Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 239
Filter
Add more filters

Publication year range
1.
Cell ; 179(7): 1566-1581.e16, 2019 12 12.
Article in English | MEDLINE | ID: mdl-31835033

ABSTRACT

Spermiogenesis is a highly orchestrated developmental process during which chromatin condensation decouples transcription from translation. Spermiogenic mRNAs are transcribed earlier and stored in a translationally inert state until needed for translation; however, it remains largely unclear how such repressed mRNAs become activated during spermiogenesis. We previously reported that the MIWI/piRNA machinery is responsible for mRNA elimination during late spermiogenesis in preparation for spermatozoa production. Here we unexpectedly discover that the same machinery is also responsible for activating translation of a subset of spermiogenic mRNAs to coordinate with morphological transformation into spermatozoa. Such action requires specific base-pairing interactions of piRNAs with target mRNAs in their 3' UTRs, which activates translation through coupling with cis-acting AU-rich elements to nucleate the formation of a MIWI/piRNA/eIF3f/HuR super-complex in a developmental stage-specific manner. These findings reveal a critical role of the piRNA system in translation activation, which we show is functionally required for spermatid development.


Subject(s)
Argonaute Proteins/metabolism , Peptide Chain Initiation, Translational , RNA, Small Interfering/metabolism , Spermatogenesis , 3' Untranslated Regions , Animals , Argonaute Proteins/genetics , Base Pairing , Cells, Cultured , ELAV-Like Protein 1/metabolism , Eukaryotic Initiation Factor-3/metabolism , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/genetics
2.
Opt Express ; 32(9): 16083-16089, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38859245

ABSTRACT

We report on a Kerr-lens mode-locked Tm,Ho-codoped calcium aluminate laser with in-band pumping of the Tm ions by a spatially single-mode 1678 nm Raman fiber laser. The structurally disordered CaGdAlO4 host crystal is also codoped also with the passive Lu ion for additional inhomogeneous line broadening. The Tm,Ho,Lu:CaGdAlO4 laser generates soliton pulses as short as 79 fs at a central wavelength of 2073.6 nm via soft-aperture Kerr-lens mode-locking. The corresponding average output power amounts to 91 mW at a pulse repetition rate of ∼86 MHz. The average output power can be scaled to 842 mW at the expense of slightly longer pulses of 155 fs at 2045.9 nm, which corresponds to a peak power of ∼58 kW. To the best of our knowledge, this represents the first demonstration of an in-band pumped Kerr-lens mode-locked Tm,Ho solid-state laser at ∼2 µm.

3.
Inorg Chem ; 63(2): 1102-1108, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38170901

ABSTRACT

Metal-organic framework (MOF)-based mixed-matrix membranes (MMMs) represent a class of composite membranes that seamlessly integrate the properties of MOF fillers and polymer matrix into a hybrid system and have been widely used in countless advanced technologies. However, there remains a need for scalable and simple manufacturing techniques that can fabricate a MOF-based MMM with uniform dispersion. Herein, a series of MMMs with well-dispersed MOFs are constructed by a soft spray technique. In brief, by uniformly spraying metal ions onto the surface of a mixed solution containing polyvinylpyrrolidone (PVP) and organic ligands, a free-standing MMM is synthesized at the miscible liquid-liquid interface, facilitated by the dual function of metal ions. Moreover, soft spray technology can also introduce multifunctional materials into the MMM to customize performance. We have successfully introduced carbon black into a MOF-based MMM by soft spray, resulting in MMMs with excellent photothermal effects. The resulted MOF-based MMM exhibits favorable catalytic performance in the condensation reaction of benzaldehyde with primary amines, and the MOF-based MMM modified with carbon black significantly boosts the endothermic CO2 conversion. The work opens a new avenue for the development of MOF-based MMMs with a promising future.

4.
Inorg Chem ; 63(15): 7034-7044, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38554089

ABSTRACT

Metal-organic frameworks (MOFs) are self-assembled constitutive precursors and efficient self-sacrificial templates with metal ions/clusters and organic linkers from which multifunctional materials with carbon nanostructures can be derived. In this study, we synthesized a novel Cu-MOF with Cu(II) as the central metal ion through two ligands, N,N'-bis(pyridin-3-yl)terephthalamide (3-bpta) and fumaric acid (H2FA), which was used as a template for derivatizing carbon-based nanostructured materials of Cu and CuxO through doping with different materials (melamine, urea, and TiO2) in a simple and efficient one-step pyrolysis. The Cu/CuxO-1 catalyst possesses both dark-catalyzed degradation activity and photocatalytic reduction activity during water purification due to the hole-transfer ability between Cu+ and Cu2+ and its inhibition of electron-hole complexation. In the absence of light, force, and cocatalyst, it can also effectively remove azo dyes in water and effectively reduce Cr(VI) under the action of visible light; therefore, Cu/CuxO-1 can be used as a new type of bifunctional material for the removal of pollutants in water, which has a broad prospect.

5.
Inorg Chem ; 63(17): 7705-7713, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38620065

ABSTRACT

Herein, three In(III)-based metal-organic frameworks (In-MOFs) with different degrees of interpenetration (DOI), namely In-MOF-1, In-MOF-2, and In-MOF-3, constructed by In3+ and Y-shaped ligands 4,4',4″-s-triazine-2,4,6-triyltribenzoate (H3TATB), are successfully synthesized through the ionothermal/solvothermal method. Subsequently, three novel In-MOFs, including noninterpenetration polycatenation, 2-fold interpenetrated, and 4-fold interpenetrated structure, are employed as the platform for systematically investigating the separation efficiency of CO2/N2, CO2/CH4, and CO2/CH4/N2 mixture gas system. Among them, In-MOF-2 shows the highest CO2 uptake capacities at 298 K and simultaneously possesses the low adsorption enthalpy of CO2 (26.4 kJ/mol at low coverage), a feature desirable for low-energy-cost adsorbent regeneration. The CO2/N2 (v: v = 15/85) selectivity of In-MOF-2 reaches 37.6 (at 298 K and 1 bar), also revealing outstanding selective separation ability from flue gases and purifying natural gas, affording a unique robust separation material as it has moderate DOI and pore size. In-MOF-2 shows exceptional stability and feasibility to achieve reproducibility. Aperture adjustment makes In-MOF-2 a versatile platform for selectively capturing CO2 from flue gases or purifying natural gas.

6.
Opt Express ; 31(5): 8575-8585, 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36859969

ABSTRACT

We report on a Kerr-lens mode-locked laser based on an Yb3+-doped disordered calcium lithium niobium gallium garnet (Yb:CLNGG) crystal. Pumping by a spatially single-mode Yb fiber laser at 976 nm, the Yb:CLNGG laser delivers soliton pulses as short as 31 fs at 1056.8 nm with an average output power of 66 mW and a pulse repetition rate of ∼77.6 MHz via soft-aperture Kerr-lens mode-locking. The maximum output power of the Kerr-lens mode-locked laser amounted to 203 mW for slightly longer pulses of 37 fs at an absorbed pump power of 0.74 W, which corresponds to a peak power of 62.2 kW and an optical efficiency of 20.3%.

7.
Opt Express ; 31(8): 12463-12470, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37157405

ABSTRACT

We report on sub-40 fs pulse generation from a Yb:Sc2SiO5 laser pumped by a spatially single-mode fiber-coupled laser diode at 976 nm. A maximum output power of 545 mW was obtained at 1062.6 nm in the continuous-wave regime, corresponding to a slope efficiency of 64% and a laser threshold of 143 mW. A continuous wavelength tuning across 80 nm (1030 -1110 nm) was also achieved. Implementing a SESAM for starting and stabilizing the mode-locked operation, the Yb:Sc2SiO5 laser delivered soliton pulses as short as 38 fs at 1069.5 nm with an average output power of 76 mW at a pulse repetition rate of ∼79.8 MHz. The maximum output power was scaled to 216 mW for slightly longer pulses of 42 fs, which corresponded to a peak power of 56.6 kW and an optical efficiency of 22.7%. To the best of our knowledge, these results represent the shortest pulses ever achieved with any Yb3+-doped rare-earth oxyorthosilicate crystal.

8.
Opt Express ; 31(6): 10617-10624, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-37157604

ABSTRACT

We report on the first sub-60 fs pulse generated from a diode-pumped SESAM mode-locked Yb-laser based on a non-centrosymmetric Yb:YAl3(BO3)4 crystal as a gain medium. In the continuous-wave regime, pumping with a spatially single-mode, fiber-coupled 976 nm InGaAs laser diode, the Yb:YAl3(BO3)4 laser generated 391 mW at 1041.7 nm with a slope efficiency as high as 65.1%, and a wavelength tuning across 59 nm (1019 to 1078 nm) was achieved. By implementing a commercial SESAM to initiate and sustain the soliton type mode-locking, and using only a 1 mm-thick laser crystal, the Yb:YAl3(BO3)4 laser delivered pulses as short as 56 fs at a central wavelength of 1044.6 nm with an average output power of 76 mW at a pulse repetition rate of ∼67.55 MHz. To the best of our knowledge, this result represents the shortest pulses ever achieved from Yb:YAB crystal.

9.
Opt Express ; 31(10): 16634-16644, 2023 May 08.
Article in English | MEDLINE | ID: mdl-37157739

ABSTRACT

We report on sub-50 fs pulse generation from a passively mode-locked Yb:SrF2 laser pumped with a spatially single-mode, fiber-coupled laser diode at 976 nm. In the continuous-wave regime, the Yb:SrF2 laser generated a maximum output power of 704 mW at 1048 nm with a threshold of 64 mW and a slope efficiency of 77.2%. A continuous wavelength tuning across 89 nm (1006 - 1095 nm) was achieved with a Lyot filter. By implementing a SEmiconductor Saturable Absorber Mirror (SESAM) for initiating and sustaining the mode-locked operation, soliton pulses as short as 49 fs were generated at 1057 nm with an average output power of 117 mW at a pulse repetition rate of ∼75.9 MHz. The maximum average output power of the mode-locked Yb:SrF2 laser was scaled up to 313 mW for slightly longer pulses of 70 fs at 1049.4 nm, corresponding to a peak power of 51.9 kW and an optical efficiency of 34.7%.

10.
Inorg Chem ; 62(43): 17783-17790, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37844277

ABSTRACT

Coordination polymers are among the most favored active materials by researchers due to their broad application prospects. However, most of them are usually difficult to directly process into applicable devices because of their unsatisfied processability. One process of great concern for researchers is the in situ preparation of the coordination polymer on the applicable substrate, especially for the favored network substrates with good mechanical properties and 3D porous structure, which could provide obvious convenience and facilitation in the application process. Herein, we present an ultrafast and scalable thermal current-induced dewetting strategy to obtain uniform coordination polymer film in situ on network substrates, which could enable unprecedented convenience to obtain directly usable coordination polymer composites such as practical catalytic electrodes with excellent electrocatalytic performance. The proposed thermal current-induced dewetting method provides a highly adaptable and efficient practical production approach to integrate coordination polymer materials with network substrates and also provides new inspiration for understanding and applying the dewetting process on complex 3D network substrates.

11.
Inorg Chem ; 62(44): 18116-18127, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37883704

ABSTRACT

Double-walled carbon nanotubes (DWCNTs) make up a unique class of carbon nanotubes (CNTs) that are particularly intriguing for scientific research and are promising candidates for technological applications. A more precise level of control and greater yields can be achieved via catalytic chemical vapor deposition (CCVD), which involves the breakdown of a carbonaceous gas over nanoparticles. The addition of molybdenum to the system can increase the selectivity with regard to the number of walls that exist in the obtained CNTs. As reported herein, we have designed and synthesized a novel Co-Mo-MOF, [Co(3-bpta)1.5(MoO4)]·H2O (where 3-bpta = N,N'-bis(3-pyridyl)terephthalamide), and employed the Co-Mo-MOF as a bimetallic catalyst precursor for the CCVD approach to prepare high-quality DWCNTs. The Co-Mo-MOF was employed after being calcined in N2 and H2 at 1100 °C and decomposing into CoO, CoMoO4, and MoO3. Existing CoMoO4 is unaltered after reduction in H2 at 1100 °C, while CoO and MoO3 are converted into Co0 and MoO2, and more CoMoO4 is created at the expense of Co0 and MoO2 without clearly defining agglomeration. Finally, the interaction between metallic Co particles and C2H4 is what initiates the formation of DWCNTs. In-depth discussion is provided in this paper regarding the mechanism underlying the high selectivity and activity of Co-Mo catalysts in regulating the development and structure of DWCNTs. The DWCNTs also offer excellence performance when they are used as water purification agents and as selective sorbents. This work opens a feasible way to use MOFs as a way to produce MWCNTs, thus blazing a new trail in the field of MOF-derived carbon-based materials.

12.
Macromol Rapid Commun ; 44(10): e2200982, 2023 May.
Article in English | MEDLINE | ID: mdl-36964974

ABSTRACT

In this work, a novel three nitro-group-bearing monomer 3,6-dinitro-9-(2-trifluoromethyl-4-nitrophenyl)-carbazole (Car-3NO2 -CF3 ) via a CN coupling reaction between 3,6-dinitro-9H-carbazole (Car-2NO2 ) and 2-chloro-5-nitrobenzotrifluoride is synthesized, and obtained single crystal and single crystal analysis data for this compound. The crystal system of Car-3NO2 -CF3 is monoclinic and it has a P 21/c space group. This new monomer (Car-3NO2 -CF3 ) is also utilized to synthesize a novel azo-linked polymer (Azo-Car-CF3 ). The trifluoromethyl group has polar CF bonds, and thus it is an effective functional group for the capture of iodine. Azo-Car-CF3 has great thermal stability with a mass loss of only 10% at 414 °C, as well as good chemical stability as is demonstrated by its low solubility in common organic solvents such as tetrahydrofuran (THF), acetone, methanol, ethanol, and N,N-dimethylformamide (DMF). The specific surface area of Azo-Car-CF3 can reach as high as 335 m2  g-1 . Azo-Car-CF3 exhibits an excellent capacity for iodine adsorption and can reach up to 1198 mg g-1 in cyclohexane solution, and its adsorption capacity for iodine vapor can get to 2100 mg g-1 . In addition, ethanol can be used to trigger the release of the captured iodine to be easily released from Azo-Car-CF3 .


Subject(s)
Iodine , Polymers , Hydrocarbons, Fluorinated/chemistry , Solvents , Ethanol
13.
BMC Psychiatry ; 23(1): 9, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36600230

ABSTRACT

BACKGROUND AND OBJECTIVE: Insomnia is one of the common problems encountered in the hemodialysis (HD) population, but the mechanisms remain unclear. we aimed to (1) detect the spontaneous brain activity pattern in HD patients with insomnia (HDWI) by using fractional fractional amplitude of low frequency fluctuation (fALFF) method and (2) further identify brain regions showing altered fALFF as neural markers to discriminate HDWI patients from those on hemodialysis but without insomnia (HDWoI) and healthy controls (HCs). METHOD: We compared fALFF differences among HDWI subjects (28), HDWoI subjects (28) and HCs (28), and extracted altered fALFF features for the subsequent discriminative analysis. Then, we constructed a support vector machine (SVM) classifier to identify distinct neuroimaging markers for HDWI. RESULTS: Compared with HCs, both HDWI and HDWoI patients exhibited significantly decreased fALFF in the bilateral calcarine (CAL), right middle occipital gyrus (MOG), left precentral gyrus (PreCG), bilateral postcentral gyrus (PoCG) and bilateral temporal middle gyrus (TMG), whereas increased fALFF in the bilateral cerebellum and right insula. Conversely, increased fALFF in the bilateral CAL/right MOG and decreased fALFF in the right cerebellum was observed in HDWI patients when compared with HDWoI patients. Moreover, the SVM classification achieved a good performance [accuracy = 82.14%, area under the curve (AUC) = 0.8202], and the consensus brain regions with the highest contributions to classification were located in the right MOG and right cerebellum. CONCLUSION: Our result highlights that HDWI patients had abnormal neural activities in the right MOG and right cerebellum, which might be potential neural markers for distinguishing HDWI patients from non-insomniacs, providing further support for the pathological mechanism of HDWI.


Subject(s)
Magnetic Resonance Imaging , Sleep Initiation and Maintenance Disorders , Humans , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/pathology , Sleep Initiation and Maintenance Disorders/diagnostic imaging , Brain Mapping/methods , Neuroimaging
14.
World J Surg Oncol ; 21(1): 283, 2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37674222

ABSTRACT

PURPOSE: The aim of this study was to investigate whether there was a difference in overall survival (OS) between elderly patients with early gastric cancer (EGC) who underwent endoscopic submucosal dissection (ESD) and those who underwent surgery. METHODS: Four databases including PubMed, Embase, the Cochrane Library and CKNI were searched on March 20, 2023. The characteristics of the studies and the baseline information of the patients, including their medical histories, postoperative data, and prognoses, were recorded. Odds ratios (ORs) or mean differences (MDs), and 95% confidence intervals (CIs) were pooled up to calculate baseline information and postoperative information. Hazard ratios (HRs) and 95% CIs were used to calculate the prognosis of the patients. Stata V16.0 software was used for the data analysis. RESULTS: A total of eight studies involving 2334 patients were included for the data analysis in this study. After pooling up the data, we found that the ESD group had lower Eastern Cooperative Oncology Groupprevious (ECOG) scores (OR = 0.33, 95% CI = 0.17 to 0.65, I2 = 59.69%, P = 0.00 < 0.05) than the surgery group. There were significant differences in the operation time (MD = -3.38, 95% CI = -5.19 to -1.57, I2 = 98.31%, P = 0.00 < 0.05), length of hospital stay (MD = -3.01, 95% CI = -4.81 to -1.20, I2 = 98.83%, P = 0.00 < 0.05) and hospitalization expenses (MD = -2.67, 95% CI = -3.59 to -1.75, I2 = 93.21%, P = 0.00 < 0.05) between the two groups. The ESD group had a lower OS rate (HR = 2.81, 95% CI = 2.20 to 3.58, I2 = 12.28%, P = 0.00 < 0.05). CONCLUSION: Elderly patients with EGC who underwent ESD had a significantly worse OS rate than those who underwent surgery. If the patient's condition was suitable, surgery was still recommended for these patients.


Subject(s)
Endoscopic Mucosal Resection , Stomach Neoplasms , Aged , Humans , Stomach Neoplasms/surgery , Databases, Factual , Hospitalization , Length of Stay
15.
BMC Surg ; 23(1): 318, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37872530

ABSTRACT

PURPOSE: This current study aimed to explore whether gastrectomy history influenced surgical outcomes while undergoing laparoscopic cholecystectomy (LC). METHODS: The PubMed, Embase, and Cochrane Library databases were searched for eligible studies from inception to April 29, 2023. The Newcastle-Ottawa Scale (NOS) was adopted to assess the quality of included studies. The mean differences (MDs) and 95% confidence intervals (CIs) were calculated for continuous variables, and the odds ratios (ORs) and 95% CIs were calculated for dichotomous variables. RevMan 5.4 was used for data analysis. RESULTS: Seven studies enrolling 8193 patients were eligible for the final pooling up analysis (380 patients in the previous gastrectomy group and 7813 patients in the non-gastrectomy group). The patients in the gastrectomy group were older (MD = 11.11, 95%CI = 7.80-14.41, P < 0.01) and had a higher portion of males (OR = 3.74, 95%CI = 2.92-4.79, P < 0.01) than patients in the non-gastrectomy group patients. Moreover, the gastrectomy group had longer LC operation time (MD = 34.17, 95%CI = 25.20-43.14, P < 0.01), a higher conversion rate (OR = 6.74, 95%CI = 2.17-20.26, P = 0.01), more intraoperative blood loss (OR = 1.96, 95%CI = 0.59-3.32, P < 0.01) and longer postoperative hospital stays (MD = 1.07, 95%CI = 0.38-1.76, P < 0.01) than the non-gastrectomy group. CONCLUSION: Patients with a previous gastrectomy history had longer operation time, a higher conversion rate, more intraoperative blood loss, and longer postoperative hospital stays than patients without while undergoing LC. Surgeons should pay more attention to these patients and make prudent decisions to avoid worse surgical outcomes as much as possible.


Subject(s)
Cholecystectomy, Laparoscopic , Laparoscopy , Stomach Neoplasms , Humans , Male , Blood Loss, Surgical , Gastrectomy , Length of Stay , Postoperative Complications/epidemiology , Postoperative Complications/surgery , Stomach Neoplasms/surgery , Treatment Outcome
16.
J Proteome Res ; 21(3): 788-797, 2022 03 04.
Article in English | MEDLINE | ID: mdl-34699232

ABSTRACT

Depression is a common psychopathological state or mood disorder syndrome. The serious risks to human life and the inadequacy of the existing antidepressant drugs have driven us to understand the pathogenesis of depression from a new perspective. Our research group has found disturbances in glucose catabolism in both depression and nephrotic syndrome. What are the specific metabolic pathways and specificities of glucose catabolism disorders caused by depression? To address the above scientific questions, we creatively combined traditional metabolomics technology with stable isotope-resolved metabolomics to research the glucose catabolism of the corticosterone-induced PC12 cell damage model and the adriamycin-induced glomerular podocyte damage model. The results showed an increased flux of pyruvate metabolism in depression. The increased flux of pyruvate metabolism led to an activation of gluconeogenesis in depression. The disturbed upstream metabolism of succinate caused the tricarboxylic acid cycle (TCA cycle) to be blocked in depression. In addition, there were metabolic disturbances in the purine metabolism and pentose phosphate pathways in depression. Compared with nephrotic syndrome, pyruvate metabolism, the TCA cycle, and gluconeogenesis metabolism in depression were specific. The metabolic pathways researched above are likely to be important targets for the efficacy of antidepressants.


Subject(s)
Depression , Nephrotic Syndrome , Adrenal Cortex Hormones , Animals , Citric Acid Cycle , Depression/chemically induced , Female , Glucose/metabolism , Humans , Isotopes , Male , Metabolomics/methods , PC12 Cells , Pyruvic Acid , Rats
17.
Opt Express ; 30(7): 11825-11832, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35473117

ABSTRACT

We report on the continuous-wave (CW) and mode-locked (ML) laser performance of an Yb3+-doped yttrium-gadolinium orthoaluminate crystal, Yb:(Y,Gd)AlO3. Pumping by a single-transverse-mode fiber-coupled 976 nm InGaAs laser diode, the maximum output power in the CW regime amounted to 429 mW at 1041.8 nm corresponding to a slope efficiency of 51.1% and a continuous wavelength tuning across 84 nm (1011-1095 nm) was achieved. The self-starting ML operation of the Yb:(Y,Gd)AlO3 laser was stabilized by a semiconductor saturable absorber mirror. Soliton pulses as short as 43 fs were generated at 1052.3 nm with an average output power of 103 mW and a pulse repetition rate of ∼70.8 MHz. To the best of our knowledge, our result represents the first report on the passively mode-locked operation of a Yb:(Y,Gd)AlO3 laser, and the shortest pulse duration ever achieved from any Yb3+-doped orthorhombic perovskite aluminate crystals.

18.
Opt Express ; 30(7): 11833-11839, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35473118

ABSTRACT

We report on a soliton mode-locked Yb:Ca3Gd2(BO3)4 laser at ∼1.06 µm stabilized by a semiconductor saturable absorber mirror. Pumping with a single-transverse mode, fiber-coupled laser diode at 976 nm, the Yb:Ca3Gd2(BO3)4 laser delivers soliton pulses as short as 39 fs at a central wavelength of 1059.2 nm with an average output power of 70 mW and a pulse repetition rate of ∼67.3 MHz.

19.
Opt Express ; 30(7): 11861-11871, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35473121

ABSTRACT

We demonstrate the first sub-40 fs soliton pulse generation from a diode-pumped Yb:Sr3Y2(BO3)4 laser passively mode-locked by a semiconductor saturable absorber mirror. Pulses as short as 38 fs at a central wavelength of 1051.7 nm were achieved with an average output power of 115 mW and a pulse repetition rate of 67.7 MHz. The maximum average output power reached 303 mW at 1057.8 nm with a slightly longer pulse duration of 52 fs, which corresponded to a peak power of 76.9 kW and an optical efficiency of 25.3%.

20.
Opt Express ; 30(9): 15807-15818, 2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35473293

ABSTRACT

We report on a continuous-wave (CW) and passively mode-locked operation of a fluorite-type Yb:BaF2 crystal. Pumped with a spatially single-mode, fiber-coupled InGaAs laser diode at 976 nm, the Yb:BaF2 laser generated a maximum CW output power of 512 mW at 1054.4 nm, corresponding to a laser threshold of 36.5 mW and a slope efficiency of 65.0%. A continuous wavelength tuning across 85 nm (1007-1092 nm) was achieved. By implementing a semiconductor saturable absorber mirror for initiating and sustaining the soliton pulse shaping, near Fourier-transform-limited pulses as short as 52 fs were generated at 1058.2 nm with an average output power of 129 mW at a pulse repetition rate of ∼79.5 MHz. To the best of our knowledge, this is the first report on the passively mode-locked operation of the Yb:BaF2 crystal.

SELECTION OF CITATIONS
SEARCH DETAIL