Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
Add more filters

Publication year range
1.
J Proteome Res ; 22(6): 2055-2066, 2023 06 02.
Article in English | MEDLINE | ID: mdl-37171072

ABSTRACT

Liquid chromatography-multiple reaction monitoring mass spectrometry (LC-MRM) has widespread clinical use for detection of inborn errors of metabolism, therapeutic drug monitoring, and numerous other applications. This technique detects proteolytic peptides as surrogates for protein biomarker expression, mutation, and post-translational modification in individual clinical assays and in cancer research with highly multiplexed quantitation across biological pathways. LC-MRM for protein biomarkers must be translated from multiplexed research-grade panels to clinical use. LC-MRM panels provide the capability to quantify clinical biomarkers and emerging protein markers to establish the context of tumor phenotypes that provide highly relevant supporting information. An application to visualize and communicate targeted proteomics data will empower translational researchers to move protein biomarker panels from discovery to clinical use. Therefore, we have developed a web-based tool for targeted proteomics that provides pathway-level evaluations of key biological drivers (e.g., EGFR signaling), signature scores (representing phenotypes) (e.g., EMT), and the ability to quantify specific drug targets across a sample cohort. This tool represents a framework for integrating summary information, decision algorithms, and risk scores to support Physician-Interpretable Phenotypic Evaluation in R (PIPER) that can be reused or repurposed by other labs to communicate and interpret their own biomarker panels.


Subject(s)
Proteins , Translational Research, Biomedical , Proteins/analysis , Peptides/metabolism , Biomarkers/analysis , Phenotype
2.
J Biol Chem ; 298(11): 102550, 2022 11.
Article in English | MEDLINE | ID: mdl-36183837

ABSTRACT

BRCA1/2-deficient ovarian carcinoma (OC) has been shown to be particularly sensitive to poly (ADP-ribose) polymerase inhibitors (PARPis). Furthermore, BRCA1/2 mutation status is currently used as a predictive biomarker for PARPi therapy. Despite providing a major clinical benefit to the majority of patients, a significant proportion of BRCA1/2-deficient OC tumors do not respond to PARPis for reasons that are incompletely understood. Using an integrated chemical, phospho- and ADP-ribosylation proteomics approach, we sought here to develop additional mechanism-based biomarker candidates for PARPi therapy in OC and identify new targets for combination therapy to overcome primary resistance. Using chemical proteomics with PARPi baits in a BRCA1-isogenic OC cell line pair, as well as patient-derived BRCA1-proficient and BRCA1-deficient tumor samples, and subsequent validation by coimmunoprecipitation, we showed differential PARP1 and PARP2 protein complex composition in PARPi-sensitive, BRCA1-deficient UWB1.289 (UWB) cells compared to PARPi-insensitive, BRCA1-reconstituted UWB1.289+BRCA1 (UWB+B) cells. In addition, global phosphoproteomics and ADP-ribosylation proteomics furthermore revealed that the PARPi rucaparib induced the cell cycle pathway and nonhomologous end joining (NHEJ) pathway in UWB cells but downregulated ErbB signaling in UWB+B cells. In addition, we observed AKT PARylation and prosurvival AKT-mTOR signaling in UWB+B cells after PARPi treatment. Consistently, we found the synergy of PARPis with DNAPK or AKT inhibitors was more pronounced in UWB+B cells, highlighting these pathways as actionable vulnerabilities. In conclusion, we demonstrate the combination of chemical proteomics, phosphoproteomics, and ADP-ribosylation proteomics can identify differential PARP1/2 complexes and diverse, but actionable, drug compensatory signaling in OC.


Subject(s)
Ovarian Neoplasms , Poly(ADP-ribose) Polymerase Inhibitors , Humans , Female , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Proteomics , Proto-Oncogene Proteins c-akt , Drug Resistance, Neoplasm , Cell Line, Tumor , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology
3.
J Proteome Res ; 20(6): 3134-3149, 2021 06 04.
Article in English | MEDLINE | ID: mdl-34014671

ABSTRACT

Multiple myeloma is an incurable hematological malignancy that impacts tens of thousands of people every year in the United States. Treatment for eligible patients involves induction, consolidation with stem cell rescue, and maintenance. High-dose therapy with a DNA alkylating agent, melphalan, remains the primary drug for consolidation therapy in conjunction with autologous stem-cell transplantation; as such, melphalan resistance remains a relevant clinical challenge. Here, we describe a proteometabolomic approach to examine mechanisms of acquired melphalan resistance in two cell line models. Drug metabolism, steady-state metabolomics, activity-based protein profiling (ABPP, data available at PRIDE: PXD019725), acute-treatment metabolomics, and western blot analyses have allowed us to further elucidate metabolic processes associated with melphalan resistance. Proteometabolomic data indicate that drug-resistant cells have higher levels of pentose phosphate pathway metabolites. Purine, pyrimidine, and glutathione metabolisms were commonly altered, and cell-line-specific changes in metabolite levels were observed, which could be linked to the differences in steady-state metabolism of naïve cells. Inhibition of selected enzymes in purine synthesis and pentose phosphate pathways was evaluated to determine their potential to improve melphalan's efficacy. The clinical relevance of these proteometabolomic leads was confirmed by comparison of tumor cell transcriptomes from newly diagnosed MM patients and patients with relapsed disease after treatment with high-dose melphalan and autologous stem-cell transplantation. The observation of common and cell-line-specific changes in metabolite levels suggests that omic approaches will be needed to fully examine melphalan resistance in patient specimens and define personalized strategies to optimize the use of high-dose melphalan.


Subject(s)
Hematopoietic Stem Cell Transplantation , Multiple Myeloma , Humans , Melphalan/pharmacology , Metabolomics , Multiple Myeloma/drug therapy , Transplantation, Autologous
4.
Bioinformatics ; 36(1): 257-263, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31199438

ABSTRACT

MOTIVATION: Missingness in label-free mass spectrometry is inherent to the technology. A computational approach to recover missing values in metabolomics and proteomics datasets is important. Most existing methods are designed under a particular assumption, either missing at random or under the detection limit. If the missing pattern deviates from the assumption, it may lead to biased results. Hence, we investigate the missing patterns in free mass spectrometry data and develop an omnibus approach GMSimpute, to allow effective imputation accommodating different missing patterns. RESULTS: Three proteomics datasets and one metabolomics dataset indicate missing values could be a mixture of abundance-dependent and abundance-independent missingness. We assess the performance of GMSimpute using simulated data (with a wide range of 80 missing patterns) and metabolomics data from the Cancer Genome Atlas breast cancer and clear cell renal cell carcinoma studies. Using Pearson correlation and normalized root mean square errors between the true and imputed abundance, we compare its performance to K-nearest neighbors' type approaches, Random Forest, GSimp, a model-based method implemented in DanteR and minimum values. The results indicate GMSimpute provides higher accuracy in imputation and exhibits stable performance across different missing patterns. In addition, GMSimpute is able to identify the features in downstream differential expression analysis with high accuracy when applied to the Cancer Genome Atlas datasets. AVAILABILITY AND IMPLEMENTATION: GMSimpute is on CRAN: https://cran.r-project.org/web/packages/GMSimpute/index.html. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Computational Biology , Mass Spectrometry , Bias , Cluster Analysis , Computational Biology/methods , Limit of Detection , Metabolomics , Proteomics
5.
Proteomics ; 20(24): e2000116, 2020 12.
Article in English | MEDLINE | ID: mdl-32865326

ABSTRACT

Analysis of tyrosine kinase signaling is critical for the development of targeted cancer therapy. Currently, immunoprecipitation of phosphotyrosine (pY) peptides prior to liquid chromatography-tandem mass spectrometry (LC-MS/MS) is used to profile tyrosine kinase substrates. A typical protocol requests 10 mg of total protein from ≈108 cells or 50-100 mg of tissue. Large sample requirements can be cost prohibitive or not feasible for certain experiments. Sample multiplexing using chemical labeling reduces the protein amount required for each sample, and newer approaches use a material-rich reference channel as a calibrator to trigger detection and quantification for smaller samples. Here, it is demonstrated that the tandem mass tag (TMT) calibrator approach reduces the sample input for pY profiling tenfold (to ≈1 mg total protein per sample from 107 cells grown in one plate), while maintaining the depth of pY proteome sampling and the biological content of the experiment. Data are available through PRIDE (PXD019764 for label-free and PXD018952 for TMT). This strategy opens more opportunities for pY profiling of large sample cohorts and samples with limited protein quantity such as immune cells, xenograft models, and human tumors.


Subject(s)
Proteomics , Tandem Mass Spectrometry , Chromatography, Liquid , Humans , Protein-Tyrosine Kinases , Proteome
6.
Rep Pract Oncol Radiother ; 24(6): 593-599, 2019.
Article in English | MEDLINE | ID: mdl-31719799

ABSTRACT

PURPOSE: Optimal postoperative radiation therapy (PORT) dose is unclear in penile squamous cell carcinoma (PeSCC). Herein, we characterized the radiosensitivity index (RSI) and genomic-adjusted radiation dose (GARD) profiles in a cohort of patients with PeSCC, and assessed the application of GARD to personalize PORT. METHODS: A total of 25 PeSCC samples were identified for transcriptomic profiling. The RSI score and GARD were derived for each sample. A cohort of 34 patients was reviewed for clinical correlation. RESULTS: The median RSI for PeSCC was 0.482 (range 0.215-0.682). The majority (n = 21; 84%) of cases were classified as radioresistant. PeSCC GARD ranged from 9.56 to 38.39 (median 18.25), suggesting variable therapeutic effects from PORT. We further determined the optimal GARD-based RT doses to improve locoregional control. We found that therapeutic benefit was only achieved in 52% of PeSCC lesions with PORT of 50 Gy, in contrast to 84% benefit from GARD-modeled PORT of 66 Gy. In the clinical cohort, the majority of patients presented with pathological N2 or N3 disease (n = 31; 91%) and was treated with adjuvant concurrent platinum-based chemoradiotherapy (CRT, n = 30; 88%). Fourteen of the 34 patients (41%) had locoregional recurrence (LRR), of which half had LRR within six months of completion of PORT. CONCLUSIONS: The majority of PeSCC are intrinsically radioresistant with a low GARD-based therapeutic effect from PORT dose of 50 Gy, consistent with the observed high rate of LRR in the clinical cohort. A GARD-based strategy will allow personalizing PORT dose prescription to individual tumor biology and improve outcomes.

7.
Hum Genomics ; 11(1): 22, 2017 09 04.
Article in English | MEDLINE | ID: mdl-28870239

ABSTRACT

BACKGROUND: Observations of recurrent somatic mutations in tumors have led to identification and definition of signaling and other pathways that are important for cancer progression and therapeutic targeting. As tumor cells contain both an individual's inherited genetic variants and somatic mutations, challenges arise in distinguishing these events in massively parallel sequencing datasets. Typically, both a tumor sample and a "normal" sample from the same individual are sequenced and compared; variants observed only in the tumor are considered to be somatic mutations. However, this approach requires two samples for each individual. RESULTS: We evaluate a method of detecting somatic mutations in tumor samples for which only a subset of normal samples are available. We describe tuning of the method for detection of mutations in tumors, filtering to remove inherited variants, and comparison of detected mutations to several matched tumor/normal analysis methods. Filtering steps include the use of population variation datasets to remove inherited variants as well a subset of normal samples to remove technical artifacts. We then directly compare mutation detection with tumor-only and tumor-normal approaches using the same sets of samples. Comparisons are performed using an internal targeted gene sequencing dataset (n = 3380) as well as whole exome sequencing data from The Cancer Genome Atlas project (n = 250). Tumor-only mutation detection shows similar recall (43-60%) but lesser precision (20-21%) to current matched tumor/normal approaches (recall 43-73%, precision 30-82%) when compared to a "gold-standard" tumor/normal approach. The inclusion of a small pool of normal samples improves precision, although many variants are still uniquely detected in the tumor-only analysis. CONCLUSIONS: A detailed method for somatic mutation detection without matched normal samples enables study of larger numbers of tumor samples, as well as tumor samples for which a matched normal is not available. As sensitivity/recall is similar to tumor/normal mutation detection but precision is lower, tumor-only detection is more appropriate for classification of samples based on known mutations. Although matched tumor-normal analysis is preferred due to higher precision, we demonstrate that mutation detection without matched normal samples is possible for certain applications.


Subject(s)
DNA Mutational Analysis/methods , Neoplasms/genetics , Software , Databases, Factual , Genotype , High-Throughput Nucleotide Sequencing/methods , Humans , Mutation , Sensitivity and Specificity
8.
Lancet Oncol ; 18(2): 202-211, 2017 02.
Article in English | MEDLINE | ID: mdl-27993569

ABSTRACT

BACKGROUND: Despite its common use in cancer treatment, radiotherapy has not yet entered the era of precision medicine, and there have been no approaches to adjust dose based on biological differences between or within tumours. We aimed to assess whether a patient-specific molecular signature of radiation sensitivity could be used to identify the optimum radiotherapy dose. METHODS: We used the gene-expression-based radiation-sensitivity index and the linear quadratic model to derive the genomic-adjusted radiation dose (GARD). A high GARD value predicts for high therapeutic effect for radiotherapy; which we postulate would relate to clinical outcome. Using data from the prospective, observational Total Cancer Care (TCC) protocol, we calculated GARD for primary tumours from 20 disease sites treated using standard radiotherapy doses for each disease type. We also used multivariable Cox modelling to assess whether GARD was independently associated with clinical outcome in five clinical cohorts: Erasmus Breast Cancer Cohort (n=263); Karolinska Breast Cancer Cohort (n=77); Moffitt Lung Cancer Cohort (n=60); Moffitt Pancreas Cancer Cohort (n=40); and The Cancer Genome Atlas Glioblastoma Patient Cohort (n=98). FINDINGS: We calculated GARD for 8271 tissue samples from the TCC cohort. There was a wide range of GARD values (range 1·66-172·4) across the TCC cohort despite assignment of uniform radiotherapy doses within disease types. Median GARD values were lowest for gliomas and sarcomas and highest for cervical cancer and oropharyngeal head and neck cancer. There was a wide range of GARD values within tumour type groups. GARD independently predicted clinical outcome in breast cancer, lung cancer, glioblastoma, and pancreatic cancer. In the Erasmus Breast Cancer Cohort, 5-year distant-metastasis-free survival was longer in patients with high GARD values than in those with low GARD values (hazard ratio 2·11, 95% 1·13-3·94, p=0·018). INTERPRETATION: A GARD-based clinical model could allow the individualisation of radiotherapy dose to tumour radiosensitivity and could provide a framework to design genomically-guided clinical trials in radiation oncology. FUNDING: None.


Subject(s)
Biomarkers, Tumor/genetics , Genome, Human , Glioblastoma/radiotherapy , Lung Neoplasms/radiotherapy , Models, Genetic , Pancreatic Neoplasms/radiotherapy , Radiation Tolerance/genetics , Adult , Aged , Aged, 80 and over , Female , Follow-Up Studies , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Male , Middle Aged , Neoplasm Staging , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Prognosis , Prospective Studies , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Retrospective Studies , Survival Rate , Transcriptome
9.
Proteomics ; 17(6)2017 03.
Article in English | MEDLINE | ID: mdl-28195392

ABSTRACT

Discovery proteomics experiments include many options for sample preparation and MS data acquisition, which are capable of creating datasets for quantifying thousands of proteins. To define a strategy that would produce a dataset with sufficient content while optimizing required resources, we compared (1) single-sample LC-MS/MS with data-dependent acquisition to single-sample LC-MS/MS with data-independent acquisition and (2) peptide fractionation with label-free (LF) quantification to peptide fractionation with relative quantification of chemically labeled peptides (sixplex tandem mass tags (TMT)). These strategies were applied to the same set of four frozen lung squamous cell carcinomas and four adjacent tissues, and the overall outcomes of each experiment were assessed. We identified 6656 unique protein groups with LF, 5535 using TMT, 3409 proteins from single-sample analysis with data-independent acquisition, and 2219 proteins from single-sample analysis with data-dependent acquisition. Pathway analysis indicated the number of proteins per pathway was proportional to the total protein identifications from each method, suggesting limited biological bias between experiments. The results suggest the use of single-sample experiments as a rapid tissue assessment tool and digestion quality control or as a technique to maximize output from limited samples and use of TMT or LF quantification as methods for larger amounts of tumor tissue with the selection being driven mainly by instrument time limitations. Data are available via ProteomeXchange with identifiers PXD004682, PXD004683, PXD004684, and PXD005733.


Subject(s)
Chromatography, Liquid/methods , Lung Neoplasms/metabolism , Neoplasm Proteins/metabolism , Proteome/metabolism , Proteomics/methods , Tandem Mass Spectrometry/methods , Biomarkers, Tumor/metabolism , Carcinoma, Squamous Cell/metabolism , Humans , Peptides/metabolism , Staining and Labeling
10.
Proc Natl Acad Sci U S A ; 110(30): 12414-9, 2013 Jul 23.
Article in English | MEDLINE | ID: mdl-23836654

ABSTRACT

TANK-binding kinase 1 (TBK1) has emerged as a novel therapeutic target for unspecified subset of lung cancers. TBK1 reportedly mediates prosurvival signaling by activating NF-κB and AKT. However, we observed that TBK1 knockdown also decreased viability of cells expressing constitutively active NF-κB and interferon regulatory factor 3. Basal phospho-AKT level was not reduced after TBK1 knockdown in TBK1-sensitive lung cancer cells, implicating that TBK1 mediates unknown survival mechanisms. To gain better insight into TBK1 survival signaling, we searched for altered phosphoproteins using mass spectrometry following RNAi-mediated TBK1 knockdown. In total, we identified 2,080 phosphoproteins (4,621 peptides), of which 385 proteins (477 peptides) were affected after TBK1 knockdown. A view of the altered network identified a central role of Polo-like kinase 1 (PLK1) and known PLK1 targets. We found that TBK1 directly phosphorylated PLK1 in vitro. TBK1 phosphorylation was induced at mitosis, and loss of TBK1 impaired mitotic phosphorylation of PLK1 in TBK1-sensitive lung cancer cells. Furthermore, lung cancer cell sensitivity to TBK1 was highly correlated with sensitivity to pharmacological PLK inhibition. We additionally found that TBK1 knockdown decreased metadherin phosphorylation at Ser-568. Metadherin was associated with poor outcome in lung cancer, and loss of metadherin caused growth inhibition and apoptosis in TBK1-sensitive lung cancer cells. These results collectively revealed TBK1 as a mitosis regulator through activation of PLK1 and also suggested metadherin as a putative TBK1 downstream effector involved in lung cancer cell survival.


Subject(s)
Lung Neoplasms/metabolism , Phosphoproteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Proteomics , Signal Transduction , Amino Acid Sequence , Genes, ras , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Molecular Sequence Data , Phosphoproteins/chemistry
11.
Br J Cancer ; 113(12): 1735-43, 2015 Dec 22.
Article in English | MEDLINE | ID: mdl-26554648

ABSTRACT

BACKGROUND: The cyclin-dependent kinase inhibitor 3 (CDKN3) has been perceived as a tumour suppressor. Paradoxically, CDKN3 is often overexpressed in human cancer. It was unclear if CDKN3 overexpression is linked to alternative splicing variants or mutations that produce dominant-negative CDKN3. METHODS: We analysed CDKN3 expression and its association with patient survival in three cohorts of lung adenocarcinoma. We also examined CDKN3 mutations in the Cancer Genome Atlas (TCGA) and the Moffitt Cancer Center's Total Cancer Care (TCC) projects. CDKN3 transcripts were further analysed in a panel of cell lines and lung adenocarcinoma tissues. CDKN3 mRNA and protein levels in different cell cycle phases were examined. RESULTS: CDKN3 is overexpressed in non small cell lung cancer. High CDKN3 expression is associated with poor overall survival in lung adenocarcinoma. Two CDKN3 transcripts were detected in all samples. These CDKN3 transcripts represent the full length CDKN3 mRNA and a normal transcript lacking exon 2, which encodes an out of frame 23-amino acid peptide with little homology to CDKN3. CDKN3 mutations were found to be very rare. CDKN3 mRNA and protein were elevated during the mitosis phase of cell cycle. CONCLUSIONS: CDKN3 overexpression is prognostic of poor overall survival in lung adenocarcinoma. CDKN3 overexpression in lung adenocarcinoma is not attributed to alternative splicing or mutation but is likely due to increased mitotic activity, arguing against CDKN3 as a tumour suppressor.


Subject(s)
Adenocarcinoma/genetics , Cyclin-Dependent Kinase Inhibitor Proteins/genetics , Dual-Specificity Phosphatases/genetics , Lung Neoplasms/genetics , RNA, Messenger/genetics , Survival Analysis , Amino Acid Sequence , Cohort Studies , Cyclin-Dependent Kinase Inhibitor Proteins/chemistry , Dual-Specificity Phosphatases/chemistry , Humans , Molecular Sequence Data
12.
Cancer Res ; 84(3): 388-404, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38193852

ABSTRACT

Inactivating mutations in PTEN are prevalent in melanoma and are thought to support tumor development by hyperactivating the AKT/mTOR pathway. Conversely, activating mutations in AKT are relatively rare in melanoma, and therapies targeting AKT or mTOR have shown disappointing outcomes in preclinical models and clinical trials of melanoma. This has led to the speculation that PTEN suppresses melanoma by opposing AKT-independent pathways, potentially through noncanonical functions beyond its lipid phosphatase activity. In this study, we examined the mechanisms of PTEN-mediated suppression of melanoma formation through the restoration of various PTEN functions in PTEN-deficient cells or mouse models. PTEN lipid phosphatase activity predominantly inhibited melanoma cell proliferation, invasion, and tumor growth, with minimal contribution from its protein phosphatase and scaffold functions. A drug screen underscored the exquisite dependence of PTEN-deficient melanoma cells on the AKT/mTOR pathway. Furthermore, activation of AKT alone was sufficient to counteract several aspects of PTEN-mediated melanoma suppression, particularly invasion and the growth of allograft tumors. Phosphoproteomics analysis of the lipid phosphatase activity of PTEN validated its potent inhibition of AKT and many of its known targets, while also identifying the AP-1 transcription factor FRA1 as a downstream effector. The restoration of PTEN dampened FRA1 translation by inhibiting AKT/mTOR signaling, and FRA1 overexpression negated aspects of PTEN-mediated melanoma suppression akin to AKT. This study supports AKT as the key mediator of PTEN inactivation in melanoma and identifies an AKT/mTOR/FRA1 axis as a driver of melanomagenesis. SIGNIFICANCE: PTEN suppresses melanoma predominantly through its lipid phosphatase function, which when lost, elevates FRA1 levels through AKT/mTOR signaling to promote several aspects of melanomagenesis.


Subject(s)
Melanoma , Proto-Oncogene Proteins c-akt , Animals , Mice , Proto-Oncogene Proteins c-akt/metabolism , Melanoma/genetics , Melanoma/metabolism , Signal Transduction/genetics , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , TOR Serine-Threonine Kinases/metabolism , Cell Proliferation , Lipids
13.
Cell Chem Biol ; 31(2): 284-297.e10, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-37848034

ABSTRACT

Multiple tyrosine kinase inhibitors (TKIs) are often developed for the same indication. However, their relative overall efficacy is frequently incompletely understood and they may harbor unrecognized targets that cooperate with the intended target. We compared several ROS1 TKIs for inhibition of ROS1-fusion-positive lung cancer cell viability, ROS1 autophosphorylation and kinase activity, which indicated disproportionately higher cellular potency of one TKI, lorlatinib. Quantitative chemical and phosphoproteomics across four ROS1 TKIs and differential network analysis revealed that lorlatinib uniquely impacted focal adhesion signaling. Functional validation using pharmacological probes, RNA interference, and CRISPR-Cas9 knockout uncovered a polypharmacology mechanism of lorlatinib by dual targeting ROS1 and PYK2, which form a multiprotein complex with SRC. Rational multi-targeting of this complex by combining lorlatinib with SRC inhibitors exhibited pronounced synergy. Taken together, we show that systems pharmacology-based differential network analysis can dissect mixed canonical/non-canonical polypharmacology mechanisms across multiple TKIs enabling the design of rational drug combinations.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lactams , Lung Neoplasms , Protein-Tyrosine Kinases , Pyrazoles , Humans , Aminopyridines/pharmacology , Anaplastic Lymphoma Kinase/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Focal Adhesion Kinase 2/antagonists & inhibitors , Lactams, Macrocyclic , Lung Neoplasms/drug therapy , Polypharmacology , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins
14.
Mol Cancer Ther ; 23(1): 92-105, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-37748191

ABSTRACT

Despite the initial benefit from tyrosine kinase inhibitors (TKI) targeting oncogenic ALK and ROS1 gene fusions in non-small cell lung cancer, complete responses are rare and resistance ultimately emerges from residual tumor cells. Although several acquired resistance mechanisms have been reported at the time of disease progression, adaptative resistance mechanisms that contribute to residual diseases before the outgrowth of tumor cells with acquired resistance are less clear. For the patients who have progressed after TKI treatments, but do not demonstrate ALK/ROS1 kinase mutations, there is a lack of biomarkers to guide effective treatments. Herein, we found that phosphorylation of MIG6, encoded by the ERRFI1 gene, was downregulated by ALK/ROS1 inhibitors as were mRNA levels, thus potentiating EGFR activity to support cell survival as an adaptive resistance mechanism. MIG6 downregulation was sustained following chronic exposure to ALK/ROS1 inhibitors to support the establishment of acquired resistance. A higher ratio of EGFR to MIG6 expression was found in ALK TKI-treated and ALK TKI-resistant tumors and correlated with the poor responsiveness to ALK/ROS1 inhibition in patient-derived cell lines. Furthermore, we identified and validated a MIG6 EGFR-binding domain truncation mutation in mediating resistance to ROS1 inhibitors but sensitivity to EGFR inhibitors. A MIG6 deletion was also found in a patient after progressing to ROS1 inhibition. Collectively, this study identifies MIG6 as a novel regulator for EGFR-mediated adaptive and acquired resistance to ALK/ROS1 inhibitors and suggests EGFR to MIG6 ratios and MIG6-damaging alterations as biomarkers to predict responsiveness to ALK/ROS1 and EGFR inhibitors.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Anaplastic Lymphoma Kinase/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Protein-Tyrosine Kinases/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , ErbB Receptors , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/pharmacology , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Biomarkers , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor
15.
J Anal Toxicol ; 48(2): 81-98, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38217086

ABSTRACT

Products containing cannabidiol (CBD) have proliferated after the 2018 Farm Bill legalized hemp (cannabis with ≤0.3% delta-9-tetrahydrocannabinol (Δ9-THC)). CBD-containing topical products have surged in popularity, but controlled clinical studies on them are limited. This study characterized the effects of five commercially available hemp-derived high CBD/low Δ9-THC topical products. Healthy adults (N = 46) received one of six study drugs: a CBD-containing cream (N = 8), lotion (N = 8), patch (N = 7), balm (N = 8), gel (N = 6) or placebo (N = 9; matched to an active formulation). The protocol included three phases conducted over 17 days: (i) an acute drug application laboratory session, (ii) a 9-day outpatient phase with twice daily product application (visits occurred on Days 2, 3, 7 and 10) (iii) a 1-week washout phase. In each phase, whole blood, oral fluid and urine specimens were collected and analyzed via liquid chromatography with tandem mass spectrometry (LC-MS-MS) for CBD, Δ9-THC and primary metabolites of each and pharmacodynamic outcomes (subjective, cognitive/psychomotor and physiological effects) were assessed. Transdermal absorption of CBD was observed for three active products. On average, CBD/metabolite concentrations peaked after 7-10 days of product use and were highest for the lotion, which contained the most CBD and a permeation enhancer (vitamin E). Δ9-THC/metabolites were below the limit of detection in blood for all products, and no urine samples tested "positive" for cannabis using current US federal workplace drug testing criteria (immunoassay cut-off of 50 ng/mL and confirmatory LC-MS-MS cut-off of 15 ng/mL). Unexpectedly, nine participants (seven lotions, one patch and one gel) exhibited Δ9-THC oral fluid concentrations ≥2 ng/mL (current US federal workplace threshold for a "positive" test). Products did not produce discernable pharmacodynamic effects and were well-tolerated. This study provides important initial data on the acute/chronic effects of hemp-derived topical CBD products, but more research is needed given the diversity of products in this market.


Subject(s)
Cannabidiol , Cannabis , Hallucinogens , Adult , Humans , Chromatography, Liquid , Food
16.
Article in English | MEDLINE | ID: mdl-38888614

ABSTRACT

Introduction: Food and beverage products containing cannabidiol (CBD) is a growing industry, but some CBD products contain Δ9-tetrahydrocannabinol (Δ9-THC), despite being labeled as "THC-free". As CBD can convert to Δ9-THC under acidic conditions, a potential cause is the formation of Δ9-THC during storage of acidic CBD products. In this study, we investigated if acidic products (pH ≤ 4) fortified with CBD would facilitate conversion to THC over a 2-15-month time period. Materials and Methods: Six products, three beverages (lemonade, cola, and sports drink) and three condiments (ketchup, mustard, and hot sauce), were purchased from a local grocery store and fortified with a nano-emulsified CBD isolate (verified as THC-free by testing). The concentrations of CBD and Δ9-THC were measured by Gas Chromatography Flame Ionization Detector (GC-FID) and Liquid Chromatography with tandem mass spectrometry (LC-MS/MS), respectively, for up to 15 months at room temperature. Results: Coefficients of variation (CVs) of initial CBD concentrations by GC-FID were <10% for all products except ketchup (18%), showing homogeneity in the fortification. Formation of THC was variable, with the largest amount observed after 15 months in fortified lemonade #2 (3.09 mg Δ9-THC/serving) and sports drink #2 (1.18 mg Δ9-THC/serving). Both beverages contain citric acid, while cola containing phosphoric acid produced 0.10 mg Δ9-THC/serving after 4 months. The importance of the acid type was verified using acid solutions in water. No more than 0.01 mg Δ9-THC/serving was observed with the condiments after 4 months. Discussion: Conversion of CBD to THC can occur in some acidic food products when those products are stored at room temperature. Therefore, despite purchasing beverages manufactured with a THC-free nano-emulsified form of CBD, consumers might be at some risk of unknowingly ingesting small amounts of THC. The results indicate that up to 3 mg Δ9-THC from conversion can be present in a serving of CBD-lemonade. Based on the previous studies, 3 mg Δ9-THC might produce a positive urine sample (≥15 ng/mL THC carboxylic acid) in some individuals. Conclusion: Consumers must exert caution when consuming products with an acidic pH (≤4) that suggests that they are "THC-Free," because consumption might lead to positive drug tests or, in the case of multiple doses, intoxication.

17.
J Mol Diagn ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38777037

ABSTRACT

This study describes the validation of a clinical RNA expression panel with evaluation of concordance between gene copy gain by a next-generation sequencing (NGS) assay and high gene expression by an RNA expression panel. The RNA Salah Targeted Expression Panel (RNA STEP) was designed with input from oncologists to include 204 genes with utility for clinical trial prescreening and therapy selection. RNA STEP was validated with the nanoString platform using remnant formalin-fixed, paraffin-embedded-derived RNA from 102 patients previously tested with a validated clinical NGS panel. The repeatability, reproducibility, and concordance of RNA STEP results with NGS results were evaluated. RNA STEP demonstrated high repeatability and reproducibility, with excellent correlation (r > 0.97, P < 0.0001) for all comparisons. Comparison of RNA STEP high gene expression (log2 ratio ≥ 2) versus NGS DNA-based gene copy number gain (copies ≥ 5) for 38 mutually covered genes revealed an accuracy of 93.0% with a positive percentage agreement of 69.4% and negative percentage agreement of 93.8%. Moderate correlation was observed between platforms (r = 0.53, P < 0.0001). Concordance between high gene expression and gene copy number gain varied by specific gene, and some genes had higher accuracy between assays. Clinical implementation of RNA STEP provides gene expression data complementary to NGS and offers a tool for prescreening patients for clinical trials.

18.
BMC Bioinformatics ; 14: 153, 2013 May 07.
Article in English | MEDLINE | ID: mdl-23647742

ABSTRACT

BACKGROUND: Many gene expression normalization algorithms exist for Affymetrix GeneChip microarrays. The most popular of these is RMA, primarily due to the precision and low noise produced during the process. A significant strength of this and similar approaches is the use of the entire set of arrays during both normalization and model-based estimation of signal. However, this leads to differing estimates of expression based on the starting set of arrays, and estimates can change when a single, additional chip is added to the set. Additionally, outlier chips can impact the signals of other arrays, and can themselves be skewed by the majority of the population. RESULTS: We developed an approach, termed IRON, which uses the best-performing techniques from each of several popular processing methods while retaining the ability to incrementally renormalize data without altering previously normalized expression. This combination of approaches results in a method that performs comparably to existing approaches on artificial benchmark datasets (i.e. spike-in) and demonstrates promising improvements in segregating true signals within biologically complex experiments. CONCLUSIONS: By combining approaches from existing normalization techniques, the IRON method offers several advantages. First, IRON normalization occurs pair-wise, thereby avoiding the need for all chips to be normalized together, which can be important for large data analyses. Secondly, the technique does not require similarity in signal distribution across chips for normalization, which can be important for maintaining biologically relevant differences in a heterogeneous background. Lastly, IRON introduces fewer post-processing artifacts, particularly in data whose behavior violates common assumptions. Thus, the IRON method provides a practical solution to common needs of expression analysis. A software implementation of IRON is available at [http://gene.moffitt.org/libaffy/].


Subject(s)
Gene Expression Profiling/methods , Oligonucleotide Array Sequence Analysis/methods , Algorithms , Artifacts , Software
19.
ACS Chem Biol ; 18(2): 251-264, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36630201

ABSTRACT

Photoreactive fragment-like probes have been applied to discover target proteins that constitute novel cellular vulnerabilities and to identify viable chemical hits for drug discovery. Through forming covalent bonds, functionalized probes can achieve stronger target engagement and require less effort for on-target mechanism validation. However, the design of probe libraries, which directly affects the biological target space that is interrogated, and effective target prioritization remain critical challenges of such a chemical proteomic platform. In this study, we designed and synthesized a diverse panel of 20 fragment-based probes containing natural product-based privileged structural motifs for small-molecule lead discovery. These probes were fully functionalized with orthogonal diazirine and alkyne moieties and used for protein crosslinking in live lung cancer cells, target enrichment via "click chemistry," and subsequent target identification through label-free quantitative liquid chromatography-tandem mass spectrometry analysis. Pair-wise comparison with a blunted negative control probe and stringent prioritization via individual cross-comparisons against the entire panel identified glutathione S-transferase zeta 1 (GSTZ1) as a specific and unique target candidate. DepMap database query, RNA interference-based gene silencing, and proteome-wide tyrosine reactivity profiling suggested that GSTZ1 cooperated with different oncogenic alterations by supporting survival signaling in refractory non-small cell lung cancer cells. This finding may form the basis for developing novel GSTZ1 inhibitors to improve the therapeutic efficacy of oncogene-directed targeted drugs. In summary, we designed a novel fragment-based probe panel and developed a target prioritization scheme with improved stringency, which allows for the identification of unique target candidates, such as GSTZ1 in refractory lung cancer.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Proteomics , Lung Neoplasms/drug therapy , Proteins , Glutathione , Glutathione Transferase/metabolism
20.
J Proteome Res ; 11(2): 609-19, 2012 Feb 03.
Article in English | MEDLINE | ID: mdl-22060561

ABSTRACT

Understanding the dynamic nature of protein abundances provides insights into protein turnover not readily apparent from conventional, static mass spectrometry measurements. This level of data is particularly informative when surveying protein abundances in biological systems subjected to large perturbations or alterations in environment such as cyanobacteria. Our current analysis expands upon conventional proteomic approaches in cyanobacteria by measuring dynamic changes of the proteome using a (13)C(15)N-l-leucine metabolic labeling in Cyanothece ATCC51142. Metabolically labeled Cyanothece ATCC51142 cells grown under nitrogen-sufficient conditions in continuous light were monitored longitudinally for isotope incorporation over a 48 h period, revealing 414 proteins with dynamic changes in abundances. In particular, proteins involved in carbon fixation, pentose phosphate pathway, cellular protection, redox regulation, protein folding, assembly, and degradation showed higher levels of isotope incorporation, suggesting that these biochemical pathways are important for growth under continuous light. Calculation of relative isotope abundances (RIA) values allowed the measurement of actual active protein synthesis over time for different biochemical pathways under high light exposure. Overall results demonstrated the utility of "non-steady state" pulsed metabolic labeling for systems-wide dynamic quantification of the proteome in Cyanothece ATCC51142 that can also be applied to other cyanobacteria.


Subject(s)
Cyanothece/metabolism , Cyanothece/radiation effects , Proteome/metabolism , Proteome/radiation effects , Proteomics/methods , Bacterial Proteins/analysis , Bacterial Proteins/metabolism , Cell Proliferation/radiation effects , Chlorophyll/analysis , Chlorophyll/metabolism , Cluster Analysis , Light , Nitrogen Fixation , Photosynthesis , Proteome/analysis
SELECTION OF CITATIONS
SEARCH DETAIL