT

BACKGROUND: Allogeneic hematopoietic stem-cell transplantation is the only curative treatment for patients with myelodysplastic syndrome (MDS). The molecular predictors of disease progression after transplantation are unclear. METHODS: We sequenced bone marrow and skin samples from 90 adults with MDS who underwent allogeneic hematopoietic stem-cell transplantation after a myeloablative or reduced-intensity conditioning regimen. We detected mutations before transplantation using enhanced exome sequencing, and we evaluated mutation clearance by using error-corrected sequencing to genotype mutations in bone marrow samples obtained 30 days after transplantation. In this exploratory study, we evaluated the association of a mutation detected after transplantation with disease progression and survival. RESULTS: Sequencing identified at least one validated somatic mutation before transplantation in 86 of 90 patients (96%); 32 of these patients (37%) had at least one mutation with a maximum variant allele frequency of at least 0.5% (equivalent to 1 heterozygous mutant cell in 100 cells) 30 days after transplantation. Patients with disease progression had mutations with a higher maximum variant allele frequency at 30 days than those who did not (median maximum variant allele frequency, 0.9% vs. 0%; P<0.001). The presence of at least one mutation with a variant allele frequency of at least 0.5% at day 30 was associated with a higher risk of progression (53.1% vs. 13.0%; conditioning regimen-adjusted hazard ratio, 3.86; 95% confidence interval [CI], 1.96 to 7.62; P<0.001) and a lower 1-year rate of progression-free survival than the absence of such a mutation (31.3% vs. 59.3%; conditioning regimen-adjusted hazard ratio for progression or death, 2.22; 95% CI, 1.32 to 3.73; P=0.005). The rate of progression-free survival was lower among patients who had received a reduced-intensity conditioning regimen and had at least one persistent mutation with a variant allele frequency of at least 0.5% at day 30 than among patients with other combinations of conditioning regimen and mutation status (P≤0.001). Multivariate analysis confirmed that patients who had a mutation with a variant allele frequency of at least 0.5% detected at day 30 had a higher risk of progression (hazard ratio, 4.48; 95% CI, 2.21 to 9.08; P<0.001) and a lower 1-year rate of progression-free survival than those who did not (hazard ratio for progression or death, 2.39; 95% CI, 1.40 to 4.09; P=0.002). CONCLUSIONS: The risk of disease progression was higher among patients with MDS in whom persistent disease-associated mutations were detected in the bone marrow 30 days after transplantation than among those in whom these mutations were not detected. (Funded by the Leukemia and Lymphoma Society and others.).


Subject(s)
Hematopoietic Stem Cell Transplantation , Mutation , Myelodysplastic Syndromes/genetics , Adult , Bone Marrow Examination , DNA Mutational Analysis , Disease Progression , Disease-Free Survival , Humans , Leukemia, Myeloid, Acute/genetics , Middle Aged , Myelodysplastic Syndromes/mortality , Myelodysplastic Syndromes/therapy , Skin/pathology , Survival Analysis , Transplantation Conditioning , Transplantation, Homologous
11.
Haematologica ; 106(4): 1008-1021, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33241677

ABSTRACT

Retinoid therapy transformed response and survival outcomes in acute promyelocytic leukemia (APL), but has demonstrated only modest activity in non-APL forms of acute myeloid leukemia (AML). The presence of natural retinoids in vivo could influence the efficacy of pharmacologic agonists and antagonists. We found that natural RXRA ligands, but not RARA ligands, were present in murine MLL-AF9-derived myelomonocytic leukemias in vivo and that the concurrent presence of receptors and ligands acted as tumor suppressors. Pharmacologic retinoid responses could be optimized by concurrent targeting RXR ligands (e.g. bexarotene) and RARA ligands (e.g. all-trans retinoic acid, ATRA), which induced either leukemic maturation or apoptosis depending on cell culture conditions. Co-repressor release from the RARA:RXRA heterodimer occurred with RARA activation, but not RXRA activation, providing an explanation for the combination synergy. Combination synergy could be replicated in additional, but not all, AML cell lines and primary samples, and was associated with improved survival in vivo, although tolerability of bexarotene administration in mice remained an issue. These data provide insight into the basal presence of natural retinoids in leukemias in vivo and a potential strategy for clinical retinoid combination regimens in leukemias beyond acute promyelocytic leukemia.


Subject(s)
Leukemia, Promyelocytic, Acute , Retinoids , Animals , Cell Differentiation , Mice , Receptors, Retinoic Acid/genetics , Tretinoin/pharmacology
12.
Nature ; 518(7540): 552-555, 2015 Feb 26.
Article in English | MEDLINE | ID: mdl-25487151

ABSTRACT

Therapy-related acute myeloid leukaemia (t-AML) and therapy-related myelodysplastic syndrome (t-MDS) are well-recognized complications of cytotoxic chemotherapy and/or radiotherapy. There are several features that distinguish t-AML from de novo AML, including a higher incidence of TP53 mutations, abnormalities of chromosomes 5 or 7, complex cytogenetics and a reduced response to chemotherapy. However, it is not clear how prior exposure to cytotoxic therapy influences leukaemogenesis. In particular, the mechanism by which TP53 mutations are selectively enriched in t-AML/t-MDS is unknown. Here, by sequencing the genomes of 22 patients with t-AML, we show that the total number of somatic single-nucleotide variants and the percentage of chemotherapy-related transversions are similar in t-AML and de novo AML, indicating that previous chemotherapy does not induce genome-wide DNA damage. We identified four cases of t-AML/t-MDS in which the exact TP53 mutation found at diagnosis was also present at low frequencies (0.003-0.7%) in mobilized blood leukocytes or bone marrow 3-6 years before the development of t-AML/t-MDS, including two cases in which the relevant TP53 mutation was detected before any chemotherapy. Moreover, functional TP53 mutations were identified in small populations of peripheral blood cells of healthy chemotherapy-naive elderly individuals. Finally, in mouse bone marrow chimaeras containing both wild-type and Tp53(+/-) haematopoietic stem/progenitor cells (HSPCs), the Tp53(+/-) HSPCs preferentially expanded after exposure to chemotherapy. These data suggest that cytotoxic therapy does not directly induce TP53 mutations. Rather, they support a model in which rare HSPCs carrying age-related TP53 mutations are resistant to chemotherapy and expand preferentially after treatment. The early acquisition of TP53 mutations in the founding HSPC clone probably contributes to the frequent cytogenetic abnormalities and poor responses to chemotherapy that are typical of patients with t-AML/t-MDS.


Subject(s)
Cell Lineage/genetics , Genes, p53/genetics , Leukemia, Myeloid, Acute/chemically induced , Leukemia, Myeloid, Acute/genetics , Mutation/genetics , Alleles , Animals , Cell Lineage/drug effects , Cell Proliferation , Clone Cells , DNA Damage , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Ethylnitrosourea/pharmacology , Evolution, Molecular , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/pathology , Heterozygote , Humans , Leukemia, Myeloid, Acute/pathology , Mice , Models, Genetic , Mutation/drug effects
13.
Int J Mol Sci ; 22(22)2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34830251

ABSTRACT

Five novel analogs of 6-(ethyl)(4-isobutoxy-3-isopropylphenyl)amino)nicotinic acid-or NEt-4IB-in addition to seven novel analogs of 4-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)ethynyl]benzoic acid (bexarotene) were prepared and evaluated for selective retinoid-X-receptor (RXR) agonism alongside bexarotene (1), a FDA-approved drug for cutaneous T-cell lymphoma (CTCL). Bexarotene treatment elicits side-effects by provoking or disrupting other RXR-dependent pathways. Analogs were assessed by the modeling of binding to RXR and then evaluated in a human cell-based RXR-RXR mammalian-2-hybrid (M2H) system as well as a RXRE-controlled transcriptional system. The analogs were also tested in KMT2A-MLLT3 leukemia cells and the EC50 and IC50 values were determined for these compounds. Moreover, the analogs were assessed for activation of LXR in an LXRE system as drivers of ApoE expression and subsequent use as potential therapeutics in neurodegenerative disorders, and the results revealed that these compounds exerted a range of differential LXR-RXR activation and selectivity. Furthermore, several of the novel analogs in this study exhibited reduced RARE cross-signaling, implying RXR selectivity. These results demonstrate that modification of partial agonists such as NEt-4IB and potent rexinoids such as bexarotene can lead to compounds with improved RXR selectivity, decreased cross-signaling of other RXR-dependent nuclear receptors, increased LXRE-heterodimer selectivity, and enhanced anti-proliferative potential in leukemia cell lines compared to therapeutics such as 1.


Subject(s)
Antineoplastic Agents/pharmacology , Apolipoproteins E/genetics , Bexarotene/pharmacology , Leukocytes/drug effects , Nicotinic Acids/pharmacology , Retinoid X Receptor alpha/agonists , Animals , Antineoplastic Agents/chemical synthesis , Apolipoproteins E/metabolism , Bexarotene/analogs & derivatives , Bexarotene/chemical synthesis , Cell Line, Tumor , Dose-Response Relationship, Drug , Gene Expression , Humans , Leukocytes/metabolism , Leukocytes/pathology , Nicotinic Acids/chemical synthesis , Retinoid X Receptor alpha/genetics , Retinoid X Receptor alpha/metabolism , Structure-Activity Relationship
14.
N Engl J Med ; 375(21): 2023-2036, 2016 11 24.
Article in English | MEDLINE | ID: mdl-27959731

ABSTRACT

BACKGROUND: The molecular determinants of clinical responses to decitabine therapy in patients with acute myeloid leukemia (AML) or myelodysplastic syndromes (MDS) are unclear. METHODS: We enrolled 84 adult patients with AML or MDS in a single-institution trial of decitabine to identify somatic mutations and their relationships to clinical responses. Decitabine was administered at a dose of 20 mg per square meter of body-surface area per day for 10 consecutive days in monthly cycles. We performed enhanced exome or gene-panel sequencing in 67 of these patients and serial sequencing at multiple time points to evaluate patterns of mutation clearance in 54 patients. An extension cohort included 32 additional patients who received decitabine in different protocols. RESULTS: Of the 116 patients, 53 (46%) had bone marrow blast clearance (<5% blasts). Response rates were higher among patients with an unfavorable-risk cytogenetic profile than among patients with an intermediate-risk or favorable-risk cytogenetic profile (29 of 43 patients [67%] vs. 24 of 71 patients [34%], P<0.001) and among patients with TP53 mutations than among patients with wild-type TP53 (21 of 21 [100%] vs. 32 of 78 [41%], P<0.001). Previous studies have consistently shown that patients with an unfavorable-risk cytogenetic profile and TP53 mutations who receive conventional chemotherapy have poor outcomes. However, in this study of 10-day courses of decitabine, neither of these risk factors was associated with a lower rate of overall survival than the rate of survival among study patients with intermediate-risk cytogenetic profiles. CONCLUSIONS: Patients with AML and MDS who had cytogenetic abnormalities associated with unfavorable risk, TP53 mutations, or both had favorable clinical responses and robust (but incomplete) mutation clearance after receiving serial 10-day courses of decitabine. Although these responses were not durable, they resulted in rates of overall survival that were similar to those among patients with AML who had an intermediate-risk cytogenetic profile and who also received serial 10-day courses of decitabine. (Funded by the National Cancer Institute and others; ClinicalTrials.gov number, NCT01687400 .).


Subject(s)
Antimetabolites, Antineoplastic/administration & dosage , Azacitidine/analogs & derivatives , Bone Marrow/pathology , Leukemia, Myeloid, Acute/drug therapy , Mutation , Myelodysplastic Syndromes/drug therapy , Tumor Suppressor Protein p53/genetics , 5-Methylcytosine/analysis , Adult , Aged , Aged, 80 and over , Antimetabolites, Antineoplastic/adverse effects , Azacitidine/administration & dosage , Azacitidine/adverse effects , Biomarkers, Tumor/analysis , Bone Marrow/chemistry , Decitabine , Exome , Female , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/mortality , Male , Middle Aged , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/mortality , Prospective Studies , Risk Factors , Survival Rate
16.
Nature ; 502(7471): 333-339, 2013 Oct 17.
Article in English | MEDLINE | ID: mdl-24132290

ABSTRACT

The Cancer Genome Atlas (TCGA) has used the latest sequencing and analysis methods to identify somatic variants across thousands of tumours. Here we present data and analytical results for point mutations and small insertions/deletions from 3,281 tumours across 12 tumour types as part of the TCGA Pan-Cancer effort. We illustrate the distributions of mutation frequencies, types and contexts across tumour types, and establish their links to tissues of origin, environmental/carcinogen influences, and DNA repair defects. Using the integrated data sets, we identified 127 significantly mutated genes from well-known (for example, mitogen-activated protein kinase, phosphatidylinositol-3-OH kinase, Wnt/ß-catenin and receptor tyrosine kinase signalling pathways, and cell cycle control) and emerging (for example, histone, histone modification, splicing, metabolism and proteolysis) cellular processes in cancer. The average number of mutations in these significantly mutated genes varies across tumour types; most tumours have two to six, indicating that the number of driver mutations required during oncogenesis is relatively small. Mutations in transcriptional factors/regulators show tissue specificity, whereas histone modifiers are often mutated across several cancer types. Clinical association analysis identifies genes having a significant effect on survival, and investigations of mutations with respect to clonal/subclonal architecture delineate their temporal orders during tumorigenesis. Taken together, these results lay the groundwork for developing new diagnostics and individualizing cancer treatment.


Subject(s)
Carcinogenesis/genetics , Mutation/genetics , Neoplasms/classification , Neoplasms/genetics , Cell Cycle/genetics , Clone Cells/metabolism , Clone Cells/pathology , Cohort Studies , DNA Repair/genetics , Humans , INDEL Mutation/genetics , Mitogen-Activated Protein Kinases/genetics , Models, Genetic , Neoplasms/metabolism , Neoplasms/pathology , Oncogenes/genetics , Phosphatidylinositol 3-Kinases/genetics , Point Mutation/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Survival Analysis , Time Factors
17.
Blood ; 127(7): 893-7, 2016 Feb 18.
Article in English | MEDLINE | ID: mdl-26631115

ABSTRACT

There is interest in using leukemia-gene panels and next-generation sequencing to assess acute myelogenous leukemia (AML) response to induction chemotherapy. Studies have shown that patients with AML in morphologic remission may continue to have clonal hematopoiesis with populations closely related to the founding AML clone and that this confers an increased risk of relapse. However, it remains unknown how induction chemotherapy influences the clonal evolution of a patient's nonleukemic hematopoietic population. Here, we report that 5 of 15 patients with genetic clearance of their founding AML clone after induction chemotherapy had a concomitant expansion of a hematopoietic population unrelated to the initial AML. These populations frequently harbored somatic mutations in genes recurrently mutated in AML or myelodysplastic syndromes and were detectable at very low frequencies at the time of AML diagnosis. These results suggest that nonleukemic hematopoietic stem and progenitor cells, harboring specific aging-acquired mutations, may have a competitive fitness advantage after induction chemotherapy, expand, and persist long after the completion of chemotherapy. Although the clinical importance of these "rising" clones remains to be determined, it will be important to distinguish them from leukemia-related populations when assessing for molecular responses to induction chemotherapy.


Subject(s)
Aging , Hematopoietic Stem Cells , Leukemia, Myeloid, Acute , Mutation , Aging/genetics , Aging/metabolism , Aging/pathology , Cells, Cultured , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/pathology , High-Throughput Nucleotide Sequencing , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Recurrence
18.
Nature ; 481(7382): 506-10, 2012 Jan 11.
Article in English | MEDLINE | ID: mdl-22237025

ABSTRACT

Most patients with acute myeloid leukaemia (AML) die from progressive disease after relapse, which is associated with clonal evolution at the cytogenetic level. To determine the mutational spectrum associated with relapse, we sequenced the primary tumour and relapse genomes from eight AML patients, and validated hundreds of somatic mutations using deep sequencing; this allowed us to define clonality and clonal evolution patterns precisely at relapse. In addition to discovering novel, recurrently mutated genes (for example, WAC, SMC3, DIS3, DDX41 and DAXX) in AML, we also found two major clonal evolution patterns during AML relapse: (1) the founding clone in the primary tumour gained mutations and evolved into the relapse clone, or (2) a subclone of the founding clone survived initial therapy, gained additional mutations and expanded at relapse. In all cases, chemotherapy failed to eradicate the founding clone. The comparison of relapse-specific versus primary tumour mutations in all eight cases revealed an increase in transversions, probably due to DNA damage caused by cytotoxic chemotherapy. These data demonstrate that AML relapse is associated with the addition of new mutations and clonal evolution, which is shaped, in part, by the chemotherapy that the patients receive to establish and maintain remissions.


Subject(s)
Clonal Evolution/genetics , Genome, Human/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic use , Clone Cells/drug effects , Clone Cells/metabolism , Clone Cells/pathology , DNA Damage/drug effects , DNA Mutational Analysis , Genes, Neoplasm/genetics , Genome, Human/drug effects , High-Throughput Nucleotide Sequencing , Humans , Leukemia, Myeloid, Acute/drug therapy , Mutagenesis/drug effects , Mutagenesis/genetics , Recurrence , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL