Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Cell ; 161(7): 1619-32, 2015 Jun 18.
Article in English | MEDLINE | ID: mdl-26091039

ABSTRACT

The existence of extracellular phosphoproteins has been acknowledged for over a century. However, research in this area has been undeveloped largely because the kinases that phosphorylate secreted proteins have escaped identification. Fam20C is a kinase that phosphorylates S-x-E/pS motifs on proteins in milk and in the extracellular matrix of bones and teeth. Here, we show that Fam20C generates the majority of the extracellular phosphoproteome. Using CRISPR/Cas9 genome editing, mass spectrometry, and biochemistry, we identify more than 100 secreted phosphoproteins as genuine Fam20C substrates. Further, we show that Fam20C exhibits broader substrate specificity than previously appreciated. Functional annotations of Fam20C substrates suggest roles for the kinase beyond biomineralization, including lipid homeostasis, wound healing, and cell migration and adhesion. Our results establish Fam20C as the major secretory pathway protein kinase and serve as a foundation for new areas of investigation into the role of secreted protein phosphorylation in human biology and disease.


Subject(s)
Casein Kinase I/chemistry , Casein Kinase I/metabolism , Extracellular Matrix Proteins/chemistry , Extracellular Matrix Proteins/metabolism , Amino Acid Sequence , Blood Proteins/metabolism , Casein Kinase I/genetics , Cell Adhesion , Cell Movement , Cerebrospinal Fluid Proteins/metabolism , Extracellular Matrix Proteins/genetics , Gene Knockout Techniques , Gene Ontology , Humans , Molecular Sequence Data , Phosphoproteins/analysis , Secretory Pathway , Substrate Specificity
2.
Pharm Res ; 36(10): 151, 2019 Aug 26.
Article in English | MEDLINE | ID: mdl-31451949

ABSTRACT

PURPOSE: In this study we evaluated the utility of in-vitro screening tools for predicting the in-vivo behavior of six cyclic peptides with different solubility and permeability properties (BCS class II and III), intended for oral delivery in presence of permeation enhancer Labrasol. METHODS: An in vitro flux assay was used to assess peptide permeation across a biomimetic, lipid-based membrane and in vivo studies in rats were used to determine oral peptide bioavailability in the presence of Labrasol. RESULTS: The in vitro flux was significantly increased for BCS class III peptides, while it significantly decreased or remained unchanged for BCS class II peptides with increasing Labrasol concentrations. The different flux responses were attributed to the combination of reduced effective free peptide concentration and increased membrane permeability in the presence of Labrasol. In vivo studies in male Wistar-Hans rats indicated improved oral bioavailability at different extents for all peptides in presence of Labrasol. On comparing the in vitro and in vivo data, a potential direct correlation for BCS class III peptides was seen but not for BCS class II peptides, due to lower free concentrations of peptides in this class. CONCLUSION: This study assessed the utility of in vitro screening tools for selecting peptides and permeation excipients early in drug product development. Graphical Abstract Graphical Abstract and Figure 1 contains small text.Graphical Abstract text is made larger. The Figure 1 text cannot be made larger.


Subject(s)
Peptides, Cyclic/administration & dosage , Peptides, Cyclic/pharmacokinetics , Administration, Oral , Animals , Biological Availability , Cell Membrane Permeability , Chemistry, Pharmaceutical , Excipients/chemistry , Glycerides/chemistry , Lipid Bilayers/metabolism , Male , Models, Biological , Peptides, Cyclic/chemistry , Rats, Wistar , Solubility
3.
Mol Pain ; 14: 1744806918768972, 2018.
Article in English | MEDLINE | ID: mdl-29651898

ABSTRACT

Objectives The aim of this network meta-analysis is to assess the effectiveness of therapeutic strategies for patients with radiculopathy, including physical, medical, surgical, and other therapies. Methods We electronically searched electronic databases including PubMed and Embase for randomized controlled trials. The response rate and visual analog scale of pain change were considered as primary outcomes. The outcomes were measured by odds ratio (OR) value and corresponding 95% credible intervals (CrIs) or standardized mean difference (MD) with 95% CrIs. Besides, surface under cumulative ranking curve (SUCRA) were performed to rank efficacy and safety of treatments on each end points. Results A total of 16 eligible studies with 1071 subjects were included in this analysis. Our results showed that corticosteroid was significantly more effective than control regarding the response rate (OR = 3.86, 95% CrI: 1.16, 12.55). Surgery had a better performance in pain change compared with control (MD = -1.92, 95% CrI: -3.58, -0.15). According to the SUCRA results, corticosteroid, collar, and physiotherapy ranked the highest concerning response rate (SUCRA = 0.656, 0.652, and 0.610, respectively). Surgery, traction, and corticosteroid were superior to others in pain change (SUCRA = 0.866, 0.748, and 0.589, respectively). Conclusion According to the network meta-analysis result, we recommended surgery as the optimal treatment for radiculopathy patients; traction and corticosteroids were also recommended for their beneficial interventions.


Subject(s)
Radiculopathy/therapy , Humans , Network Meta-Analysis , Odds Ratio , Pain/pathology , Pain Measurement , Probability , Radiculopathy/pathology , Treatment Outcome
4.
Hepatology ; 64(5): 1430-1441, 2016 11.
Article in English | MEDLINE | ID: mdl-27474787

ABSTRACT

In 2015, European and U.S. health agencies issued warning letters in response to 9 reported clinical cases of severe bradycardia/bradyarrhythmia in hepatitis C virus (HCV)-infected patients treated with sofosbuvir (SOF) in combination with other direct acting antivirals (DAAs) and the antiarrhythmic drug, amiodarone (AMIO). We utilized preclinical in vivo models to better understand this cardiac effect, the potential pharmacological mechanism(s), and to identify a clinically translatable model to assess the drug-drug interaction (DDI) cardiac risk of current and future HCV inhibitors. An anesthetized guinea pig model was used to elicit a SOF+AMIO-dependent bradycardia. Detailed cardiac electrophysiological studies in this species revealed SOF+AMIO-dependent selective nodal dysfunction, with initial, larger effects on the sinoatrial node. Further studies in conscious, rhesus monkeys revealed an emergent bradycardia and bradyarrhythmia in 3 of 4 monkeys administered SOF+AMIO, effects not observed with either agent alone. Morever, bradycardia and bradyarrhythmia were not observed in rhesus monkeys when intravenous infusion of MK-3682 was completed after AMIO pretreatment. CONCLUSIONS: These are the first preclinical in vivo experiments reported to replicate the severe clinical SOF+AMIO cardiac DDI and provide potential in vivo mechanism of action. As such, these data provide a preclinical risk assessment paradigm, including a clinically relevant nonhuman primate model, with which to better understand cardiovascular DDI risk for this therapeutic class. Furthermore, these studies suggest that not all HCV DAAs and, in particular, not all HCV nonstructural protein 5B inhibitors may exhibit this cardiac DDI with amiodarone. Given the selective in vivo cardiac electrophysiological effect, these data enable targeted cellular/molecular mechanistic studies to more precisely identify cell types, receptors, and/or ion channels responsible for the clinical DDI. (Hepatology 2016;64:1430-1441).


Subject(s)
Amiodarone/pharmacology , Anti-Arrhythmia Agents/pharmacology , Antiviral Agents/pharmacology , Heart/drug effects , Hepacivirus/drug effects , Nucleotides/antagonists & inhibitors , Sofosbuvir/pharmacology , Amiodarone/adverse effects , Animals , Anti-Arrhythmia Agents/adverse effects , Antiviral Agents/adverse effects , Drug Interactions , Guinea Pigs , Heart/physiology , Macaca mulatta , Male , Sofosbuvir/adverse effects
5.
Proc Natl Acad Sci U S A ; 111(44): 15723-8, 2014 Nov 04.
Article in English | MEDLINE | ID: mdl-25331875

ABSTRACT

Most eukaryotic cells elaborate several proteoglycans critical for transmitting biochemical signals into and between cells. However, the regulation of proteoglycan biosynthesis is not completely understood. We show that the atypical secretory kinase family with sequence similarity 20, member B (Fam20B) phosphorylates the initiating xylose residue in the proteoglycan tetrasaccharide linkage region, and that this event functions as a molecular switch to regulate subsequent glycosaminoglycan assembly. Proteoglycans from FAM20B knockout cells contain a truncated tetrasaccharide linkage region consisting of a disaccharide capped with sialic acid (Siaα2-3Galß1-4Xylß1) that cannot be further elongated. We also show that the activity of galactosyl transferase II (GalT-II, B3GalT6), a key enzyme in the biosynthesis of the tetrasaccharide linkage region, is dramatically increased by Fam20B-dependent xylose phosphorylation. Inactivating mutations in the GALT-II gene (B3GALT6) associated with Ehlers-Danlos syndrome cause proteoglycan maturation defects similar to FAM20B deletion. Collectively, our findings suggest that GalT-II function is impaired by loss of Fam20B-dependent xylose phosphorylation and reveal a previously unappreciated mechanism for regulation of proteoglycan biosynthesis.


Subject(s)
Galactosyltransferases/metabolism , Proteoglycans/biosynthesis , Sialic Acids/metabolism , Xylose/metabolism , Ehlers-Danlos Syndrome/genetics , Ehlers-Danlos Syndrome/metabolism , Galactosyltransferases/genetics , Gene Knockdown Techniques , HEK293 Cells , Humans , Phosphorylation/genetics , Proteoglycans/genetics , Sialic Acids/genetics , Xylose/genetics
6.
Proc Natl Acad Sci U S A ; 110(26): 10574-9, 2013 Jun 25.
Article in English | MEDLINE | ID: mdl-23754375

ABSTRACT

The family with sequence similarity 20 (Fam20) kinases phosphorylate extracellular substrates and play important roles in biomineralization. Fam20C is the Golgi casein kinase that phosphorylates secretory pathway proteins within Ser-x-Glu/pSer motifs. Mutations in Fam20C cause Raine syndrome, an osteosclerotic bone dysplasia. Here we report the crystal structure of the Fam20C ortholog from Caenorhabditis elegans. The nucleotide-free and Mn/ADP-bound structures unveil an atypical protein kinase-like fold and highlight residues critical for activity. The position of the regulatory αC helix and the lack of an activation loop indicate an architecture primed for efficient catalysis. Furthermore, several distinct elements, including the presence of disulfide bonds, suggest that the Fam20 family diverged early in the evolution of the protein kinase superfamily. Our results reinforce the structural diversity of protein kinases and have important implications for patients with disorders of biomineralization.


Subject(s)
Caenorhabditis elegans Proteins/chemistry , Casein Kinases/chemistry , Amino Acid Sequence , Animals , Caenorhabditis elegans/enzymology , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Casein Kinase I , Casein Kinases/genetics , Casein Kinases/metabolism , Crystallography, X-Ray , Extracellular Matrix Proteins/chemistry , Extracellular Matrix Proteins/genetics , Golgi Apparatus/enzymology , Humans , Models, Molecular , Molecular Sequence Data , Sequence Homology, Amino Acid , Substrate Specificity
7.
Biochim Biophys Acta ; 1827(10): 1235-44, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23867748

ABSTRACT

Chlorosomes, the major antenna complexes in green sulphur bacteria, filamentous anoxygenic phototrophs, and phototrophic acidobacteria, are attached to the cytoplasmic side of the inner cell membrane and contain thousands of bacteriochlorophyll (BChl) molecules that harvest light and channel the energy to membrane-bound reaction centres. Chlorosomes from phototrophs representing three different phyla, Chloroflexus (Cfx.) aurantiacus, Chlorobaculum (Cba.) tepidum and the newly discovered "Candidatus (Ca.) Chloracidobacterium (Cab.) thermophilum" were analysed using PeakForce Tapping atomic force microscopy (PFT-AFM). Gentle PFT-AFM imaging in buffered solutions that maintained the chlorosomes in a near-native state revealed ellipsoids of variable size, with surface bumps and undulations that differ between individual chlorosomes. Cba. tepidum chlorosomes were the largest (133×57×36nm; 141,000nm(3) volume), compared with chlorosomes from Cfx. aurantiacus (120×44×30nm; 84,000nm(3)) and Ca. Cab. thermophilum (99×40×31nm; 65,000nm(3)). Reflecting the contributions of thousands of pigment-pigment stacking interactions to the stability of these supramolecular assemblies, analysis by nanomechanical mapping shows that chlorosomes are highly stable and that their integrity is disrupted only by very strong forces of 1000-2000pN. AFM topographs of Ca. Cab. thermophilum chlorosomes that had retained their attachment to the cytoplasmic membrane showed that this membrane dynamically changes shape and is composed of protrusions of up to 30nm wide and 6nm above the mica support, possibly representing different protein domains. Spectral imaging revealed significant heterogeneity in the fluorescence emission of individual chlorosomes, likely reflecting the variations in BChl c homolog composition and internal arrangements of the stacked BChls within each chlorosome.


Subject(s)
Bacteriochlorophylls/chemistry , Cell Membrane Structures/chemistry , Chlorobium/classification , Chlorobium/physiology , Cytoplasm/metabolism , Cell Membrane Structures/ultrastructure , Microscopy, Atomic Force , Microscopy, Electron, Transmission , Microscopy, Fluorescence
8.
Proc Natl Acad Sci U S A ; 107(29): 12766-70, 2010 Jul 20.
Article in English | MEDLINE | ID: mdl-20615985

ABSTRACT

Photosynthetic antenna complexes capture and concentrate solar radiation by transferring the excitation to the reaction center that stores energy from the photon in chemical bonds. This process occurs with near-perfect quantum efficiency. Recent experiments at cryogenic temperatures have revealed that coherent energy transfer--a wave-like transfer mechanism--occurs in many photosynthetic pigment-protein complexes. Using the Fenna-Matthews-Olson antenna complex (FMO) as a model system, theoretical studies incorporating both incoherent and coherent transfer as well as thermal dephasing predict that environmentally assisted quantum transfer efficiency peaks near physiological temperature; these studies also show that this mechanism simultaneously improves the robustness of the energy transfer process. This theory requires long-lived quantum coherence at room temperature, which never has been observed in FMO. Here we present evidence that quantum coherence survives in FMO at physiological temperature for at least 300 fs, long enough to impact biological energy transport. These data prove that the wave-like energy transfer process discovered at 77 K is directly relevant to biological function. Microscopically, we attribute this long coherence lifetime to correlated motions within the protein matrix encapsulating the chromophores, and we find that the degree of protection afforded by the protein appears constant between 77 K and 277 K. The protein shapes the energy landscape and mediates an efficient energy transfer despite thermal fluctuations.


Subject(s)
Photosynthetic Reaction Center Complex Proteins/chemistry , Quantum Theory , Temperature , Microscopy, Scanning Tunneling , Photosynthetic Reaction Center Complex Proteins/ultrastructure , Protein Conformation , Time Factors
9.
Biochemistry ; 51(1): 187-93, 2012 Jan 10.
Article in English | MEDLINE | ID: mdl-22142245

ABSTRACT

In green-sulfur bacterial photosynthesis, excitation energy absorbed by a peripheral antenna structure known as the chlorosome is sequentially transferred through a baseplate protein to the Fenna-Matthews-Olson (FMO) antenna protein and into the reaction center, which is embedded in the cytoplasmic membrane. The molecular details of the optimized photosystem architecture required for efficient energy transfer are only partially understood. We address here the question of how the baseplate interacts with the FMO protein by applying hydrogen/deuterium exchange coupled with enzymatic digestion and mass spectrometry analysis to reveal the binding interface of the FMO antenna protein and the CsmA baseplate protein. Several regions on the FMO protein, represented by peptides consisting of 123-129, 140-149, 150-162, 191-208, and 224-232, show significant decreases of deuterium uptake after CsmA binding. The results indicate that the CsmA protein interacts with the Bchl a #1 side of the FMO protein. A global picture including peptide-level details for the architecture of the photosystem from green-sulfur bacteria can now be drawn.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Deuterium Exchange Measurement , Light-Harvesting Protein Complexes/chemistry , Light-Harvesting Protein Complexes/metabolism , Amino Acid Sequence , Chromatography, High Pressure Liquid , Electron Spin Resonance Spectroscopy , Molecular Sequence Data , Protein Binding , Tandem Mass Spectrometry
10.
Biochim Biophys Acta ; 1807(1): 157-64, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20875391

ABSTRACT

The Fenna-Matthews-Olson protein (FMO) binds seven or eight bacteriochlorophyll a (BChl a) molecules and is an important model antenna system for understanding pigment-protein interactions and mechanistic aspects of photosynthetic light harvesting. FMO proteins of green sulfur bacteria (Chlorobiales) have been extensively studied using a wide range of spectroscopic and theoretical approaches because of their stability, the spectral resolution of their pigments, their water-soluble nature, and the availability of high-resolution structural data. We obtained new structural and spectroscopic insights by studying the FMO protein from the recently discovered, aerobic phototrophic acidobacterium, Candidatus Chloracidobacterium thermophilum. Native C. thermophilum FMO is a trimer according to both analytical gel filtration and native-electrospray mass spectrometry. Furthermore, the mass of intact FMO trimer is consistent with the presence of 21-24 BChl a in each. Homology modeling of the C. thermophilum FMO was performed by using the structure of the FMO protein from Chlorobaculum tepidum as a template. C. thermophilum FMO differs from C. tepidum FMO in two distinct regions: the baseplate, CsmA-binding region and a region that is proposed to bind the reaction center subunit, PscA. C. thermophilum FMO has two fluorescence emission peaks at room temperature but only one at 77K. Temperature-dependent fluorescence spectroscopy showed that the two room-temperature emission peaks result from two excited-state BChl a populations that have identical fluorescence lifetimes. Modeling of the data suggests that the two populations contain 1-2 BChl and 5-6 BChl a molecules and that thermal equilibrium effects modulate the relative population of the two emitting states.


Subject(s)
Bacterial Proteins/chemistry , Chlorobi/metabolism , Chlorobium/metabolism , Light-Harvesting Protein Complexes/chemistry , Amino Acid Sequence , Bacterial Proteins/metabolism , Bacteriochlorophyll A/metabolism , Chlorobi/chemistry , Chlorobium/chemistry , Cyclotrons , Fourier Analysis , Light-Harvesting Protein Complexes/metabolism , Mass Spectrometry , Models, Molecular , Molecular Sequence Data , Photosynthesis , Protein Binding , Protein Conformation , Protein Subunits/chemistry , Sequence Alignment , Thermodynamics
11.
Int J Mass Spectrom ; 312: 78-86, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22408386

ABSTRACT

Protein structure determines function in biology, and a variety of approaches have been employed to obtain structural information about proteins. Mass spectrometry-based protein footprinting is one fast-growing approach. One labeling-based footprinting approach is the use of a water-soluble carbodiimide, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and glycine ethyl ester (GEE) to modify solvent-accessible carboxyl groups on glutamate (E) and aspartate (D). This paper describes method development of carboxyl-group modification in protein footprinting. The modification protocol was evaluated by using the protein calmodulin as a model. Because carboxyl-group modification is a slow reaction relative to protein folding and unfolding, there is an issue that modifications at certain sites may induce protein unfolding and lead to additional modification at sites that are not solvent-accessible in the wild-type protein. We investigated this possibility by using hydrogen deuterium amide exchange (H/DX). The study demonstrated that application of carboxyl group modification in probing conformational changes in calmodulin induced by Ca(2+) binding provides useful information that is not compromised by modification-induced protein unfolding.

12.
Proc Natl Acad Sci U S A ; 106(15): 6134-9, 2009 Apr 14.
Article in English | MEDLINE | ID: mdl-19339500

ABSTRACT

The high excitation energy-transfer efficiency demanded in photosynthetic organisms relies on the optimal pigment-protein binding orientation in the individual protein complexes and also on the overall architecture of the photosystem. In green sulfur bacteria, the membrane-attached Fenna-Matthews-Olson (FMO) antenna protein functions as a "wire" to connect the large peripheral chlorosome antenna complex with the reaction center (RC), which is embedded in the cytoplasmic membrane (CM). Energy collected by the chlorosome is funneled through the FMO to the RC. Although there has been considerable effort to understand the relationships between structure and function of the individual isolated complexes, the specific architecture for in vivo interactions of the FMO protein, the CM, and the chlorosome, ensuring highly efficient energy transfer, is still not established experimentally. Here, we describe a mass spectrometry-based method that probes solvent-exposed surfaces of the FMO by labeling solvent-exposed aspartic and glutamic acid residues. The locations and extents of labeling of FMO on the native membrane in comparison with it alone and on a chlorosome-depleted membrane reveal the orientation. The large differences in the modification of certain peptides show that the Bchl a #3 side of the FMO trimer interacts with the CM, which is consistent with recent theoretical predictions. Moreover, the results also provide direct experimental evidence to confirm the overall architecture of the photosystem from Chlorobaculum tepidum (C. tepidum) and give information on the packing of the FMO protein in its native environment.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Cell Membrane/chemistry , Cell Membrane/metabolism , Chlorobium/chemistry , Chlorobium/metabolism , Light-Harvesting Protein Complexes/chemistry , Light-Harvesting Protein Complexes/metabolism , Amino Acid Sequence , Bacterial Proteins/genetics , Cytoplasm/chemistry , Cytoplasm/metabolism , Light-Harvesting Protein Complexes/genetics , Mass Spectrometry , Models, Molecular , Molecular Sequence Data , Protein Structure, Quaternary , Spectrophotometry
13.
Biochemistry ; 50(17): 3502-11, 2011 May 03.
Article in English | MEDLINE | ID: mdl-21449539

ABSTRACT

The nature and stoichiometry of pigments in the Fenna-Matthews-Olson (FMO) photosynthetic antenna protein complex were determined by native electrospray mass spectrometry. The FMO antenna complex was the first chlorophyll-containing protein that was crystallized. Previous results indicate that the FMO protein forms a trimer with seven bacteriochlorophyll a in each monomer. This model has long been a working basis to understand the molecular mechanism of energy transfer through pigment/pigment and pigment/protein coupling. Recent results have suggested, however, that an eighth bacteriochlorophyll is present in some subunits. In this report, a direct mass spectrometry measurement of the molecular weight of the intact FMO protein complex clearly indicates the existence of an eighth pigment, which is assigned as a bacteriochlorophyll a by mass analysis of the complex and HPLC analysis of the pigment. The eighth pigment is found to be easily lost during purification, which results in its partial occupancy in the mass spectra of the intact complex prepared by different procedures. The results are consistent with the recent X-ray structural models. The existence of the eighth bacteriochlorophyll a in this model antenna protein gives new insights into the functional role of the FMO protein and motivates the need for new theoretical and spectroscopic assignments of spectral features of the FMO protein.


Subject(s)
Bacterial Proteins/chemistry , Bacteriochlorophyll A/chemistry , Chlorobi , Light-Harvesting Protein Complexes/chemistry , Pigments, Biological/chemistry , Protein Subunits/chemistry , Models, Molecular , Molecular Weight , Multiprotein Complexes/chemistry , Protein Multimerization , Spectrometry, Mass, Electrospray Ionization
14.
Anal Chem ; 83(14): 5598-606, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21612283

ABSTRACT

The high sensitivity, extended mass range, and fast data acquisition/processing of mass spectrometry and its coupling with native electrospray ionization (ESI) make the combination complementary to other biophysical methods of protein analysis. Protein assemblies with molecular masses up to MDa are now accessible by this approach. Most current approaches have used quadrupole/time-of-flight tandem mass spectrometry, sometimes coupled with ion mobility, to reveal stoichiometry, shape, and dissociation of protein assemblies. The amino-acid sequence of the subunits, however, still relies heavily on independent bottom-up proteomics. We describe here an approach to study protein assemblies that integrates electron-capture dissociation (ECD), native ESI, and FTICR mass spectrometry (12 T). Flexible regions of assembly subunits of yeast alcohol dehydrogenase (147 kDa), concanavalin A (103 kDa), and photosynthetic Fenna-Matthews-Olson antenna protein complex (140 kDa) can be sequenced by ECD or "activated-ion" ECD. Furthermore, noncovalent metal-binding sites can also be determined for the concanavalin A assembly. Most importantly, the regions that undergo fragmentation, either from one of the termini by ECD or from the middle of a protein, as initiated by CID, correlate well with the B-factor from X-ray crystallography of that protein. This factor is a measure of the extent an atom can move from its coordinated position as a function of temperature or crystal imperfections. The approach provides not only top-down proteomics information of the complex subunits but also structural insights complementary to those obtained by ion mobility.


Subject(s)
Mass Spectrometry/instrumentation , Proteins/chemistry , Alcohol Dehydrogenase/chemistry , Amino Acid Sequence , Bacterial Proteins/chemistry , Canavalia/chemistry , Chlorobi/chemistry , Concanavalin A/chemistry , Electrons , Equipment Design , Fourier Analysis , Light-Harvesting Protein Complexes/chemistry , Mass Spectrometry/methods , Models, Molecular , Molecular Sequence Data , Plant Proteins/chemistry , Saccharomyces cerevisiae/enzymology , Spectrometry, Mass, Electrospray Ionization/instrumentation , Spectrometry, Mass, Electrospray Ionization/methods
15.
Photosynth Res ; 107(2): 139-50, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21181557

ABSTRACT

The Fenna-Matthews-Olson (FMO) antenna protein from the green bacterium Pelodictyon phaeum mediates the transfer of energy from the peripheral chlorosome antenna complex to the membrane-bound reaction center. The three-dimensional structure of this protein has been solved using protein crystallography to a resolution limit of 2.0 Å, with R(work) and R(free) values of 16.6 and 19.9%, respectively. The structure is a trimer of three identical subunits related by a threefold symmetry axis. Each subunit has two beta sheets that surround 8 bacteriochlorophylls. The bacteriochlorophylls are all five-coordinated, with the axial ligand being a histidine, serine, backbone carbonyl, or bound water molecule. The arrangement of the bacteriochlorophylls is generally well conserved in comparison to other FMO structures, but differences are apparent in the interactions with the surrounding protein. In this structure the position and orientation of the eighth bacteriochlorophyll is well defined and shows differences in its location and the coordination of the central Mg compared to previous models. The implications of this structure on the ability of the FMO protein to perform energy transfer are discussed in terms of the experimental optical measurements.


Subject(s)
Bacterial Proteins/chemistry , Chlorobi/metabolism , Light-Harvesting Protein Complexes/chemistry , Crystallography, X-Ray , Energy Transfer , Imaging, Three-Dimensional , Models, Molecular , Protein Structure, Tertiary
16.
Clin Pharmacol Ther ; 109(2): 403-415, 2021 02.
Article in English | MEDLINE | ID: mdl-32705692

ABSTRACT

Renal impairment (RI) is known to influence the pharmacokinetics of nonrenally eliminated drugs, although the mechanism and clinical impact is poorly understood. We assessed the impact of RI and single dose oral rifampin (RIF) on the pharmacokinetics of CYP3A, OATP1B, P-gp, and BCRP substrates using a microdose cocktail and OATP1B endogenous biomarkers. RI alone had no impact on midazolam (MDZ), maximum plasma concentration (Cmax ), and area under the curve (AUC), but a progressive increase in AUC with RI severity for dabigatran (DABI), and up to ~2-fold higher AUC for pitavastatin (PTV), rosuvastatin (RSV), and atorvastatin (ATV) for all degrees of RI was observed. RIF did not impact MDZ, had a progressively smaller DABI drug-drug interaction (DDI) with increasing RI severity, a similar 3.1-fold to 4.4-fold increase in PTV and RSV AUC in healthy volunteers and patients with RI, and a diminishing DDI with RI severity from 6.1-fold to 4.7-fold for ATV. Endogenous biomarkers of OATP1B (bilirubin, coproporphyrin I/III, and sulfated bile salts) were generally not impacted by RI, and RIF effects on these biomarkers in RI were comparable or larger than those in healthy volunteers. The lack of a trend with RI severity of PTV and several OATP1B biomarkers, suggests that mechanisms beyond RI directly impacting OATP1B activity could also be considered. The DABI, RSV, and ATV data suggest an impact of RI on intestinal P-gp, and potentially BCRP activity. Therefore, DDI data from healthy volunteers may represent a worst-case scenario for clinically derisking P-gp and BCRP substrates in the setting of RI.


Subject(s)
Drug Interactions/physiology , Kidney Diseases/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Area Under Curve , Biomarkers/metabolism , Healthy Volunteers , Humans , Liver-Specific Organic Anion Transporter 1/metabolism , Midazolam/pharmacokinetics , Rifampin/pharmacokinetics
17.
Biophys J ; 99(8): 2398-407, 2010 Oct 20.
Article in English | MEDLINE | ID: mdl-20959079

ABSTRACT

Green photosynthetic bacteria harvest light and perform photosynthesis in low-light environments, and contain specialized antenna complexes to adapt to this condition. We performed small-angle neutron scattering (SANS) studies to obtain structural information about the photosynthetic apparatus, including the peripheral light-harvesting chlorosome complex, the integral membrane light-harvesting B808-866 complex, and the reaction center (RC) in the thermophilic green phototrophic bacterium Chloroflexus aurantiacus. Using contrast variation in SANS measurements, we found that the B808-866 complex is wrapped around the RC in Cfx. aurantiacus, and the overall size and conformation of the B808-866 complex of Cfx. aurantiacus is roughly comparable to the LH1 antenna complex of the purple bacteria. A similar size of the isolated B808-866 complex was suggested by dynamic light scattering measurements, and a smaller size of the RC of Cfx. aurantiacus compared to the RC of the purple bacteria was observed. Further, our SANS measurements indicate that the chlorosome is a lipid body with a rod-like shape, and that the self-assembly of bacteriochlorophylls, the major component of the chlorosome, is lipid-like. Finally, two populations of chlorosome particles are suggested in our SANS measurements.


Subject(s)
Chloroflexus/metabolism , Neutron Diffraction , Photosynthesis , Scattering, Small Angle , Absorption , Chloroflexus/enzymology , Dimethylamines/metabolism , Energy Transfer , Glucosides/metabolism , Light-Harvesting Protein Complexes/metabolism , Lipids/chemistry , Rhodobacter sphaeroides/enzymology , Rhodobacter sphaeroides/metabolism
18.
Biochemistry ; 49(31): 6670-9, 2010 Aug 10.
Article in English | MEDLINE | ID: mdl-20614874

ABSTRACT

The green photosynthetic bacterium Chloroflexus aurantiacus, which belongs to the phylum of filamentous anoxygenic phototrophs, does not contain a cytochrome bc or bf type complex which is found in all other known groups of phototrophs. This suggests that a functional replacement exists to link the reaction center photochemistry to cyclic electron transfer as well as respiration. Earlier work identified a potential substitute of the cytochrome bc complex, now named alternative complex III (ACIII), which has been purified from C. aurantiacus, identified, and characterized. ACIII functions as a menaquinol:auracyanin oxidoreductase in the photosynthetic electron transfer chain, and a related but distinct complex functions in respiratory electron flow to a terminal oxidase. In this work, we focus on elucidating the structure of photosynthetic ACIII. We found that ACIII is an integral membrane protein complex of approximately 300 kDa that consists of eight subunits of seven different types. Among them, there are four metalloprotein subunits, including a 113 kDa iron-sulfur cluster-containing polypeptide, a 25 kDa penta-heme c-containing subunit, and two 20 kDa monoheme c-containing subunits in the form of a homodimer. A variety of analytical techniques were employed in determining the ACIII substructure, including HPLC combined with ESI-MS, metal analysis, potentiometric titration, and intensity analysis of heme staining SDS-PAGE. A preliminary structural model of ACIII is proposed on the basis of the analytical data and chemical cross-linking in tandem with mass analysis using MALDI-TOF, as well as transmembrane and transit peptide analysis.


Subject(s)
Chloroflexus/chemistry , Electron Transport Chain Complex Proteins/chemistry , Electron Transport Complex III/chemistry , Chemistry Techniques, Analytical , Cross-Linking Reagents , Membrane Proteins/chemistry , Metalloproteins , Photosynthesis , Protein Conformation , Protein Subunits , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
19.
Biochemistry ; 49(26): 5455-63, 2010 Jul 06.
Article in English | MEDLINE | ID: mdl-20521767

ABSTRACT

The Fenna-Matthews-Olson light-harvesting antenna (FMO) protein has been a model system for understanding pigment-protein interactions in the energy transfer process in photosynthesis. All previous studies have utilized wild-type FMO proteins from several species. Here we report the purification and characterization of the first FMO protein variant generated via replacement of the esterifying alcohol at the C-17 propionate residue of bacteriochlorophyll (BChl) a, phytol, with geranylgeraniol, which possesses three more double bonds. The FMO protein still assembles with the modified pigment, but both the whole cell absorption and the biochemical purification indicate that the mutant cells contain a much less mature FMO protein. The gene expression was checked using qRT-PCR, and none of the genes encoding BChl a-binding proteins are strongly regulated at the transcriptional level. The smaller amount of the FMO protein in the mutant cell is probably due to the degradation of the apo-FMO protein at different stages after it does not bind the normal pigment. The absorption, fluorescence, and CD spectra of the purified FMO variant protein are similar to those of the wild-type FMO protein except the conformations of most pigments are more heterogeneous, which broadens the spectral bands. Interestingly, the lowest-energy pigment binding site seems to be unchanged and is the only peak that can be well resolved in 77 K absorption spectra. The excited-state lifetime of the variant FMO protein is unchanged from that of the wild type and shows a temperature-dependent modulation similar to that of the wild type. The variant FMO protein is less thermally stable than the wild type. The assembly of the FMO protein and also the implications of the decreased FMO/chlorosome stoichiometry are discussed in terms of the topology of these two antennas on the cytoplasmic membrane.


Subject(s)
Bacterial Proteins/genetics , Bacteriochlorophyll A/metabolism , Diterpenes/metabolism , Light-Harvesting Protein Complexes/genetics , Chlorobi , Energy Transfer , Esterification , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Genetic Variation , Photosynthesis , Phytol , Protein Stability
20.
Photosynth Res ; 104(2-3): 201-9, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20094789

ABSTRACT

Candidatus Chloracidobacterium (Cab.) thermophilum is a recently discovered aerobic chlorophototroph belonging to the phylum Acidobacteria. From analyses of genomic sequence data, this organism was inferred to have type-1 homodimeric reaction centers, chlorosomes, and the bacteriochlorophyll (BChl) a-binding Fenna-Matthews-Olson protein (FMO). Here, we report the purification and characterization of Cab. thermophilum FMO. Absorption, fluorescence emission, and CD spectra of the FMO protein were measured at room temperature and at 77 K. The spectroscopic features of this FMO protein were different from those of the FMO protein of green sulfur bacteria (GSB) and suggested that exciton coupling of the BChls in the FMO protein is weaker than in FMO of GSB especially at room temperature. HPLC analysis of the pigments extracted from the FMO protein only revealed the presence of BChl a esterified with phytol. Despite the distinctive spectroscopic properties, the residues known to bind BChl a molecules in the FMO of GSB are well conserved in the primary structure of the Cab. thermophilum FMO protein. This suggests that the FMO of Cab. thermophilum probably also binds seven or possibly eight BChl a(P) molecules. The results imply that, without changing pigment composition or structure dramatically, the FMO protein has acquired properties that allow it to perform light harvesting efficiently under aerobic conditions.


Subject(s)
Bacteria/metabolism , Bacterial Proteins/metabolism , Light-Harvesting Protein Complexes/metabolism , Aerobiosis , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/isolation & purification , Chromatography, High Pressure Liquid , Circular Dichroism , Electrophoresis, Polyacrylamide Gel , Ligands , Light-Harvesting Protein Complexes/chemistry , Light-Harvesting Protein Complexes/isolation & purification , Molecular Sequence Data , Phylogeny , Pigments, Biological/metabolism , Sequence Alignment , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL