Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.980
Filter
Add more filters

Publication year range
1.
Cell ; 153(5): 1134-48, 2013 May 23.
Article in English | MEDLINE | ID: mdl-23664764

ABSTRACT

Epigenetic mechanisms have been proposed to play crucial roles in mammalian development, but their precise functions are only partially understood. To investigate epigenetic regulation of embryonic development, we differentiated human embryonic stem cells into mesendoderm, neural progenitor cells, trophoblast-like cells, and mesenchymal stem cells and systematically characterized DNA methylation, chromatin modifications, and the transcriptome in each lineage. We found that promoters that are active in early developmental stages tend to be CG rich and mainly engage H3K27me3 upon silencing in nonexpressing lineages. By contrast, promoters for genes expressed preferentially at later stages are often CG poor and primarily employ DNA methylation upon repression. Interestingly, the early developmental regulatory genes are often located in large genomic domains that are generally devoid of DNA methylation in most lineages, which we termed DNA methylation valleys (DMVs). Our results suggest that distinct epigenetic mechanisms regulate early and late stages of ES cell differentiation.


Subject(s)
DNA Methylation , Embryonic Stem Cells/metabolism , Epigenomics , Gene Expression Regulation, Developmental , Animals , Cell Differentiation , Chromatin/metabolism , CpG Islands , Embryonic Stem Cells/cytology , Histones/metabolism , Humans , Methylation , Neoplasms/genetics , Promoter Regions, Genetic , Zebrafish/embryology
2.
Mol Cell ; 75(4): 807-822.e8, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31442424

ABSTRACT

mTORC2 controls glucose and lipid metabolism, but the mechanisms are unclear. Here, we show that conditionally deleting the essential mTORC2 subunit Rictor in murine brown adipocytes inhibits de novo lipid synthesis, promotes lipid catabolism and thermogenesis, and protects against diet-induced obesity and hepatic steatosis. AKT kinases are the canonical mTORC2 substrates; however, deleting Rictor in brown adipocytes appears to drive lipid catabolism by promoting FoxO1 deacetylation independently of AKT, and in a pathway distinct from its positive role in anabolic lipid synthesis. This facilitates FoxO1 nuclear retention, enhances lipid uptake and lipolysis, and potentiates UCP1 expression. We provide evidence that SIRT6 is the FoxO1 deacetylase suppressed by mTORC2 and show an endogenous interaction between SIRT6 and mTORC2 in both mouse and human cells. Our findings suggest a new paradigm of mTORC2 function filling an important gap in our understanding of this more mysterious mTOR complex.


Subject(s)
Adipocytes, Brown/metabolism , Forkhead Box Protein O1/metabolism , Lipolysis , Mechanistic Target of Rapamycin Complex 2/metabolism , Sirtuins/metabolism , Adipocytes, Brown/cytology , Animals , Forkhead Box Protein O1/genetics , HEK293 Cells , HeLa Cells , Humans , Mechanistic Target of Rapamycin Complex 2/genetics , Mice , Mice, Transgenic , Rapamycin-Insensitive Companion of mTOR Protein/genetics , Rapamycin-Insensitive Companion of mTOR Protein/metabolism , Sirtuins/genetics
3.
Nucleic Acids Res ; 52(6): 3291-3309, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38165050

ABSTRACT

The mechanisms by which the relatively conserved spliceosome manages the enormously large number of splicing events that occur in humans (∼200 000 versus ∼300 in yeast) are poorly understood. Here, we show deposition of one RNA modification-N2-methylguanosine (m2G) on the G72 of U6 snRNA (the catalytic center of the spliceosome) promotes efficient pre-mRNA splicing activity in human cells. This modification was identified to be conserved among vertebrates. Further, THUMPD2 was demonstrated as the methyltransferase responsible for U6 m2G72 by explicitly recognizing the U6-specific sequences and structural elements. The knock-out of THUMPD2 eliminated U6 m2G72 and impaired the pre-mRNA splicing activity, resulting in thousands of changed alternative splicing events of endogenous pre-mRNAs in human cells. Notably, the aberrantly spliced pre-mRNA population elicited the nonsense-mediated mRNA decay pathway. We further show that THUMPD2 was associated with age-related macular degeneration and retinal function. Our study thus demonstrates how an RNA epigenetic modification of the major spliceosome regulates global pre-mRNA splicing and impacts physiology and disease.


Subject(s)
RNA Precursors , RNA Splicing , RNA-Binding Proteins , Retinal Degeneration , Animals , Humans , Methylation , Nucleic Acid Conformation , Retinal Degeneration/metabolism , RNA Precursors/genetics , RNA Precursors/metabolism , RNA Splicing/genetics , RNA, Small Nuclear/metabolism , Saccharomyces cerevisiae/genetics , Spliceosomes/genetics , Spliceosomes/metabolism
4.
Proc Natl Acad Sci U S A ; 120(51): e2316467120, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38079542

ABSTRACT

Merkel cell polyomavirus (MCV or MCPyV) is an alphapolyomavirus causing human Merkel cell carcinoma and encodes four tumor (T) antigen proteins: large T (LT), small tumor (sT), 57 kT, and middle T (MT)/alternate LT open reading frame proteins. We show that MCV MT is generated as multiple isoforms through internal methionine translational initiation that insert into membrane lipid rafts. The membrane-localized MCV MT oligomerizes and promiscuously binds to lipid raft-associated Src family kinases (SFKs). MCV MT-SFK interaction is mediated by a Src homology (SH) 3 recognition motif as determined by surface plasmon resonance, coimmunoprecipitation, and bimolecular fluorescence complementation assays. SFK recruitment by MT leads to tyrosine phosphorylation at a SH2 recognition motif (pMTY114), allowing interaction with phospholipase C gamma 1 (PLCγ1). The secondary recruitment of PLCγ1 to the SFK-MT membrane complex promotes PLCγ1 tyrosine phosphorylation on Y783 and activates the NF-κB inflammatory signaling pathway. Mutations at either the MCV MT SH2 or SH3 recognition sites abrogate PLCγ1-dependent activation of NF-κB signaling and increase viral replication after MCV genome transfection into 293 cells. These findings reveal a conserved viral targeting of the SFK-PLCγ1 pathway by both MCV and murine polyomavirus (MuPyV) MT proteins. The molecular steps in how SFK-PLCγ1 activation is achieved, however, differ between these two viruses.


Subject(s)
Carcinoma, Merkel Cell , Merkel cell polyomavirus , Polyomavirus Infections , Skin Neoplasms , Mice , Animals , Humans , Antigens, Polyomavirus Transforming/metabolism , Merkel cell polyomavirus/metabolism , NF-kappa B/metabolism , src-Family Kinases/metabolism , Phospholipase C gamma/metabolism , Signal Transduction , Antigens, Viral, Tumor/genetics , Carcinoma, Merkel Cell/genetics , Tyrosine/metabolism
5.
Plant Cell ; 34(11): 4516-4530, 2022 10 27.
Article in English | MEDLINE | ID: mdl-35944221

ABSTRACT

BRI1-EMS-SUPPRESSOR1 (BES1), a core transcription factor in the brassinosteroid (BR) signaling pathway, primarily regulates plant growth and development by influencing BR-regulated gene expression. Several E3 ubiquitin (Ub) ligases regulate BES1 stability, but little is known about BES1 deubiquitination, which antagonizes E3 ligase-mediated ubiquitination to maintain BES1 homeostasis. Here, we report that two Arabidopsis thaliana deubiquitinating enzymes, Ub-SPECIFIC PROTEASE (UBP) 12 and UBP13, interact with BES1. UBP12 and UBP13 removed Ub from polyubiquitinated BES1 to stabilize both phosphorylated and dephosphorylated forms of BES1. A double mutant, ubp12-2w ubp13-3, lacking UBP12 and UBP13 function showed both BR-deficient and BR-insensitive phenotypes, whereas transgenic plants overexpressing UBP12 or UBP13 exhibited an increased BR response. Expression of UBP12 and UPB13 was induced during recovery after carbon starvation, which led to BES1 accumulation and quick recovery of stressed plants. Our work thus establishes a mechanism by which UBP12 and UBP13 regulate BES1 protein abundance to enhance BR-regulated growth during recovery after carbon starvation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Carbon/metabolism , Brassinosteroids/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Deubiquitinating Enzymes/genetics , Deubiquitinating Enzymes/metabolism , Gene Expression Regulation, Plant/genetics , DNA-Binding Proteins/metabolism , Endopeptidases/genetics
6.
Mol Cell Proteomics ; 22(4): 100507, 2023 04.
Article in English | MEDLINE | ID: mdl-36787877

ABSTRACT

In November 2022, 68% of the population received at least one dose of COVID-19 vaccines. Owing to the ongoing mutations, especially for the variants of concern (VOCs), it is important to monitor the humoral immune responses after different vaccination strategies. In this study, we developed a SARS-CoV-2 variant protein microarray that contained the spike proteins from the VOCs, e.g., alpha, beta, gamma, delta, and omicron, to quantify the binding antibody and surrogate neutralizing antibody. Plasmas were collected after two doses of matching AZD1222 (AZx2), two doses of matching mRNA-1273 (Mx2), or mixing AZD1222 and mRNA-1273 (AZ+M). The results showed a significant decrease of surrogate neutralizing antibodies against the receptor-binding domain in all VOCs in AZx2 and Mx2 but not AZ+M. A similar but minor reduction pattern of surrogate neutralizing antibodies against the extracellular domain was observed. While Mx2 exhibited a higher surrogate neutralizing level against all VOCs compared with AZx2, AZ+M showed an even higher surrogate neutralizing level in gamma and omicron compared with Mx2. It is worth noting that the binding antibody displayed a low correlation to the surrogate neutralizing antibody (R-square 0.130-0.382). This study delivers insights into humoral immunities, SARS-CoV-2 mutations, and mixing and matching vaccine strategies, which may provide a more effective vaccine strategy especially in preventing omicron.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , SARS-CoV-2 , ChAdOx1 nCoV-19 , Immunity, Humoral , 2019-nCoV Vaccine mRNA-1273 , Protein Array Analysis , COVID-19/prevention & control , Antibodies, Neutralizing
7.
Proc Natl Acad Sci U S A ; 119(35): e2208795119, 2022 08 30.
Article in English | MEDLINE | ID: mdl-36001691

ABSTRACT

The superior photosynthetic efficiency of C4 leaves over C3 leaves is owing to their unique Kranz anatomy, in which the vein is surrounded by one layer of bundle sheath (BS) cells and one layer of mesophyll (M) cells. Kranz anatomy development starts from three contiguous ground meristem (GM) cells, but its regulators and underlying molecular mechanism are largely unknown. To identify the regulators, we obtained the transcriptomes of 11 maize embryonic leaf cell types from five stages of pre-Kranz cells starting from median GM cells and six stages of pre-M cells starting from undifferentiated cells. Principal component and clustering analyses of transcriptomic data revealed rapid pre-Kranz cell differentiation in the first two stages but slow differentiation in the last three stages, suggesting early Kranz cell fate determination. In contrast, pre-M cells exhibit a more prolonged transcriptional differentiation process. Differential gene expression and coexpression analyses identified gene coexpression modules, one of which included 3 auxin transporter and 18 transcription factor (TF) genes, including known regulators of Kranz anatomy and/or vascular development. In situ hybridization of 11 TF genes validated their expression in early Kranz development. We determined the binding motifs of 15 TFs, predicted TF target gene relationships among the 18 TF and 3 auxin transporter genes, and validated 67 predictions by electrophoresis mobility shift assay. From these data, we constructed a gene regulatory network for Kranz development. Our study sheds light on the regulation of early maize leaf development and provides candidate leaf development regulators for future study.


Subject(s)
Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Plant Leaves , Transcriptome , Zea mays , Indoleacetic Acids/metabolism , Laser Capture Microdissection , Photosynthesis/genetics , Plant Leaves/embryology , Plant Leaves/genetics , Zea mays/enzymology , Zea mays/genetics
8.
Gut ; 73(4): 668-681, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-37973365

ABSTRACT

OBJECTIVES: Chronic hepatitis B (CHB) caused by HBV infection greatly increases the risk of liver cirrhosis and hepatocellular carcinoma. Hepatitis B surface antigen (HBsAg) plays critical roles in the pathogenesis of CHB. HBsAg loss is the key indicator for cure of CHB, but is rarely achieved by current approved anti-HBV drugs. Therefore, novel anti-HBV strategies are urgently needed to achieve sustained HBsAg loss. DESIGN: We developed multiple chimeric antigen receptors (CARs) based on single-chain variable fragments (scFvs, namely MA18/7-scFv and G12-scFv), respectively, targeting HBV large and small envelope proteins. Their impacts on HBsAg secretion and HBV infection, and the underlying mechanisms, were extensively investigated using various cell culture models and HBV mouse models. RESULTS: After secretory signal peptide mediated translocation into endoplasmic reticulum (ER) and secretory pathway, MA18/7-scFv and CARs blocked HBV infection and virion secretion. G12-scFv preferentially inhibited virion secretion, while both its CAR formats and crystallisable fragment (Fc)-attached versions blocked HBsAg secretion. G12-scFv and G12-CAR arrested HBV envelope proteins mainly in ER and potently inhibited HBV budding. Furthermore, G12-scFv-Fc and G12-CAR-Fc strongly suppressed serum HBsAg up to 130-fold in HBV mouse models. The inhibitory effect lasted for at least 8 weeks when delivered by an adeno-associated virus vector. CONCLUSION: CARs possess direct antiviral activity, besides the well-known application in T-cell therapy. Fc attached G12-scFv and G12-CARs could provide a novel approach for reducing circulating HBsAg.


Subject(s)
Hepatitis B, Chronic , Hepatitis B , Liver Neoplasms , Receptors, Chimeric Antigen , Mice , Animals , Hepatitis B Surface Antigens , Hepatitis B virus/genetics , Endoplasmic Reticulum/metabolism
9.
Oncologist ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38821519

ABSTRACT

BACKGROUND: Pegylated liposomal doxorubicin (PLD) is a liposome-encapsulated form of doxorubicin with equivalent efficacy and less cardiotoxicity. This phase 2 study evaluated the efficacy and safety of the PLD-containing CHOP regimen in newly diagnosed patients with aggressive peripheral T-cell lymphomas (PTCL). METHODS: Patients received PLD, cyclophosphamide, vincristine/vindesine, plus prednisone every 3 weeks for up to 6 cycles. The primary endpoint was the objective response rate at the end of treatment (EOT). RESULTS: From September 2015 to January 2017, 40 patients were treated. At the EOT, objective response was achieved by 82.5% of patients, with 62.5% complete response. As of the cutoff date (September 26, 2023), median progression-free survival (mPFS) and overall survival (mOS) were not reached (NR). The 2-year, 5-year, and 8-year PFS rates were 55.1%, 52.0%, and 52.0%. OS rate was 80.0% at 2 years, 62.5% at 5 years, and 54.3% at 8 years. Patients with progression of disease within 24 months (POD24) had worse prognosis than those without POD24, regarding mOS (41.2 months vs NR), 5-year OS (33.3% vs 94.4%), and 8-year OS (13.3% vs 94.4%). Common grade 3-4 adverse events were neutropenia (87.5%), leukopenia (80.0%), anemia (17.5%), and pneumonitis (17.5%). CONCLUSION: This combination had long-term benefits and manageable tolerability, particularly with less cardiotoxicity, for aggressive PTCL, which might provide a favorable benefit-risk balance. CLINICALTRIALS.GOV IDENTIFIER: Chinese Clinical Trial Registry, ChiCTR2100054588; IRB Approved: Ethics committee of Fudan University Shanghai Cancer Center (Date 2015.8.31/No. 1508151-13.

10.
Oncologist ; 29(1): e15-e24, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37279780

ABSTRACT

BACKGROUND: Neoadjuvant trastuzumab/pertuzumab (HP) plus chemotherapy for HER2-positive breast cancer (BC) achieved promising efficacy. The additional cardiotoxicity still existed. Brecan study evaluated the efficacy and safety of neoadjuvant pegylated liposomal doxorubicin (PLD)/cyclophosphamide and sequential nab-paclitaxel based on HP (PLD/C/HP-nabP/HP). PATIENTS AND METHODS: Brecan was a single-arm phase II study. Eligible patients with stages IIA-IIIC HER2-positive BC received 4 cycles of PLD, cyclophosphamide, and HP, followed by 4 cycles of nab-paclitaxel and HP. Definitive surgery was scheduled after 21 days for patients completing treatment or experiencing intolerable toxicity. The primary endpoint was the pathological complete response (pCR). RESULTS: Between January 2020 and December 2021, 96 patients were enrolled. Ninety-five (99.0%) patients received 8 cycles of neoadjuvant therapy and all underwent surgery with 45 (46.9%) breast-conserving surgery and 51 (53.1%) mastectomy. The pCR was 80.2% (95%CI, 71.2%-87.0%). Four (4.2%) experienced left ventricular insufficiency with an absolute decline in LVEF (43%-49%). No congestive heart failure and ≥grade 3 cardiac toxicity occurred. The objective response rate was 85.4% (95%CI, 77.0%-91.1%), including 57 (59.4%) complete responses and 25 (26.0%) partial responses. The disease control rate was 99.0% (95%CI, 94.3%-99.8%). For overall safety, ≥grade 3 AEs occurred in 30 (31.3%) and mainly included neutropenia (30.2%) and asthenia (8.3%). No treatment-related deaths occurred. Notably, age of >30 (P = .01; OR = 5.086; 95%CI, 1.44-17.965) and HER2 IHC 3+ (P = .02; OR = 4.398; 95%CI, 1.286-15.002) were independent predictors for superior pCR (ClinicalTrials.gov Identifier NCT05346107). CONCLUSION: Brecan study demonstrated the encouraging safety and efficacy of neoadjuvant PLD/C/HP-nabP/HP, suggesting a potential therapeutic option in HER2-positive BC.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/pathology , Neoadjuvant Therapy/adverse effects , Receptor, ErbB-2/therapeutic use , Mastectomy , Treatment Outcome , Paclitaxel , Cyclophosphamide/therapeutic use , Trastuzumab/adverse effects , Antineoplastic Combined Chemotherapy Protocols/adverse effects
11.
Anal Chem ; 96(4): 1427-1435, 2024 01 30.
Article in English | MEDLINE | ID: mdl-38226591

ABSTRACT

Although porphyrins make up a promising class of electrochemiluminescence (ECL) luminophors, their aggregation-caused quenching (ACQ) characteristics lead to inferior ECL efficiency (ΦECL). Furthermore, current application of porphyrins is limited to cathodic emission. This work creatively exploited a cage-like porous complex (referred to as SWU-1) as the microreactor to recede the ACQ effect while modulating dual ECL emission of meso-tetra(4-carboxyphenyl)porphine (TCPP), which self-assembled with SWU-1 to form TCPP@SWU-1 nanocapsules (TCPP@SWU-1 NCs). As the microreactor, SWU-1 not only effectively constrained TCPP aggregation to improve electron-hole recombination efficiency but also improved stability of anion and cation radicals, thus significantly enhancing the dual emission of TCPP. Compared with TCPP aggregates, the resulting TCPP@SWU-1 NCs exhibited significantly enhanced anodic and cathodic emission, and their ΦECL was increased by 8.7-fold and 3.9-fold, respectively. Furthermore, black hole quencher-2 (BHQ2) can simultaneously quench anodic and cathodic signals. TCPP@SWU-1 NCs coupling BHQ2 conveniently achieved an ECL ratio detection of miRNA-126, and the limit of detection (S/N = 3) was 4.1 aM. This work pioneered the development of the cage-like porous complex SWU-1 as the microreactor to alleviate defects of the ACQ effect and mediate dual emission of TCPP. The coupling of dual-emitting TCPP@SWU-1 NCs and dual-function moderator BHQ2 created a novel single-luminophor-based ratio system for bioanalysis and provided a promising ECL analysis approach for miRNA-126.


Subject(s)
Biosensing Techniques , MicroRNAs , Porphyrins , Porosity , Photometry , Luminescent Measurements/methods , Electrochemical Techniques/methods
12.
J Intern Med ; 295(3): 357-368, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37994187

ABSTRACT

BACKGROUND: To assess the association of cirrhosis and hepatocellular carcinoma (HCC) with the use of glucagon-like peptide-1 receptor agonists (GLP-1RAs) versus long-acting insulins (LAIs), which are the two commonly prescribed injectable glucose-lowering agents (GLAs) for patients with type 2 diabetes (T2D) after the failure of multiple oral GLAs. METHODS: We emulated a target trial using the nationwide data of a Taiwanese cohort with T2D. Incident new users of GLP-1RAs and LAIs during 2013-2018 were identified, and propensity score (PS) matching was applied to ensure between-group comparability in baseline patient characteristics. The primary outcome was the composite liver disease including cirrhosis or HCC. Each patient was followed until the occurrence of a study outcome, death, or the end of 2019, whichever came first. Subdistribution hazard models were employed to assess the treatment-outcome association. Sensitivity (e.g., stabilized inverse probability of treatment weighting analysis, time-dependent analysis), E-value, and negative control outcome analyses were performed to examine the robustness of study findings. RESULTS: We included 7171 PS-matched pairs of GLP-1RA and LAI users with no significant between-group differences at baseline. Compared with LAIs, the use of GLP-1RAs was associated with significantly reduced risks of composite liver disease (subdistribution hazard ratio [95% confidence interval]: 0.56 [0.42-0.76]), cirrhosis (0.59 [0.43-0.81]), and HCC (0.47 [0.24-0.93]). Results were consistent across sensitivity analyses and among patients with different baseline characteristics. CONCLUSION: Among T2D patients who require injectable GLAs, the use of GLP-1RAs versus LAIs was associated with lower risks of cirrhosis and HCC.


Subject(s)
Carcinoma, Hepatocellular , Diabetes Mellitus, Type 2 , Liver Neoplasms , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/therapeutic use , Carcinoma, Hepatocellular/epidemiology , Cohort Studies , Liver Neoplasms/epidemiology , Liver Cirrhosis/drug therapy
13.
Small ; 20(4): e2305877, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37718437

ABSTRACT

The precise design of low-cost, efficient, and definite electrocatalysts is the key to sustainable renewable energy. The urea oxidation reaction (UOR) offers a promising alternative to the oxygen evolution reaction for energy-saving hydrogen generation. In this study, by tuning the lattice expansion, a series of M-FeNi layered double hydroxides (M-FeNi LDHs, M: Mo, Mn, V) with excellent UOR performance are synthesized. The hydrolytic transformation of Fe-MIL-88A is assisted by urea, Ni2+ and high-valence metals, to form a hollow M-FeNi LDH. Owing to the large atomic radius of the high-valence metal, lattice expansion is induced, and the electronic structure of the FeNi-LDH is regulated. Doping with high-valence metal is more favorable for the formation of the high-valence active species, NiOOH, for the UOR. Moreover, the hollow spindle structure promoted mass transport. Thus, the optimal Mo-FeNi LDH showed outstanding UOR electrocatalytic activity, with 1.32 V at 10 mA cm-2 . Remarkably, the Pt/C||Mo-FeNi LDH catalyst required a cell voltage of 1.38 V at 10 mA·cm-2 in urea-assisted water electrolysis. This study suggests a new direction for constructing nanostructures and modulating electronic structures, which is expected to ultimately lead to the development of a class of auxiliary electrocatalysts.

14.
J Transl Med ; 22(1): 125, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38303030

ABSTRACT

BACKGROUND: Previous studies have shown that changes in the microbial community of the female urogenital tract are associated with Human papillomavirus (HPV) infection. However, research on this association was mostly focused on a single site, and there are currently few joint studies on HPV infection and multiple sites in the female urogenital tract. METHODS: We selected 102 healthy women from Yunnan Province as the research object, collected cervical exfoliation fluid, vaginal, urethral, and rectal swabs for microbial community analysis, and measured bacterial load, and related cytokine content. The link between HPV, microbiota, and inflammation was comprehensively evaluated using bioinformatics methods. FINDINGS: The impact of HPV infection on the microbial composition of different parts varies. We have identified several signature bacterial genera that respond to HPV infection in several detection sites, such as Corynebacterium, Lactobacillus, Campylobacter, and Cutibacterium have been detected in multiple sites, reflecting their potential significance in cross body sites HPV infection responses. There was a solid microbial interaction network between the cervix, vagina, and urethra. The interrelationships between inflammatory factors and different bacterial genera might also affect the immune system's response to HPV infection. INTERPRETATION: It might be an effective strategy to prevent and treat HPV infection by simultaneously understanding the correlation between the microbial changes in multiple parts of the female urogenital tract and rectum and HPV infection, and controlling the microbial network related to HPV infection in different parts.


Subject(s)
Papillomavirus Infections , Rectum , Female , Humans , China , Vagina/microbiology , Bacteria , RNA, Ribosomal, 16S , Papillomaviridae
15.
Cardiovasc Diabetol ; 23(1): 93, 2024 03 11.
Article in English | MEDLINE | ID: mdl-38468331

ABSTRACT

BACKGROUND: Stress hyperglycemia ratio (SHR) and N-terminal pro-B-type natriuretic peptide (NT-proBNP) are independently associated with increased mortality risk in diabetic patients with coronary artery disease (CAD). However, the role of these biomarkers in patients with diabetes and multivessel disease (MVD) remains unknown. The present study aimed to assess the relative and combined abilities of these biomarkers to predict all-cause mortality in patients with diabetes and MVD. METHODS: This study included 1148 diabetic patients with MVD who underwent coronary angiography at Tianjin Chest Hospital between January 2016 and December 2016. The patients were divided into four groups according to their SHR (SHR-L and SHR-H) and NT-proBNP (NT-proBNP-L and NT-proBNP-H) levels. The primary outcome was all-cause mortality. Multivariate Cox regression analyses were performed to evaluate the association of SHR and NT-proBNP levels with all-cause mortality. RESULTS: During a mean 4.2 year follow-up, 138 patients died. Multivariate analysis showed that SHR and NT-proBNP were strong independent predictors of all-cause mortality in diabetic patients with MVD (SHR: HR hazard ratio [2.171; 95%CI 1.566-3.008; P < 0.001; NT-proBNP: HR: 1.005; 95%CI 1.001-1.009; P = 0.009). Compared to patients in the first (SHR-L and NT-proBNP-L) group, patients in the fourth (SHR-H and NT-proBNP-H) group had the highest mortality risk (HR: 12.244; 95%CI 5.828-25.721; P < 0.001). The areas under the curve were 0.615(SHR) and 0.699(NT-proBNP) for all-cause mortality. Adding either marker to the original models significantly improved the C-statistic and integrated discrimination improvement values (all P < 0.05). Moreover, combining SHR and NT-proBNP levels into the original model provided maximal prognostic information. CONCLUSIONS: SHR and NT-proBNP independently and jointly predicted all-cause mortality in diabetic patients with MVD, suggesting that strategies to improve risk stratification in these patients should incorporate SHR and NT-porBNP into risk algorithms.


Subject(s)
Coronary Artery Disease , Diabetes Mellitus , Hyperglycemia , Humans , Natriuretic Peptide, Brain , Coronary Artery Disease/diagnostic imaging , Prognosis , Biomarkers , Peptide Fragments , Hyperglycemia/complications , Hyperglycemia/diagnosis
16.
Br J Surg ; 111(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38960881

ABSTRACT

BACKGROUND: Surgery for oesophageal squamous cell carcinoma involves dissecting lymph nodes along the recurrent laryngeal nerve. This is technically challenging and injury to the recurrent laryngeal nerve may lead to vocal cord palsy, which increases the risk of pulmonary complications. The aim of this study was to compare the efficacy and safety of robot-assisted oesophagectomy (RAO) versus video-assisted thoracoscopic oesophagectomy (VAO) for dissection of lymph nodes along the left RLN. METHODS: Patients with oesophageal squamous cell carcinoma who were scheduled for minimally invasive McKeown oesophagectomy were allocated randomly to RAO or VAO, stratified by centre. The primary endpoint was the success rate of left recurrent laryngeal nerve lymph node dissection. Success was defined as the removal of at least one lymph node without causing nerve damage lasting longer than 6 months. Secondary endpoints were perioperative and oncological outcomes. RESULTS: From June 2018 to March 2022, 212 patients from 3 centres in Asia were randomized, and 203 were included in the analysis (RAO group 103; VAO group 100). Successful left recurrent laryngeal nerve lymph node dissection was achieved in 88.3% of the RAO group and 69% of the VAO group (P < 0.001). The rate of removal of at least one lymph node according to pathology was 94.2% for the RAO and 86% for the VAO group (P = 0.051). At 1 week after surgery, the RAO group had a lower incidence of left recurrent laryngeal nerve palsy than the VAO group (20.4 versus 34%; P = 0.029); permanent recurrent laryngeal nerve palsy rates at 6 months were 5.8 and 20% respectively (P = 0.003). More mediastinal lymph nodes were dissected in the RAO group (median 16 (i.q.r. 12-22) versus 14 (10-20); P = 0.035). Postoperative complication rates were comparable between the two groups and there were no in-hospital deaths. CONCLUSION: In patients with oesophageal squamous cell carcinoma, RAO leads to more successful left recurrent laryngeal nerve lymph node dissection than VAO, including a lower rate of short- and long-term recurrent laryngeal nerve injury. Registration number: NCT03713749 (http://www.clinicaltrials.gov).


Oesophageal cancer often requires complex surgery. Recently, minimally invasive techniques like robot- and video-assisted surgery have emerged to improve outcomes. This study compared robot- and video-assisted surgery for oesophageal cancer, focusing on removing lymph nodes near a critical nerve. Patients with a specific oesophageal cancer type were assigned randomly to robot- or video-assisted surgery at three Asian hospitals. Robot-assisted surgery had a higher success rate in removing lymph nodes near the important nerve without permanent damage. It also had shorter operating times, more lymph nodes removed, and faster drain removal after surgery. In summary, for oesophageal cancer surgery, the robotic approach may provide better lymph node removal and less nerve injury than video-assisted techniques.


Subject(s)
Esophageal Neoplasms , Esophagectomy , Lymph Node Excision , Robotic Surgical Procedures , Thoracic Surgery, Video-Assisted , Humans , Esophagectomy/methods , Esophagectomy/adverse effects , Male , Robotic Surgical Procedures/methods , Robotic Surgical Procedures/adverse effects , Female , Middle Aged , Thoracic Surgery, Video-Assisted/methods , Thoracic Surgery, Video-Assisted/adverse effects , Esophageal Neoplasms/surgery , Lymph Node Excision/methods , Lymph Node Excision/adverse effects , Aged , Esophageal Squamous Cell Carcinoma/surgery , Postoperative Complications/etiology , Postoperative Complications/epidemiology , Treatment Outcome , Recurrent Laryngeal Nerve/surgery , Recurrent Laryngeal Nerve Injuries/etiology , Adult
17.
Br J Surg ; 111(2)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38298070

ABSTRACT

BACKGROUND: To restore sensation after breast reconstruction, a modified surgical approach was employed by identifying the cut fourth intercostal lateral cutaneous branch, elongating it with intercostal nerve grafts, and coapting it to the innervating nerve of the flap or by using direct neurotization of the spared nipple/skin. METHODS: This was a retrospective case-control study including 56 patients who underwent breast neurotization surgery. Breast operations included immediate reconstruction after nipple-sparing mastectomy (36 patients), skin-sparing mastectomy (8 patients), and delayed reconstruction with nipple preservation (7 patients) or without nipple preservation (5 patients). Patients who underwent breast reconstruction without neurotization were included as the non-neurotization negative control group. The contralateral normal breasts were included as positive controls. RESULTS: The mean(s.d.) monofilament test values were 0.07(0.10) g for the positive control breasts and 179.13(143.31) g for the breasts operated on in the non-neurotization group. Breasts that underwent neurotization had significantly better sensation after surgery, with a mean(s.d.) value of 35.61(92.63) g (P < 0.001). The mean(s.d.) sensory return after neurotization was gradual; 138.17(143.65) g in the first 6 months, 59.55(116.46) g at 7-12 months, 14.54(62.27) g at 13-18 months, and 0.37(0.50) g at 19-24 months after surgery. Two patients had accidental rupture of the pleura, which was repaired uneventfully. One patient underwent re-exploration due to a lack of improvement 1.5 years after neurotization. CONCLUSION: Using the lateral cutaneous branch of the intercostal nerve as the innervating stump and elongating it with intercostal nerve grafts is a suitable technique to restore sensation after mastectomy. This method effectively innervates reconstructed breasts and spares the nipple/skin with minimal morbidity.


Subject(s)
Breast Neoplasms , Mammaplasty , Mastectomy, Subcutaneous , Nerve Transfer , Humans , Female , Mastectomy/methods , Breast Neoplasms/surgery , Nipples/surgery , Case-Control Studies , Retrospective Studies , Intercostal Nerves/surgery , Mammaplasty/methods , Mastectomy, Subcutaneous/methods
18.
Mol Reprod Dev ; 91(2): e23731, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38404010

ABSTRACT

Premature ovarian insufficiency (POI) patients experience a decline in ovarian function and a reduction in serum reproductive hormones, leading to a significant impact on the outcomes of assisted reproductive technology. Despite the absence of an effective clinical treatment to restore fertility in POI patients, recent research has indicated that cord blood plasma (CBP) derived from human umbilical cord blood (hUCB) may offer therapeutic benefits for various degenerative diseases. The primary aim of this study is to explore approaches for enhancing ovarian function and serum reproductive hormones through the administration of CBP in a murine model. Initially, hUCB was utilized to obtain CBP (CBP), which was subsequently analyzed for cytokine and growth factor profiles in comparison to adult blood plasma (ABP) by use of flow cytometry. Subsequently, POI mouse models were established through the induction of 4-vinylcyclohexene diepoxide, followed by the injection of CBP into the tail. At 7, 14, and 21 days posttreatment, mouse ovaries and blood were collected, and their estrus cycle, body weight, and ovarian weights were evaluated using precise electronic balance. Finally, ovarian morphology and follicle number were assessed through HE staining, while serum levels of anti-Müllerian hormone (AMH), estradiol (E2) and follicle-stimulating hormone (FSH) were determined by ELISA. Our study revealed that individuals with CBP exhibited significantly lower concentrations of proinflammatory cytokines, including IL-ß (p < 0.01) and IL-2 (p < 0.05), while displaying elevated levels of anti-inflammatory cytokines and chemokines, such as IL-2, IL-4, IL-6, IL-8, IL-12P70, IL-17A, IP-10, interferon-γ, and tumor necrosis factor-α (p < 0.01). Furthermore, CBP demonstrated remarkably higher levels of growth factors, including transforming growth factor-ß1, vascular endothelial growth factor, and insulin-like growth factor-1 (p < 0.01) than ABP. Notably, our investigation also revealed that CBP restored the content of serum reproductive hormones, such as AMH, E2, and FSH (p < 0.05), and increased the number of primordial and primary follicles (p < 0.01) and decreased the number of luteal and atretic follicles (p < 0.01) in vivo. Our findings suggested that CBP-secreted cytokines and growth factors could be restored POI ovarian function, enhanced serum reproductive hormones and rescued follicular development in vivo. These findings further support the potential of CBP as a promising strategy in clinical applications for POI related infertility.


Subject(s)
Cytokines , Primary Ovarian Insufficiency , Female , Adult , Humans , Mice , Animals , Fetal Blood , Vascular Endothelial Growth Factor A , Interleukin-2 , Primary Ovarian Insufficiency/therapy , Primary Ovarian Insufficiency/pathology , Estradiol , Follicle Stimulating Hormone , Intercellular Signaling Peptides and Proteins , Plasma
19.
BMC Cancer ; 24(1): 622, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778261

ABSTRACT

BACKGROUND: International guidelines recommend ivosidenib followed by modified FOLFOX (mFOLFOX) for advanced intrahepatic cholangiocarcinoma (ICC) with isocitrate dehydrogenase 1 (IDH1) mutations. Taiwan National Health Insurance covers only fluorouracil/leucovorin (5-FU/LV) chemotherapy for this ICC group, and there has been no prior economic evaluation of ivosidenib. Therefore, we aimed to assess ivosidenib's cost-effectiveness in previously treated, advanced ICC-presenting IDH1 mutations compared with mFOLFOX or 5-FU/LV. METHODS: A 3-state partitioned survival model was employed to assess ivosidenib's cost-effectiveness over a 10-year horizon with a 3% discount rate, setting the willingness-to-pay threshold at 3 times the 2022 GDP per capita. Efficacy data for Ivosidenib, mFOLFOX, and 5-FU/LV were sourced from the ClarIDHy, ABC06, and NIFTY trials, respectively. Ivosidenib's cost was assumed to be NT$10,402/500 mg. Primary outcomes included incremental cost-effectiveness ratios (ICERs) and net monetary benefit. Deterministic sensitivity analyses (DSA) and probabilistic sensitivity analyses (PSA) were employed to evaluate uncertainty and explore price reduction scenarios. RESULTS: Ivosidenib exhibited ICERs of NT$6,268,528 and NT$5,670,555 compared with mFOLFOX and 5-FU/LV, respectively, both exceeding the established threshold. PSA revealed that ivosidenib was unlikely to be cost-effective, except when it was reduced to NT$4,161 and NT$5,201/500 mg when compared with mFOLFOX and 5-FU/LV, respectively. DSA underscored the significant influence of ivosidenib's cost and utility values on estimate uncertainty. CONCLUSIONS: At NT$10,402/500 mg, ivosidenib was not cost-effective for IDH1-mutant ICC patients compared with mFOLFOX or 5-FU/LV, indicating that a 50-60% price reduction is necessary for ivosidenib to be cost-effective in this patient group.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Bile Duct Neoplasms , Cholangiocarcinoma , Cost-Benefit Analysis , Fluorouracil , Glycine , Isocitrate Dehydrogenase , Leucovorin , Mutation , Pyridines , Humans , Isocitrate Dehydrogenase/genetics , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/genetics , Pyridines/therapeutic use , Pyridines/economics , Taiwan , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/economics , Fluorouracil/therapeutic use , Fluorouracil/economics , Glycine/analogs & derivatives , Glycine/therapeutic use , Glycine/economics , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/economics , Leucovorin/therapeutic use , Leucovorin/economics , Male , Female , Organoplatinum Compounds/therapeutic use , Organoplatinum Compounds/economics , Middle Aged
20.
FASEB J ; 37(9): e22996, 2023 09.
Article in English | MEDLINE | ID: mdl-37566526

ABSTRACT

Myocardial ischemia/reperfusion injury (MIRI) is a prevalent condition associated with numerous critical clinical conditions. miR-322 has been implicated in MIRI through poorly understood mechanisms. Our preliminary analysis indicated potential interaction of CREB-binding protein (CBP), a transcriptional coactivator and acetyltransferase, with HIF-1α/ß-catenin, which might regulate miR-322 expression. We, therefore, hypothesized that CBP/HIF-1α/ß-catenin/miR-322 axis might play a role in MIRI. Rat cardiomyocytes subjected to oxygen-glucose deprivation /reperfusion (OGD/R) and Langendorff perfused heart model were used to model MIRI in vitro and in vivo, respectively. We used various techniques such as CCK-8 assay, transferase dUTP nick end labeling staining, western blotting, RT-qPCR, chromatin immunoprecipitation (ChIP), dual-luciferase assay, co-immunoprecipitation (Co-IP), hematoxylin and eosin staining, and TTC staining to assess cell viability, apoptosis, and the levels of CBP, HIF-1α, ß-catenin, miR-322, and acetylation. Our results indicate that OGD/R in cardiomyocytes decreased CBP/HIF-1α/ß-catenin/miR-322 expression, increased cell apoptosis and cytokines, and reduced cell viability. However, overexpression of CBP or miR-322 suppressed OGD/R-induced cell injury, while knockdown of HIF-1α/ß-catenin further exacerbated the damage. HIF-1α/ß-catenin bound to miR-322 promoter to promote its expression, while CBP acetylated HIF-1α/ß-catenin for stabilization. Overexpression of CBP attenuated MIRI in rats by acetylating HIF-1α/ß-catenin to stabilize their expression, resulting in stronger binding of HIF-1α/ß-catenin with the miR-322 promoter and subsequent increased miR-322 levels. Therefore, activating CBP/HIF-1α/ß-catenin/miR-322 signaling may be a potential approach to treat MIRI.


Subject(s)
MicroRNAs , Myocardial Reperfusion Injury , Animals , Rats , Apoptosis , beta Catenin/genetics , beta Catenin/metabolism , CREB-Binding Protein/genetics , CREB-Binding Protein/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL