Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Acta Neuropathol ; 146(2): 191-210, 2023 08.
Article in English | MEDLINE | ID: mdl-37341831

ABSTRACT

Insoluble fibrillar tau, the primary constituent of neurofibrillary tangles, has traditionally been thought to be the biologically active, toxic form of tau mediating neurodegeneration in Alzheimer's disease. More recent studies have implicated soluble oligomeric tau species, referred to as high molecular weight (HMW), due to their properties on size-exclusion chromatography, in tau propagation across neural systems. These two forms of tau have never been directly compared. We prepared sarkosyl-insoluble and HMW tau from the frontal cortex of Alzheimer patients and compared their properties using a variety of biophysical and bioactivity assays. Sarkosyl-insoluble fibrillar tau comprises abundant paired-helical filaments (PHF) as quantified by electron microscopy (EM) and is more resistant to proteinase K, compared to HMW tau, which is mostly in an oligomeric form. Sarkosyl-insoluble and HMW tau are nearly equivalent in potency in HEK cell bioactivity assay for seeding aggregates, and their injection reveals similar local uptake into hippocampal neurons in PS19 Tau transgenic mice. However, the HMW preparation appears to be far more potent in inducing a glial response including Clec7a-positive rod microglia in the absence of neurodegeneration or synapse loss and promotes more rapid propagation of misfolded tau to distal, anatomically connected regions, such as entorhinal and perirhinal cortices. These data suggest that soluble HMW tau has similar properties to fibrillar sarkosyl-insoluble tau with regard to tau seeding potential, but may be equal or even more bioactive with respect to propagation across neural systems and activation of glial responses, both relevant to tau-related Alzheimer phenotypes.


Subject(s)
Alzheimer Disease , Mice , Animals , tau Proteins/metabolism , Neurofibrillary Tangles/metabolism , Mice, Transgenic , Neurons/metabolism , Brain/metabolism
2.
Proc Natl Acad Sci U S A ; 117(12): 6844-6854, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32144141

ABSTRACT

Chronic inflammation during Alzheimer's disease (AD) is most often attributed to sustained microglial activation in response to amyloid-ß (Aß) plaque deposits and cell death. However, cytokine release and microgliosis are consistently observed in AD transgenic animal models devoid of such pathologies, bringing into question the underlying processes that may be at play during the earliest AD-related immune response. We propose that this plaque-independent inflammatory reaction originates from neurons burdened with increasing levels of soluble and oligomeric Aß, which are known to be the most toxic amyloid species within the brain. Laser microdissected neurons extracted from preplaque amyloid precursor protein (APP) transgenic rats were found to produce a variety of potent immune factors, both at the transcript and protein levels. Neuron-derived cytokines correlated with the extent of microglial activation and mobilization, even in the absence of extracellular plaques and cell death. Importantly, we identified an inflammatory profile unique to Aß-burdened neurons, since neighboring glial cells did not express similar molecules. Moreover, we demonstrate within disease-vulnerable regions of the human brain that a neuron-specific inflammatory response may precede insoluble Aß plaque and tau tangle formation. Thus, we reveal the Aß-burdened neuron as a primary proinflammatory agent, implicating the intraneuronal accumulation of Aß as a significant immunological component in the AD pathogenesis.


Subject(s)
Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Brain/pathology , Inflammation/pathology , Neurons/immunology , Plaque, Amyloid/pathology , Alzheimer Disease/immunology , Alzheimer Disease/metabolism , Amyloidosis , Animals , Brain/immunology , Brain/metabolism , Disease Models, Animal , Female , Humans , Inflammation/immunology , Inflammation/metabolism , Male , Neurons/metabolism , Neurons/pathology , Plaque, Amyloid/immunology , Plaque, Amyloid/metabolism , Rats , Rats, Transgenic
3.
Neurobiol Dis ; 127: 323-338, 2019 07.
Article in English | MEDLINE | ID: mdl-30905766

ABSTRACT

The assembly of tau protein into abnormal filaments and brain cell degeneration are characteristic of a number of human neurodegenerative diseases, including Alzheimer's disease and frontotemporal dementia and parkinsonism linked to chromosome 17. Several murine models have been generated to better understand the mechanisms contributing to tau assembly and neurodegeneration. Taking advantage of the more elaborate central nervous system and higher cognitive abilities of the rat, we generated a model expressing the longest human tau isoform (2N4R) with the P301S mutation. This transgenic rat line, R962-hTau, exhibits the main features of human tauopathies, such as: age-dependent increase in inclusions comprised of aggregated-tau, neuronal loss, global neurodegeneration as reflected by brain atrophy and ventricular dilation, alterations in astrocytic and microglial morphology, and myelin loss. In addition, substantial deficits across multiple memory and learning paradigms, including novel object recognition, fear conditioning and Morris water maze tasks, were observed at the time of advanced tauopathy. These results support the concept that progressive tauopathy correlates with brain atrophy and cognitive impairment.


Subject(s)
Brain/pathology , Cognitive Dysfunction/metabolism , Tauopathies/metabolism , tau Proteins/metabolism , Animals , Brain/metabolism , Cognitive Dysfunction/genetics , Cognitive Dysfunction/pathology , Disease Models, Animal , Inclusion Bodies/metabolism , Inclusion Bodies/pathology , Rats , Rats, Transgenic , Tauopathies/genetics , Tauopathies/pathology , tau Proteins/genetics
4.
Acta Neuropathol ; 136(6): 901-917, 2018 12.
Article in English | MEDLINE | ID: mdl-30362029

ABSTRACT

Growing evidence gathered from transgenic animal models of Alzheimer's disease (AD) indicates that the intraneuronal accumulation of amyloid-ß (Aß) peptides is an early event in the AD pathogenesis, producing cognitive deficits before the deposition of insoluble plaques. Levels of soluble Aß are also a strong indicator of synaptic deficits and concurrent AD neuropathologies in post-mortem AD brain; however, it remains poorly understood how this soluble amyloid pool builds within the brain in the decades leading up to diagnosis, when a patient is likely most amenable to early therapeutic interventions. Indeed, characterizing early intracellular Aß accumulation in humans has been hampered by the lack of Aß-specific antibodies, variability in the quality of available human brain tissue and the limitations of conventional microscopy. We therefore sought to investigate the development of the intraneuronal Aß pathology using extremely high-quality post-mortem brain material obtained from a cohort of non-demented subjects with short post-mortem intervals and processed by perfusion-fixation. Using well-characterized monoclonal antibodies, we demonstrate that the age-dependent intraneuronal accumulation of soluble Aß is pervasive throughout the entorhinal cortex and hippocampus, and that this phase of the amyloid pathology becomes established within AD-vulnerable regions before the deposition of Aß plaques and the formation of tau neurofibrillary tangles. We also show for the first time in post-mortem human brain that Aß oligomers do in fact accumulate intraneuronally, before the formation of extracellular plaques. Finally, we validated the origin of the Aß-immunopositive pool by resolving Aß- and APP/CTF-immunoreactive sites using super resolution structured illumination microscopy. Together, these findings indicate that the lifelong accrual of intraneuronal Aß may be a potential trigger for downstream AD-related pathogenic events in early disease stages.


Subject(s)
Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Entorhinal Cortex/metabolism , Entorhinal Cortex/pathology , Neuropil/metabolism , tau Proteins/metabolism , Age Factors , Aged , Aged, 80 and over , Amyloid beta-Protein Precursor/metabolism , Animals , Female , Humans , Male , Middle Aged , Neurons/metabolism , Neurons/pathology , Neuropil/pathology , Subcellular Fractions/metabolism , Subcellular Fractions/pathology
5.
Pharmacol Res ; 130: 331-365, 2018 04.
Article in English | MEDLINE | ID: mdl-29458203

ABSTRACT

The complex multifactorial nature of polygenic Alzheimer's disease (AD) presents significant challenges for drug development. AD pathophysiology is progressing in a non-linear dynamic fashion across multiple systems levels - from molecules to organ systems - and through adaptation, to compensation, and decompensation to systems failure. Adaptation and compensation maintain homeostasis: a dynamic equilibrium resulting from the dynamic non-linear interaction between genome, epigenome, and environment. An individual vulnerability to stressors exists on the basis of individual triggers, drivers, and thresholds accounting for the initiation and failure of adaptive and compensatory responses. Consequently, the distinct pattern of AD pathophysiology in space and time must be investigated on the basis of the individual biological makeup. This requires the implementation of systems biology and neurophysiology to facilitate Precision Medicine (PM) and Precision Pharmacology (PP). The regulation of several processes at multiple levels of complexity from gene expression to cellular cycle to tissue repair and system-wide network activation has different time delays (temporal scale) according to the affected systems (spatial scale). The initial failure might originate and occur at every level potentially affecting the whole dynamic interrelated systems within an organism. Unraveling the spatial and temporal dynamics of non-linear pathophysiological mechanisms across the continuum of hierarchical self-organized systems levels and from systems homeostasis to systems failure is key to understand AD. Measuring and, possibly, controlling space- and time-scaled adaptive and compensatory responses occurring during AD will represent a crucial step to achieve the capacity to substantially modify the disease course and progression at the best suitable timepoints, thus counteracting disrupting critical pathophysiological inputs. This approach will provide the conceptual basis for effective disease-modifying pathway-based targeted therapies. PP is based on an exploratory and integrative strategy to complex diseases such as brain proteinopathies including AD, aimed at identifying simultaneous aberrant molecular pathways and predicting their temporal impact on the systems levels. The depiction of pathway-based molecular signatures of complex diseases contributes to the accurate and mechanistic stratification of distinct subcohorts of individuals at the earliest compensatory stage when treatment intervention may reverse, stop, or delay the disease. In addition, individualized drug selection may optimize treatment safety by decreasing risk and amplitude of side effects and adverse reactions. From a methodological point of view, comprehensive "omics"-based biomarkers will guide the exploration of spatio-temporal systems-wide morpho-functional shifts along the continuum of AD pathophysiology, from adaptation to irreversible failure. The Alzheimer Precision Medicine Initiative (APMI) and the APMI cohort program (APMI-CP) have commenced to facilitate a paradigm shift towards effective drug discovery and development in AD.


Subject(s)
Alzheimer Disease/drug therapy , Precision Medicine , Alzheimer Disease/metabolism , Amyloid beta-Peptides/antagonists & inhibitors , Animals , Biomarkers/blood , Drug Discovery , Humans , tau Proteins/antagonists & inhibitors
6.
Cereb Cortex ; 27(2): 1501-1511, 2017 02 01.
Article in English | MEDLINE | ID: mdl-26759481

ABSTRACT

In Alzheimer disease (AD), the accumulation of amyloid beta (Aß) begins decades before cognitive symptoms and progresses from intraneuronal material to extracellular plaques. To date, however, the precise mechanism by which the early buildup of Aß peptides leads to cognitive dysfunction remains unknown. Here, we investigate the impact of the early Aß accumulation on temporal and frontal lobe dysfunction. We compared the performance of McGill-R-Thy1-APP transgenic AD rats with wild-type littermate controls on a visual discrimination task using a touchscreen operant platform. Subsequently, we conducted studies to establish the biochemical and molecular basis for the behavioral alterations. It was found that the presence of intraneuronal Aß caused a severe associative learning deficit in the AD rats. This coincided with reduced nuclear translocation and genomic occupancy of the CREB co-activator, CRTC1, and decreased production of synaptic plasticity-associated transcripts Arc, c-fos, Egr1, and Bdnf. Thus, blockade of CRTC1-dependent gene expression in the early, preplaque phase of AD-like pathology provides a molecular basis for the cognitive deficits that figure so prominently in early AD.


Subject(s)
Alzheimer Disease/genetics , Amyloid beta-Peptides/metabolism , Cognition/physiology , Hippocampus/metabolism , Neuronal Plasticity/genetics , Transcription Factors/genetics , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/genetics , Animals , Disease Models, Animal , Female , Interneurons/metabolism , Male , Neurons/metabolism , Rats, Transgenic
8.
iScience ; 26(2): 105983, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36756365

ABSTRACT

The speed and scope of cognitive deterioration in Alzheimer's disease is highly associated with the advancement of tau neurofibrillary lesions across brain networks. We tested whether the rate of tau propagation is a heritable disease trait in a large, well-characterized cohort of genetically divergent mouse strains. Using an AAV-based model system, P301L-mutant human tau (hTau) was introduced into the entorhinal cortex of mice derived from 18 distinct lines. The extent of tau propagation was measured by distinguishing hTau-producing cells from neurons that were recipients of tau transfer. Heritability calculation revealed that 43% of the variability in tau spread was due to genetic variants segregating across background strains. Strain differences in glial markers were also observed, but did not correlate with tau propagation. Identifying unique genetic variants that influence the progression of pathological tau may uncover novel molecular targets to prevent or slow the pace of tau spread and cognitive decline.

9.
bioRxiv ; 2023 May 26.
Article in English | MEDLINE | ID: mdl-37034629

ABSTRACT

Insoluble fibrillar tau, the primary constituent of neurofibrillary tangles, has traditionally been thought to be the biologically active, toxic form of tau mediating neurodegeneration in Alzheimer's disease. More recent studies have implicated soluble oligomeric tau species, referred to as high molecular weight (HMW) due to its properties on size exclusion chromatography, in tau propagation across neural systems. These two forms of tau have never been directly compared. We prepared sarkosyl insoluble and HMW tau from the frontal cortex of Alzheimer patients and compared their properties using a variety of biophysical and bioactivity assays. Sarkosyl insoluble fibrillar tau is comprised of abundant paired helical filaments (PHF) as quantified by electron microscopy (EM), and is more resistant to proteinase K, compared to HMW tau which is mostly in an oligomeric form. Sarkosyl insoluble and HMW tau are nearly equivalent in potency in a HEK cell bioactivity assay for seeding aggregates and their injection reveals similar local uptake into hippocampal neurons in PS19 Tau transgenic mice. However, the HMW preparation appears to be far more potent in inducing a glial response including Clec7a-positive rod-microglia in the absence of neurodegeneration or synapse loss and promotes more rapid propagation of misfolded tau to distal, anatomically connected regions, such as entorhinal and perirhinal cortices. These data suggest that soluble HMW tau has similar properties to fibrillar sarkosyl insoluble tau with regard to tau seeding potential but may be equal or even more bioactive with respect to propagation across neural systems and activation of glial responses, both relevant tau-related Alzheimer phenotypes.

10.
Transl Psychiatry ; 13(1): 259, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37443311

ABSTRACT

The Methyl-CpG-Binding Domain Protein family has been implicated in neurodevelopmental disorders. The Methyl-CpG-binding domain 2 (Mbd2) binds methylated DNA and was shown to play an important role in cancer and immunity. Some evidence linked this protein to neurodevelopment. However, its exact role in neurodevelopment and brain function is mostly unknown. Here we show that Mbd2-deficiency in mice (Mbd2-/-) results in deficits in cognitive, social and emotional functions. Mbd2 binds regulatory DNA regions of neuronal genes in the hippocampus and loss of Mbd2 alters the expression of hundreds of genes with a robust down-regulation of neuronal gene pathways. Further, a genome-wide DNA methylation analysis found an altered DNA methylation pattern in regulatory DNA regions of neuronal genes in Mbd2-/- mice. Differentially expressed genes significantly overlap with gene-expression changes observed in brains of Autism Spectrum Disorder (ASD) individuals. Notably, downregulated genes are significantly enriched for human ortholog ASD risk genes. Observed hippocampal morphological abnormalities were similar to those found in individuals with ASD and ASD rodent models. Hippocampal Mbd2 knockdown partially recapitulates the behavioral phenotypes observed in Mbd2-/- mice. These findings suggest that Mbd2 is a novel epigenetic regulator of genes that are associated with ASD in humans. Mbd2 loss causes behavioral alterations that resemble those found in ASD individuals.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Humans , Animals , Mice , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , CpG Islands , Autistic Disorder/genetics , Autism Spectrum Disorder/genetics , DNA Methylation , Cognition , DNA/metabolism , Epigenesis, Genetic
11.
PLoS One ; 17(11): e0277470, 2022.
Article in English | MEDLINE | ID: mdl-36350925

ABSTRACT

INTRODUCTION: The World Health Organization recognizes dementia as a public health priority and highlights research as an action to respond to the consequences, with early career dementia researchers (ECDRs) representing the key driving force. Due to the COVID-19 pandemic, however, biomedical and psychosocial dementia research was strained worldwide. The aim of this study was to understand the impact of the pandemic on ECDRs. METHODS: In autumn 2021, the Alzheimer's Association International Society to Advance Alzheimer's Research and Treatment (ISTAART) Professional Interest Area to Elevate Early Career Researchers (PEERs) and University College London conducted an online survey querying ECDRs' experiences during the COVID-19 pandemic. The survey was shared through the ISTAART network, social media, podcasts, and emailing lists. Data were analyzed using descriptive and inferential statistics. RESULTS: Survey data from n = 321 ECDRs from 34 countries were analyzed (67.6% women; 78.8% working in academia). Overall, 77.8% of ECDRs surveyed indicated research delays, 53.9% made project adjustments, 37.9% required additional or extended funding, and 41.8% reported a negative impact on career progression. Moreover, 19.9% felt unsupported by their institutions and employers (33% felt well supported, 42.7% somewhat supported). ECDR's conference attendance remained the same (26.5%) or increased (More: 28.6%; a lot more: 5.6%) since the start of the pandemic. Continental differences were visible, while the impact of the pandemic did not differ greatly based on ECDRs' sociodemographic characteristics. CONCLUSIONS: The COVID-19 pandemic had a substantial impact on ECDRs worldwide and institutions, employers, and funding bodies are urged to consider the implications and lessons-learned when working with, managing, and promoting ECDRs. Strategies related to the pandemic and general career support to improve ECDRs career progression are discussed, including social media training, digital networking, and benefits of hybrid events. Global resources specific for ECDRs are highlighted.


Subject(s)
Alzheimer Disease , COVID-19 , Social Media , Humans , Female , Male , Pandemics , COVID-19/epidemiology , Research Personnel
12.
J Alzheimers Dis ; 73(2): 723-739, 2020.
Article in English | MEDLINE | ID: mdl-31868669

ABSTRACT

Epidemiological, preclinical, and clinical studies have suggested a role for microdose lithium in reducing Alzheimer's disease (AD) risk by modulating key mechanisms associated with AD pathology. The novel microdose lithium formulation, NP03, has disease-modifying effects in the McGill-R-Thy1-APP transgenic rat model of AD-like amyloidosis at pre-plaque stages, before frank amyloid-ß (Aß) plaque deposition, during which Aß is primarily intraneuronal. Here, we are interested in determining whether the positive effects of microdose lithium extend into early Aß post-plaque stages. We administered NP03 (40µg Li/kg; 1 ml/kg body weight) to McGill-R-Thy1-APP transgenic rats for 12 weeks spanning the transition phase from plaque-free to plaque-bearing. The effect of NP03 on remote working memory was assessed using the novel object recognition task. Levels of human Aß38, Aß40, and Aß42 as well as levels of pro-inflammatory mediators were measured in brain-extracts and plasma using electrochemiluminescent assays. Mature Aß plaques were visualized with a thioflavin-S staining. Vesicular acetylcholine transporter (VAChT) bouton density and levels of chemokine (C-X-C motif) ligand 1 (CXCL1), interleukin-6 (IL-6), and 4-hydroxynonenal (4-HNE) were probed using quantitative immunohistochemistry. During the early Aß post-plaque stage, we find that NP03 rescues functional deficits in object recognition, reduces loss of cholinergic boutons in the hippocampus, reduces levels of soluble and insoluble cortical Aß42 and reduces hippocampal Aß plaque number. In addition, NP03 reduces markers of neuroinflammation and cellular oxidative stress. Together these results indicate that microdose lithium NP03 is effective at later stages of amyloid pathology, after appearance of Aß plaques.


Subject(s)
Alzheimer Disease/pathology , Alzheimer Disease/prevention & control , Citrates/therapeutic use , Lithium Compounds/therapeutic use , Neuroprotective Agents/therapeutic use , Plaque, Amyloid/pathology , Plaque, Amyloid/prevention & control , Aldehydes/metabolism , Alzheimer Disease/psychology , Amyloid beta-Peptides/metabolism , Animals , Chemokines/metabolism , Drug Compounding , Encephalitis/metabolism , Encephalitis/pathology , Hippocampus/metabolism , Hippocampus/pathology , Humans , Interleukin-6/metabolism , Memory, Short-Term/drug effects , Presynaptic Terminals/pathology , Rats , Rats, Transgenic , Recognition, Psychology , Vesicular Acetylcholine Transport Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL