Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Nano Lett ; 24(22): 6465-6473, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38767853

ABSTRACT

Neutrophilic superhalide-anion-triggered chalcogen conversion-based Zn batteries, despite latent high-energy merit, usually suffer from a short lifespan caused by dendrite growth and shuttle effect. Here, a superhalide-anion-motivator reforming strategy is initiated to simultaneously manipulate the anode interface and Se conversion intermediates, realizing a bipolar regulation toward longevous energy-type Zn batteries. With ZnF2 chaotropic additives, the original large-radii superhalide zincate anion species in ionic liquid (IL) electrolytes are split into small F-containing species, boosting the formation of robust solid electrolyte interphases (SEI) for Zn dendrite inhibition. Simultaneously, ion radius reduced multiple F-containing Se conversion intermediates form, enhancing the interion interaction of charged products to suppress the shuttle effect. Consequently, Zn||Se batteries deliver a ca. 20-fold prolonged lifespan (2000 cycles) at 1 A g-1 and high energy/power density of 416.7 Wh kgSe-1/1.89 kW kgSe-1, outperforming those in F-free counterparts. Pouch cells with distinct plateaus and durable cyclability further substantiate the practicality of this design.

2.
J Cell Mol Med ; 28(7): e18221, 2024 04.
Article in English | MEDLINE | ID: mdl-38509759

ABSTRACT

Gliomas are the most common tumours in the central nervous system. In the present study, we aimed to find a promising anti-glioma compound and investigate the underlying molecular mechanism. Glioma cells were subjected to the 50 candidate compounds at a final concentration of 10 µM for 72 h, and CCK-8 was used to evaluate their cytotoxicity. NPS-2143, an antagonist of calcium-sensing receptor (CASR), was selected for further study due to its potent cytotoxicity to glioma cells. Our results showed that NPS-2143 could inhibit the proliferation of glioma cells and induce G1 phase cell cycle arrest. Meanwhile, NPS-2143 could induce glioma cell apoptosis by increasing the caspase-3/6/9 activity. NPS-2143 impaired the immigration and invasion ability of glioma cells by regulating the epithelial-mesenchymal transition process. Mechanically, NPS-2143 could inhibit autophagy by mediating the AKT-mTOR pathway. Bioinformatic analysis showed that the prognosis of glioma patients with low expression of CASR mRNA was better than those with high expression of CASR mRNA. Gene set enrichment analysis showed that CASR was associated with cell adhesion molecules and lysosomes in glioma. The nude mice xenograft model showed NPS-2143 could suppress glioma growth in vivo. In conclusion, NPS-2143 can suppress the glioma progression by inhibiting autophagy.


Subject(s)
Glioma , Naphthalenes , Proto-Oncogene Proteins c-akt , Animals , Humans , Mice , Apoptosis , Autophagy , Cell Line, Tumor , Cell Proliferation , Glioma/drug therapy , Glioma/genetics , Glioma/metabolism , Mice, Nude , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger/genetics , TOR Serine-Threonine Kinases/metabolism , Naphthalenes/pharmacology
3.
Angew Chem Int Ed Engl ; 63(15): e202400121, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38287460

ABSTRACT

Bipolar organic cathode materials (OCMs) implementing cation/anion storage mechanisms are promising for high-energy aqueous Zn batteries (AZBs). However, conventional organic functional group active sites in OCMs usually fail to sufficiently unlock the high-voltage/capacity merits. Herein, we initially report dynamically ion-coordinated bipolar OCMs as cathodes with chalcogen active sites to solve this issue. Unlike conventional organic functional groups, chalcogens bonded with conjugated group undergo multielectron-involved positive-valence oxidation and negative-valence reduction, affording higher redox potentials and reversible capacities. With phenyl diselenide (PhSe-SePh, PDSe) as a proof of concept, it exhibits a conversion pathway from (PhSe)- to (PhSe-SePh)0 and then to (PhSe)+ as unveiled by characterization and theoretical simulation, where the diselenide bonds are periodically broken and healed, dynamically coordinating with ions (Zn2+ and OTF-). When confined into ordered mesoporous carbon (CMK-3), the dissolution of PDSe intermediates is greatly inhibited to obtain an ultralong lifespan without voltage/capacity compromise. The PDSe/CMK-3 || Zn batteries display high reversibility capacity (621.4 mAh gPDSe -1), distinct discharge plateau (up to 1.4 V), high energy density (578.3 Wh kgPDSe -1), and ultralong lifespan (12 000 cycles) at 10 A g-1, far outperforming conventional bipolar OCMs. This work sheds new light on conversion-type active site engineering for high-voltage/capacity bipolar OCMs towards high-energy AZBs.

4.
Angew Chem Int Ed Engl ; 63(29): e202405593, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38716660

ABSTRACT

For zinc-metal batteries, the instable chemistry at Zn/electrolyte interphasial region results in severe hydrogen evolution reaction (HER) and dendrite growth, significantly impairing Zn anode reversibility. Moreover, an often-overlooked aspect is this instability can be further exacerbated by the interaction with dissolved cathode species in full batteries. Here, inspired by sustained-release drug technology, an indium-chelated resin protective layer (Chelex-In), incorporating a sustained-release mechanism for indium, is developed on Zn surface, stabilizing the anode/electrolyte interphase to ensure reversible Zn plating/stripping performance throughout the entire lifespan of Zn//V2O5 batteries. The sustained-release indium onto Zn electrode promotes a persistent anticatalytic effect against HER and fosters uniform heterogeneous Zn nucleation. Meanwhile, on the electrolyte side, the residual resin matrix with immobilized iminodiacetates anions can also repel detrimental anions (SO4 2- and polyoxovanadate ions dissolved from V2O5 cathode) outside the electric double layer. This dual synergetic regulation on both electrode and electrolyte sides culminates a more stable interphasial environment, effectively enhancing Zn anode reversibility in practical high-areal-capacity full battery systems. Consequently, the bio-inspired Chelex-In protective layer enables an ultralong lifespan of Zn anode over 2800 h, which is also successfully demonstrated in ultrahigh areal capacity Zn//V2O5 full batteries (4.79 mAh cm-2).

5.
Angew Chem Int Ed Engl ; : e202407639, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976402

ABSTRACT

Gradual disability of Zn anode and high negative/positive electrode (N/P) ratio usually depreciate calendar life and energy density of aqueous Zn batteries (AZBs). Herein, within original Zn2+-free hydrated electrolytes, a steric hindrance/electric field shielding-driven "hydrophobic ion barrier" is engineered towards ultradurable (002) plane-exposed Zn stripping/plating to solve this issue. Guided by theoretical simulations, hydrophobic adiponitrile (ADN) is employed as a steric hindrance agent to ally with inert electric field shielding additive (Mn2+) for plane adsorption priority manipulation, thereby constructing the "hydrophobic ion barrier". This design robustly suppresses the (002) plane/dendrite growth, enabling ultradurable (002) plane-exposed dendrite-free Zn stripping/plating. Even being cycled in Zn‖Zn symmetric cell over 2150 h at 0.5 mA cm-2, the efficacy remains well-kept. Additionally, Zn‖Zn symmetric cells can be also stably cycled over 918 h at 1 mA cm-2, verifying uncompromised Zn stripping/plating kinetics. As-assembled anode-less Zn‖VOPO4·2H2O full cells with a low N/P ratio (2:1) show a high energy density of 75.2 Wh kg-1full electrode after 842 cycles at 1 A g-1, far surpassing counterparts with thick Zn anode and low cathode loading mass, featuring excellent practicality. This study opens a new avenue by robust "hydrophobic ion barrier" design to develop long-life anode-less Zn batteries.

6.
Angew Chem Int Ed Engl ; : e202410434, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39078870

ABSTRACT

Hydrogel electrolytes (HEs) hold great promise in tackling severe issues emerging in aqueous zinc-ion batteries, but the prevalent salting-out effect of kosmotropic salt causes low ionic conductivity and electrochemical instability. Herein, a subtle molecular bridging strategy is proposed to enhance the compatibility between PVA and ZnSO4 from the perspective of hydrogen-bonding microenvironment re-construction. By introducing urea containing both an H-bond acceptor and donor, the broken H-bonds between PVA and H2O, initiated by the SO42--driven H2O polarization, could be re-united via intense intermolecular hydrogen bonds, thus leading to greatly increased carrying capacity of ZnSO4. The urea-modified PVA-ZnSO4 HEs featuring a high ionic conductivity up to 31.2 mS cm-1 successfully solves the sluggish ionic transport dilemma at the solid-solid interface. Moreover, an organic solid-electrolyte-interphase can be derived from the in-situ electro-polymerization of urea to prohibit H2O-involved side reactions, thereby prominently improving the reversibility of Zn chemistry. Consequently, Zn anodes witness an impressive lifespan extension from 50 h to 2200 h at 0.1 mA cm-2 while the Zn-I2 full battery maintains a remarkable Coulombic efficiency (>99.7%) even after 8000 cycles. The anti-salting-out strategy proposed in this work provides an insightful concept for addressing the phase separation issue of functional HEs.

7.
Biochem Pharmacol ; 223: 116113, 2024 May.
Article in English | MEDLINE | ID: mdl-38460907

ABSTRACT

Glioma is one of the most common primary malignant tumors of the central nervous system. Temozolomide (TMZ) is the only effective chemotherapeutic agent, but it easily develops resistance and has unsatisfactory efficacy. Consequently, there is an urgent need to develop safe and effective compounds for glioma treatment. The cytotoxicity of 30 candidate compounds to glioma cells was detected by the CCK-8 assay. Daurisoline (DAS) was selected for further investigation due to its potent anti-glioma effects. Our study revealed that DAS induced glioma cell apoptosis through increasing caspase-3/6/9 activity. DAS significantly inhibited the proliferation of glioma cells by inducing G1-phase cell cycle arrest. Meanwhile, DAS remarkably suppressed the migration and invasion of glioma cells by regulating epithelial-mesenchymal transition. Mechanistically, our results revealed that DAS impaired the autophagic flux of glioma cells at a late stage by mediating the PI3K/AKT/mTOR pathway. DAS could inhibit TMZ-induced autophagy and then significantly promote TMZ chemosensitivity. Nude mice xenograft model revealed that DAS could restrain glioma proliferation and promote TMZ chemosensitivity. Thus, DAS is a potential anti-glioma drug that can improve glioma sensitivity to TMZ and provide a new therapeutic strategy for glioma in chemoresistance.


Subject(s)
Benzylisoquinolines , Brain Neoplasms , Glioma , Mice , Animals , Humans , Temozolomide/pharmacology , Temozolomide/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Mice, Nude , Brain Neoplasms/metabolism , Glioma/pathology , TOR Serine-Threonine Kinases/metabolism , Autophagy , Cell Line, Tumor , Apoptosis , Drug Resistance, Neoplasm
8.
Quant Imaging Med Surg ; 14(1): 251-263, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38223098

ABSTRACT

Background: The mutational status of alpha-thalassemia X-linked intellectual disability (ATRX) is an important indicator for the treatment and prognosis of high-grade gliomas, but reliable ATRX testing currently requires invasive procedures. The objective of this study was to develop a clinical trait-imaging fusion model that combines preoperative magnetic resonance imaging (MRI) radiomics and deep learning (DL) features with clinical variables to predict ATRX status in isocitrate dehydrogenase (IDH)-mutant high-grade astrocytoma. Methods: A total of 234 patients with IDH-mutant high-grade astrocytoma (120 ATRX mutant type, 114 ATRX wild type) from 3 centers were retrospectively analyzed. Radiomics and DL features from different regions (edema, tumor, and the overall lesion) were extracted to construct multiple imaging models by combining different features in different regions for predicting ATRX status. An optimal imaging model was then selected, and its features and linear coefficients were used to calculate an imaging score. Finally, a fusion model was developed by combining the imaging score and clinical variables. The performance and application value of the fusion model were evaluated through the comparison of receiver operating characteristic curves, the construction of a nomogram, calibration curves, decision curves, and clinical application curves. Results: The overall hybrid model constructed with radiomics and DL features from the overall lesion was identified as the optimal imaging model. The fusion model showed the best prediction performance with an area under curve of 0.969 in the training set, 0.956 in the validation set, and 0.949 in the test set as compared to the optimal imaging model (0.966, 0.916, and 0.936, respectively) and clinical model (0.677, 0.641, 0.772, respectively). Conclusions: The clinical trait-imaging fusion model based on preoperative MRI could effectively predict the ATRX mutation status of individuals with IDH-mutant high-grade astrocytoma and has the potential to help patients through the development of a more effective treatment strategy before treatment.

SELECTION OF CITATIONS
SEARCH DETAIL