Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Development ; 151(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38546043

ABSTRACT

The timely degradation of proteins that regulate the cell cycle is essential for oocyte maturation. Oocytes are equipped to degrade proteins via the ubiquitin-proteasome system. In meiosis, anaphase promoting complex/cyclosome (APC/C), an E3 ubiquitin-ligase, is responsible for the degradation of proteins. Ubiquitin-conjugating enzyme E2 S (UBE2S), an E2 ubiquitin-conjugating enzyme, delivers ubiquitin to APC/C. APC/C has been extensively studied, but the functions of UBE2S in oocyte maturation and mouse fertility are not clear. In this study, we used Ube2s knockout mice to explore the role of UBE2S in mouse oocytes. Ube2s-deleted oocytes were characterized by meiosis I arrest with normal spindle assembly and spindle assembly checkpoint dynamics. However, the absence of UBE2S affected the activity of APC/C. Cyclin B1 and securin are two substrates of APC/C, and their levels were consistently high, resulting in the failure of homologous chromosome separation. Unexpectedly, the oocytes arrested in meiosis I could be fertilized and the embryos could become implanted normally, but died before embryonic day 10.5. In conclusion, our findings reveal an indispensable regulatory role of UBE2S in mouse oocyte meiosis and female fertility.


Subject(s)
M Phase Cell Cycle Checkpoints , Meiosis , Animals , Female , Mice , Anaphase-Promoting Complex-Cyclosome/genetics , Anaphase-Promoting Complex-Cyclosome/metabolism , Oocytes/metabolism , Ubiquitins/metabolism
2.
PLoS Pathog ; 20(4): e1012146, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38669242

ABSTRACT

Apoptosis is a critical host antiviral defense mechanism. But many viruses have evolved multiple strategies to manipulate apoptosis and escape host antiviral immune responses. Herpesvirus infection regulated apoptosis; however, the underlying molecular mechanisms have not yet been fully elucidated. Hence, the present study aimed to study the relationship between herpesvirus infection and apoptosis in vitro and in vivo using the pseudorabies virus (PRV) as the model virus. We found that mitochondria-dependent apoptosis was induced by PRV gM, a late protein encoded by PRV UL10, a virulence-related gene involved in enhancing PRV pathogenicity. Mechanistically, gM competitively combines with BCL-XL to disrupt the BCL-XL-BAK complex, resulting in BCL-2-antagonistic killer (BAK) oligomerization and BCL-2-associated X (BAX) activation, which destroys the mitochondrial membrane potential and activates caspase-3/7 to trigger apoptosis. Interestingly, similar apoptotic mechanisms were observed in other herpesviruses (Herpes Simplex Virus-1 [HSV-1], human cytomegalovirus [HCMV], Equine herpesvirus-1 [EHV-1], and varicella-zoster virus [VZV]) driven by PRV gM homologs. Compared with their parental viruses, the pathogenicity of PRV-ΔUL10 or HSV-1-ΔUL10 in mice was reduced with lower apoptosis and viral replication, illustrating that UL10 is a key virulence-related gene in PRV and HSV-1. Consistently, caspase-3 deletion also diminished the replication and pathogenicity of PRV and HSV-1 in vitro and in mice, suggesting that caspase-3-mediated apoptosis is closely related to the replication and pathogenicity of PRV and HSV-1. Overall, our findings firstly reveal the mechanism by which PRV gM and its homologs in several herpesviruses regulate apoptosis to enhance the viral replication and pathogenicity, and the relationship between gM-mediated apoptosis and herpesvirus pathogenicity suggests a promising approach for developing attenuated live vaccines and therapy for herpesvirus-related diseases.


Subject(s)
Apoptosis , Herpesvirus 1, Suid , Mitochondria , Pseudorabies , Viral Proteins , Animals , Herpesvirus 1, Suid/pathogenicity , Herpesvirus 1, Suid/genetics , Mice , Mitochondria/metabolism , Mitochondria/virology , Pseudorabies/virology , Viral Proteins/metabolism , Viral Proteins/genetics , Herpesviridae/pathogenicity , Herpesviridae/genetics , Virus Replication/physiology , Humans , Mice, Inbred BALB C , Virulence
3.
PLoS Pathog ; 20(4): e1012136, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38620034

ABSTRACT

African swine fever (ASF) is an acute, hemorrhagic, and severe infectious disease caused by the ASF virus (ASFV). ASFV has evolved multiple strategies to escape host antiviral immune responses. Here, we reported that ASFV pB318L, a trans-geranylgeranyl-diphosphate synthase, reduced the expression of type I interferon (IFN-I) and IFN-stimulated genes (ISGs). Mechanically, pB318L not only interacted with STING to reduce the translocation of STING from the endoplasmic reticulum to the Golgi apparatus but also interacted with IFN receptors to reduce the interaction of IFNAR1/TYK2 and IFNAR2/JAK1. Of note, ASFV with interruption of B318L gene (ASFV-intB318L) infected PAMs produces more IFN-I and ISGs than that in PAMs infected with its parental ASFV HLJ/18 at the late stage of infection. Consistently, the pathogenicity of ASFV-intB318L is attenuated in piglets compared with its parental virus. Taken together, our data reveal that B318L gene may partially affect ASFV pathogenicity by reducing the production of IFN-I and ISGs. This study provides a clue to design antiviral agents or live attenuated vaccines to prevent and control ASF.


Subject(s)
African Swine Fever Virus , African Swine Fever , Interferon Type I , Animals , Swine , Farnesyltranstransferase/metabolism , Viral Proteins/metabolism , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Interferon Type I/genetics , Interferon Type I/metabolism , Signal Transduction
4.
J Biol Chem ; 300(6): 107307, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657868

ABSTRACT

African swine fever, caused by the African swine fever virus (ASFV), is a viral hemorrhagic disease that affects domestic pigs and wild boars. ASFV infection causes extensive tissue damage, and the associated mechanism is poorly understood. Pyroptosis is characterized by the activation of inflammatory caspases and pore formation in the cellular plasma membrane, resulting in the release of inflammatory cytokines and cell damage. How ASFV infection regulates pyroptosis remains unclear. Here, using siRNA assay and overexpression methods, we report that ASFV infection regulated pyroptosis by cleaving the pyroptosis execution protein gasdermin A (GSDMA). ASFV infection activated caspase-3 and caspase-4, which specifically cleaved GSDMA at D75-P76 and D241-V242 to produce GSDMA into five fragments, including GSDMA-N1-75, GSDMA-N1-241, and GSDMA-N76-241 fragments at the N-terminal end of GSDMA. Only GSDMA-N1-241, which was produced in the late stage of ASFV infection, triggered pyroptosis and inhibited ASFV replication. The fragments, GSDMA-N1-75 and GSDMA-N76-241, lose the ability to induce pyroptosis. Overall ASFV infection differentially regulates pyroptosis by GSDMA in the indicated phase, which may be conducive to its own replication. Our findings reveal a novel molecular mechanism for the regulation of pyroptosis.


Subject(s)
African Swine Fever Virus , African Swine Fever , Caspase 3 , Caspases, Initiator , Pyroptosis , African Swine Fever Virus/metabolism , Animals , African Swine Fever/metabolism , African Swine Fever/virology , African Swine Fever/pathology , Swine , Caspase 3/metabolism , Caspase 3/genetics , Caspases, Initiator/metabolism , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Phosphate-Binding Proteins/metabolism , HEK293 Cells , Virus Replication
5.
J Virol ; 98(3): e0183423, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38353534

ABSTRACT

African swine fever (ASF) is an acute, hemorrhagic, and severe infectious disease caused by ASF virus (ASFV) infection. At present, there are still no safe and effective drugs and vaccines to prevent ASF. Mining the important proteins encoded by ASFV that affect the virulence and replication of ASFV is the key to developing effective vaccines and drugs. In this study, ASFV pH240R, a capsid protein of ASFV, was found to inhibit the type I interferon (IFN) signaling pathway. Mechanistically, pH240R interacted with IFNAR1 and IFNAR2 to disrupt the interaction of IFNAR1-TYK2 and IFNAR2-JAK1. Additionally, pH240R inhibited the phosphorylation of IFNAR1, TYK2, and JAK1 induced by IFN-α, resulting in the suppression of the nuclear import of STAT1 and STAT2 and the expression of IFN-stimulated genes (ISGs). Consistent with these results, H240R-deficient ASFV (ASFV-∆H240R) infection induced more ISGs in porcine alveolar macrophages compared with its parental ASFV HLJ/18. We also found that pH240R enhanced viral replication via inhibition of ISGs expression. Taken together, our results clarify that pH240R enhances ASFV replication by inhibiting the JAK-STAT signaling pathway, which highlights the possibility of pH240R as a potential drug target.IMPORTANCEThe innate immune response is the host's first line of defense against pathogen infection, which has been reported to affect the replication and virulence of African swine fever virus (ASFV) isolates. Identification of ASFV-encoded proteins that affect the virulence and replication of ASFV is the key step in developing more effective vaccines and drugs. In this study, we found that pH240R interacted with IFNAR1 and IFNAR2 by disrupting the interaction of IFNAR1-TYK2 and IFNAR2-JAK1, resulting in the suppression of the expression of interferon (IFN)-stimulated genes (ISGs). Consistent with these results, H240R-deficient ASFV (ASFV-∆H240R) infection induces more ISGs' expression compared with its parental ASFV HLJ/18. We also found that pH240R enhanced viral replication via inhibition of ISGs' expression. Taken together, our findings showed that pH240R enhances ASFV replication by inhibiting the IFN-JAK-STAT axis, which highlights the possibility of pH240R as a potential drug target.


Subject(s)
African Swine Fever Virus , African Swine Fever , Interferon Type I , Animals , African Swine Fever/metabolism , African Swine Fever/virology , African Swine Fever Virus/metabolism , Interferon Type I/metabolism , Signal Transduction/physiology , Swine , Vaccines/metabolism , Virus Replication
6.
J Immunol ; 210(9): 1338-1350, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36971697

ABSTRACT

African swine fever is a fatal infectious disease caused by African swine fever virus (ASFV). The high mortality caused by this infectious disease is a significant challenge to the swine industry worldwide. ASFV virulence is related to its ability to antagonize IFN response, yet the mechanism of antagonism is not understood. Recently, a less virulent recombinant virus has emerged that has a EP402R gene deletion within the parental ASFV HLJ/18 (ASFV-ΔEP402R) strain. EP402R gene encodes CD2v. Hence we hypothesized that ASFV uses CD2v protein to evade type I IFN-mediated innate immune response. We found that ASFV-ΔEP402R infection induced higher type I IFN response and increased the expression of IFN-stimulated genes in porcine alveolar macrophages when compared with parental ASFV HLJ/18. Consistent with these results, CD2v overexpression inhibited type I IFN production and IFN-stimulated gene expression. Mechanistically, CD2v, by interacting with the transmembrane domain of stimulator of IFN genes (STING), prevented the transport of STING to the Golgi apparatus, and thereby inhibited the cGMP-AMP synthase-STING signaling pathway. Furthermore, ASFV CD2v disrupted IFNAR1-TYK2 and IFNAR2-JAK1 interactions, and thereby inhibited JAK-STAT activation by IFN-α. In vivo, specific pathogen-free pigs infected with the mutant ASFV-ΔEP402R strain survived better than animals infected with the parental ASFV HLJ/18 strain. Consistent with this finding, IFN-ß protein levels in the peripheral blood of ASFV-ΔEP402R-challenged pigs were significantly higher than in the blood of ASFV HLJ/18-challenged pigs. Taken together, our findings suggest a molecular mechanism in which CD2v inhibits cGMP-AMP synthase-STING and IFN signaling pathways to evade the innate immune response rendering ASFV infection fatal in pigs.


Subject(s)
African Swine Fever Virus , African Swine Fever , Interferon Type I , Swine , Animals , African Swine Fever Virus/genetics , Viral Proteins , Signal Transduction , Gene Expression , Interferon Type I/metabolism
7.
J Biol Chem ; 299(7): 104844, 2023 07.
Article in English | MEDLINE | ID: mdl-37209818

ABSTRACT

Cytoplasmic stress granules (SGs) are generally triggered by stress-induced translation arrest for storing mRNAs. Recently, it has been shown that SGs are regulated by different stimulators including viral infection, which is involved in the antiviral activity of host cells to limit viral propagation. To survive, several viruses have been reported to execute various strategies, such as modulating SG formation, to create optimal surroundings for viral replication. African swine fever virus (ASFV) is one of the most notorious pathogens in the global pig industry. However, the interplay between ASFV infection and SG formation remains largely unknown. In this study, we found that ASFV infection inhibited SG formation. Through SG inhibitory screening, we found that several ASFV-encoded proteins are involved in inhibition of SG formation. Among them, an ASFV S273R protein (pS273R), the only cysteine protease encoded by the ASFV genome, significantly affected SG formation. ASFV pS273R interacted with G3BP1 (Ras-GTPase-activating protein [SH3 domain] binding protein 1), a vital nucleating protein of SG formation. Furthermore, we found that ASFV pS273R cleaved G3BP1 at the G140-F141 to produce two fragments (G3BP1-N1-140 and G3BP1-C141-456). Interestingly, both the pS273R-cleaved fragments of G3BP1 lost the ability to induce SG formation and antiviral activity. Taken together, our finding reveals that the proteolytic cleavage of G3BP1 by ASFV pS273R is a novel mechanism by which ASFV counteracts host stress and innate antiviral responses.


Subject(s)
African Swine Fever Virus , Stress Granules , Viral Proteins , Animals , African Swine Fever/metabolism , African Swine Fever/virology , African Swine Fever Virus/enzymology , African Swine Fever Virus/genetics , Poly-ADP-Ribose Binding Proteins/metabolism , Stress Granules/metabolism , Swine , Virus Replication/physiology , Chlorocebus aethiops , Humans , HEK293 Cells , Cells, Cultured , Macrophages, Alveolar/virology , Viral Proteins/metabolism , Proteolysis
8.
J Virol ; 97(3): e0000323, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36877049

ABSTRACT

Pseudorabies virus (PRV) infection activates inflammatory responses to release robust proinflammatory cytokines, which are critical for controlling viral infection and clearance of PRV. However, the innate sensors and inflammasomes involved in the production and secretion of proinflammatory cytokines during PRV infection remain poorly studied. In this study, we report that the transcription and expression levels of some proinflammatory cytokines, including interleukin 1ß (IL-1ß), IL-6, and tumor necrosis factor alpha (TNF-α), are upregulated in primary peritoneal macrophages and in mice during PRV infection. Mechanistically, Toll-like receptor 2 (TLR2), TLR3, TLR4, and TLR5 were induced by the PRV infection to enhance the transcription levels of pro-IL-1ß, pro-IL-18, and gasdermin D (GSDMD). Additionally, we found that PRV infection and transfection of its genomic DNA triggered AIM2 inflammasome activation, apoptosis-related speckle-like protein (ASC) oligomerization, and caspase-1 activation to enhance the secretion of IL-1ß and IL-18, which was mainly dependent on GSDMD, but not GSDME, in vitro and in vivo. Taken together, our findings reveal that the activation of the TLR2-TLR3-TRL4-TLR5-NF-κB axis and AIM2 inflammasome, as well as GSDMD, is required for proinflammatory cytokine release, which resists the PRV replication and plays a critical role in host defense against PRV infection. Our findings provide novel clues to prevent and control PRV infection. IMPORTANCE PRV can infect several mammals, including pigs, other livestock, rodents, and wild animals, causing huge economic losses. As an emerging and reemerging infectious disease, the emergence of PRV virulent isolates and increasing human PRV infection cases indicate that PRV is still a high risk to public health. It has been reported that PRV infection leads to robust release of proinflammatory cytokines through activating inflammatory responses. However, the innate sensor that activates IL-1ß expression and the inflammasome involved in the maturation and secretion of proinflammatory cytokines during PRV infection remain poorly studied. In this study, our findings reveal that, in mice, activation of the TLR2-TLR3-TRL4-TLR5-NF-κB axis and AIM2 inflammasome, as well as GSDMD, is required for proinflammatory cytokine release during PRV infection, and it resists PRV replication and plays a critical role in host defense against PRV infection. Our findings provide novel clues to prevent and control PRV infection.


Subject(s)
Herpesvirus 1, Suid , Inflammasomes , NF-kappa B , Animals , Humans , Mice , Cytokines/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Herpesvirus 1, Suid/metabolism , Inflammasomes/metabolism , Interleukin-18/genetics , Interleukin-18/metabolism , Interleukin-1beta/metabolism , Mammals , NF-kappa B/metabolism , Swine , Toll-Like Receptor 2/genetics , Toll-Like Receptor 3 , Toll-Like Receptor 5 , Signal Transduction , Encephalitis, Viral/metabolism
9.
J Virol ; 97(7): e0061623, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37382521

ABSTRACT

African swine fever (ASF) is an acute and hemorrhagic infectious disease caused by African swine fever virus (ASFV), which is listed as an animal epidemic disease that must be reported by The World Organization for Animal Health and that causes serious economic losses to China and even the whole world. Currently, the entry mechanism of ASFV is not fully understood. Especially in the early stages of virus entry, the host factors required for ASFV entry have not yet been identified and characterized. In this study, we demonstrated that ASFV externalized phosphatidylserine (PS) on the envelope functioned as viral apoptotic mimicry, which interacts with AXL, a tyrosine kinase receptor, to mediate ASFV entry into porcine alveolar macrophages (PAMs). We found that AXL was the most pronounced phosphatidylserine receptor (PSR) affecting ASFV entry in PAMs by RNA interference screening. Knockout AXL gene expression remarkably decreased ASFV internalization and replication in MA104 cells. Furthermore, the antibody against AXL extracellular domains effectively inhibited the ASFV entry. Consistent with these results, the deletion of the intracellular kinase domain of AXL and the treatment of the AXL inhibitor, R428, significantly inhibited the internalization of ASFV. Mechanistically, AXL facilitated the internalization of ASFV virions via macropinocytosis. Collectively, we provide evidence that AXL is a coreceptor for ASFV entry into PAMs, which expands our knowledge of ASFV entry and provides a theoretical basis for identifying new antiviral targets. IMPORTANCE African swine fever (ASF) is a highly contagious infectious disease caused by the ASF virus (ASFV), with a mortality rate of up to 100%. ASFV has caused huge economic losses to pig farming worldwide. Specific cellular surface receptors are considered crucial determinants of ASFV tropism. However, the host factors required for ASFV entry have not yet been identified, and the molecular mechanism of its entry remains unclear. Here, we found that ASFV utilized phosphatidylserine (PS) on the surface of virions to masquerade as apoptotic mimicry and facilitated virus entry by interacting with host factor AXL. We found that knockout of AXL remarkably decreased ASFV internalization and replication. The antibody against AXL extracellular domains and AXL inhibitor R428 significantly inhibited the internalization of ASFV via macropinocytosis. The current work deepens our understanding of ASFV entry and provides clues for the development of antiviral drugs to control ASFV infection.


Subject(s)
African Swine Fever , Axl Receptor Tyrosine Kinase , Host Microbial Interactions , Virus Internalization , Animals , African Swine Fever/virology , African Swine Fever Virus/genetics , Swine , Axl Receptor Tyrosine Kinase/genetics , Axl Receptor Tyrosine Kinase/metabolism , Macrophages, Alveolar/virology , Gene Knockout Techniques , Cell Line , Viral Envelope/metabolism , Virus Attachment , Protein Domains
10.
J Virol ; 97(9): e0057723, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37199611

ABSTRACT

African swine fever (ASF) is a highly contagious and acute hemorrhagic viral disease in domestic pigs and wild boars. Domestic pigs infected with virulent African swine fever virus (ASFV) isolates have a high mortality, approaching 100%. Identification of ASFV genes related to virulence/pathogenicity and deletion of them are considered to be key steps in the development of live attenuated vaccines, because the ability of ASFV to escape host innate immune responses is related to viral pathogenicity. However, the relationship between the host antiviral innate immune responses and the pathogenic genes of ASFV has not been fully understood. In this study, the ASFV H240R protein (pH240R), a capsid protein of ASFV, was found to inhibit type I interferon (IFN) production. Mechanistically, pH240R interacted with the N-terminal transmembrane domain of stimulator of interferon genes (STING) and inhibited its oligomerization and translocation from the endoplasmic reticulum to the Golgi apparatus. Additionally, pH240R inhibited the phosphorylation of interferon regulatory factor 3 (IRF3) and TANK binding kinase 1 (TBK1), leading to reduced production of type I IFN. Consistent with these results, infection with H240R-deficient ASFV (ASFV-ΔH240R) induced more type I IFN than infection with its parental strain, ASFV HLJ/18. We also found that pH240R may enhance viral replication via inhibition of type I IFN production and the antiviral effect of interferon alpha (IFN-α). Taken together, our findings provide a new explanation for the reduction of ASFV's replication ability by knockout of the H240R gene and a clue for the development of live attenuated ASFV vaccines. IMPORTANCE African swine fever (ASF), caused by African swine fever virus (ASFV), is a highly contagious and acute hemorrhagic viral disease with a high mortality, approaching 100% in domestic pigs. However, the relationship between viral pathogenicity and immune evasion of ASFV is not fully understood, which limits the development of safe and effective ASF vaccines, specifically, live attenuated vaccines. In this study, we found that pH240R, as a potent antagonist, inhibited type I IFN production by targeting STING and inhibiting its oligomerization and translocation from the endoplasmic reticulum to the Golgi apparatus. Furthermore, we also found that deletion of the H240R gene reduced viral pathogenicity by enhancing type I IFN production, which decreases ASFV replication. Taken together, our findings provide a clue for the development of an ASFV live attenuated vaccine via deleting the H240R gene.


Subject(s)
African Swine Fever Virus , African Swine Fever , Interferon Type I , Viral Proteins , Animals , African Swine Fever/immunology , Interferon Type I/immunology , Sus scrofa , Swine , Vaccines, Attenuated
11.
J Virol ; 97(2): e0122722, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36656014

ABSTRACT

African swine fever (ASF) is a highly contagious infectious disease of domestic pigs and wild boars caused by African swine fever virus (ASFV), with a mortality rate of up to 100%. In order to replicate efficiently in macrophages and monocytes, ASFV has evolved multiple strategies to evade host antiviral responses. However, the underlying molecular mechanisms by which ASFV-encoded proteins execute immune evasion are not fully understood. In this study, we found that ASFV pH240R strongly inhibits transcription, maturation, and secretion of interleukin-1ß (IL-1ß). Importantly, pH240R not only targeted NF-κB signaling but also impaired NLRP3 inflammasome activation. In this mechanism, pH240R interacted with NF-kappa-B essential modulator (NEMO), a component of inhibitor of kappa B kinase (IKK) complex and subsequently reduced phosphorylation of IκBα and p65. In addition, pH240R bonded to NLRP3 to inhibit NLRP3 inflammasome activation, resulting in reduced IL-1ß production. As expected, infection with H240R-deficient ASFV (ASFV-ΔH240R) induced more inflammatory cytokine expression both in vitro and in vivo than its parental ASFV HLJ/18 strain. Consistently, H240R deficiency reduced the viral pathogenicity in pigs compared with its parental strain. These findings reveal that the H240R gene is an essential virulence factor, and deletion of the H240R gene affects the pathogenicity of ASFV HLJ/18 by enhancing antiviral inflammatory responses, which provides insights for ASFV immune evasion mechanisms and development of attenuated live vaccines and drugs for prevention and control of ASF. IMPORTANCE African swine fever (ASF), caused by African swine fever virus (ASFV), is a highly contagious and acute hemorrhagic viral disease of domestic pigs, with a high mortality approaching 100%. ASFV has spread rapidly worldwide and caused huge economic losses and ecological consequences. However, the pathogenesis and immune evasion mechanisms of ASFV are not fully understood, which limits the development of safe and effective ASF attenuated live vaccines. Therefore, investigations are urgently needed to identify virulence factors that are responsible for escaping the host antiviral innate immune responses and provide a new target for development of ASFV live-attenuated vaccine. In this study, we determined that the H240R gene is an essential virulence factor, and its depletion affects the pathogenicity of ASFV by enhancing NLRP3-mediated inflammatory responses, which provides theoretical support for the development of an ASFV attenuated live vaccine.


Subject(s)
African Swine Fever Virus , African Swine Fever , Viral Proteins , Animals , African Swine Fever/immunology , African Swine Fever/virology , African Swine Fever Virus/genetics , African Swine Fever Virus/pathogenicity , Gene Deletion , Inflammasomes/genetics , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Sus scrofa , Swine , Viral Proteins/genetics , Viral Proteins/metabolism , Virulence Factors/genetics , Virulence Factors/immunology
12.
J Virol ; 97(10): e0070423, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37768081

ABSTRACT

IMPORTANCE: African swine fever (ASF) caused by ASF virus (ASFV) is a highly contagious and acute hemorrhagic viral disease in domestic pigs. Until now, no effective commercial vaccine and antiviral drugs are available for ASF control. Here, we generated a new live-attenuated vaccine candidate (ASFV-ΔH240R-Δ7R) by deleting H240R and MGF505-7R genes from the highly pathogenic ASFV HLJ/18 genome. Piglets immunized with ASFV-ΔH240R-Δ7R were safe without any ASF-related signs and produced specific antibodies against p30. Challenged with a virulent ASFV HLJ/18, the piglets immunized with high-dose group (105 HAD50) exhibited 100% protection without clinical symptoms, showing that low levels of virus replication with no observed pathogenicity by postmortem and histological analysis. Overall, our results provided a new strategy by designing live-attenuated vaccine candidate, resulting in protection against ASFV infection.


Subject(s)
African Swine Fever Virus , Gene Deletion , Genes, Viral , Vaccines, Attenuated , Viral Vaccines , Animals , African Swine Fever/immunology , African Swine Fever/prevention & control , African Swine Fever/virology , African Swine Fever Virus/classification , African Swine Fever Virus/immunology , African Swine Fever Virus/pathogenicity , Sus scrofa/virology , Vaccines, Attenuated/immunology , Viral Proteins/genetics , Viral Vaccines/genetics , Viral Vaccines/immunology , Virulence , Virus Replication , Genes, Viral/genetics
13.
J Biol Chem ; 298(1): 101480, 2022 01.
Article in English | MEDLINE | ID: mdl-34890644

ABSTRACT

African swine fever (ASF) is a viral hemorrhagic disease that affects domestic pigs and wild boar and is caused by the African swine fever virus (ASFV). The ASFV virion contains a long double-stranded DNA genome, which encodes more than 150 proteins. However, the immune escape mechanism and pathogenesis of ASFV remain poorly understood. Here, we report that the pyroptosis execution protein gasdermin D (GSDMD) is a new binding partner of ASFV-encoded protein S273R (pS273R), which belongs to the SUMO-1 cysteine protease family. Further experiments demonstrated that ASFV pS273R-cleaved swine GSDMD in a manner dependent on its protease activity. ASFV pS273R specifically cleaved GSDMD at G107-A108 to produce a shorter N-terminal fragment of GSDMD consisting of residues 1 to 107 (GSDMD-N1-107). Interestingly, unlike the effect of GSDMD-N1-279 fragment produced by caspase-1-mediated cleavage, the assay of LDH release, cell viability, and virus replication showed that GSDMD-N1-107 did not trigger pyroptosis or inhibit ASFV replication. Our findings reveal a previously unrecognized mechanism involved in the inhibition of ASFV infection-induced pyroptosis, which highlights an important function of pS273R in inflammatory responses and ASFV replication.


Subject(s)
African Swine Fever Virus , African Swine Fever , Cysteine Proteases , Phosphate-Binding Proteins , Pore Forming Cytotoxic Proteins , Viral Proteins , African Swine Fever/virology , African Swine Fever Virus/enzymology , African Swine Fever Virus/metabolism , Animals , Cysteine Proteases/metabolism , Phosphate-Binding Proteins/metabolism , Pore Forming Cytotoxic Proteins/metabolism , Pyroptosis , Sus scrofa , Swine , Viral Proteins/metabolism
14.
PLoS Pathog ; 17(7): e1009733, 2021 07.
Article in English | MEDLINE | ID: mdl-34310655

ABSTRACT

Inflammatory factors and type I interferons (IFNs) are key components of host antiviral innate immune responses, which can be released from the pathogen-infected macrophages. African swine fever virus (ASFV) has developed various strategies to evade host antiviral innate immune responses, including alteration of inflammatory responses and IFNs production. However, the molecular mechanism underlying inhibition of inflammatory responses and IFNs production by ASFV-encoded proteins has not been fully understood. Here we report that ASFV infection only induced low levels of IL-1ß and type I IFNs in porcine alveolar macrophages (PAMs), even in the presence of strong inducers such as LPS and poly(dA:dT). Through further exploration, we found that several members of the multigene family 360 (MGF360) and MGF505 strongly inhibited IL-1ß maturation and IFN-ß promoter activation. Among them, pMGF505-7R had the strongest inhibitory effect. To verify the function of pMGF505-7R in vivo, a recombinant ASFV with deletion of the MGF505-7R gene (ASFV-Δ7R) was constructed and assessed. As we expected, ASFV-Δ7R infection induced higher levels of IL-1ß and IFN-ß compared with its parental ASFV HLJ/18 strain. ASFV infection-induced IL-1ß production was then found to be dependent on TLRs/NF-κB signaling pathway and NLRP3 inflammasome. Furthermore, we demonstrated that pMGF505-7R interacted with IKKα in the IKK complex to inhibit NF-κB activation and bound to NLRP3 to inhibit inflammasome formation, leading to decreased IL-1ß production. Moreover, we found that pMGF505-7R interacted with and inhibited the nuclear translocation of IRF3 to block type I IFN production. Importantly, the virulence of ASFV-Δ7R is reduced in piglets compared with its parental ASFV HLJ/18 strain, which may due to induction of higher IL-1ß and type I IFN production in vivo. Our findings provide a new clue to understand the functions of ASFV-encoded pMGF505-7R and its role in viral infection-induced pathogenesis, which might help design antiviral agents or live attenuated vaccines to control ASF.


Subject(s)
African Swine Fever Virus/pathogenicity , African Swine Fever/immunology , Immune Evasion/immunology , Macrophages, Alveolar/immunology , Viral Proteins/immunology , African Swine Fever Virus/immunology , Animals , Immunity, Innate , Interferon Type I/biosynthesis , Interleukin-1beta/biosynthesis , Multigene Family , Swine , Virulence/immunology
15.
J Immunol ; 207(11): 2754-2769, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34759016

ABSTRACT

African swine fever is a severe animal infectious disease caused by African swine fever virus (ASFV), and the morbidity and mortality associated with virulent ASFV isolates are as high as 100%. Previous studies showed that the ability of ASFV to antagonize IFN production is closely related to its pathogenicity. Here, we report that ASFV HLJ/18 infection induced low levels of type I IFN and inhibited cGMP-AMP-induced type I IFN production in porcine alveolar macrophages that were isolated from specific pathogen-free Landrace piglets. Subsequently, an unbiased screen was performed to screen the ASFV genes with inhibitory effects on the type I IFN production. ASFV pI215L, a viral E2 ubiquitin-conjugating enzyme, was identified as one of the strongest inhibitory effectors on the production of type I IFN. Knockdown of pI215L expression inhibited ASFV replication and enhanced IFN-ß production. However, inhibition of type I IFN production by pI215L was independent of its E2 enzyme activity. Furthermore, we found that pI215L inhibited type I IFN production and K63-linked polyubiquitination of TANK-binding kinase 1 through pI215L-binding RING finger protein 138 (RNF138). ASFV pI215L enhanced the interaction between RNF138 and RNF128 and promoted RNF138 to degrade RNF128, which resulted in reduced K63-linked polyubiquitination of TANK-binding kinase 1 and type І IFN production. Taken together, our findings reveal a novel immune escape mechanism of ASFV, which provides a clue to the design and development of an immune-sensitive attenuated live vaccine.


Subject(s)
African Swine Fever Virus/immunology , Nucleotidyltransferases/immunology , Protein Serine-Threonine Kinases/immunology , Ubiquitin-Protein Ligases/immunology , Cells, Cultured , HEK293 Cells , Humans , Signal Transduction/immunology , Ubiquitination
16.
J Virol ; 94(10)2020 05 04.
Article in English | MEDLINE | ID: mdl-32161169

ABSTRACT

Upon infection, the highly structured 5' untranslated region (5' UTR) of picornavirus is involved in viral protein translation and RNA synthesis. As a critical element in the 5' UTR, the internal ribosome entry site (IRES) binds to various cellular proteins to function in the processes of picornavirus replication. Foot-and-mouth disease virus (FMDV) is an important member in the family Picornaviridae, and its 5' UTR contains a functional IRES element. In this study, the cellular heterogeneous nuclear ribonucleoprotein L (hnRNP L) was identified as an IRES-binding protein for FMDV by biotinylated RNA pulldown assays, mass spectrometry (MS) analysis, and determination of hnRNP L-IRES interaction regions. Further, we found that hnRNP L inhibited the growth of FMDV through binding to the viral IRES and that the inhibitory effect of hnRNP L on FMDV growth was not due to FMDV IRES-mediated translation, but to influence on viral RNA synthesis. Finally, hnRNP L was demonstrated to coimmunoprecipitate with RNA-dependent RNA polymerase (3Dpol) in an FMDV RNA-dependent manner in the infected cells. Thus, our results suggest that hnRNP L, as a critical IRES-binding protein, negatively regulates FMDV replication by inhibiting viral RNA synthesis, possibly by remaining in the replication complex.IMPORTANCE Picornaviruses, as a large family of human and animal pathogens, cause a bewildering array of disease syndromes. Many host factors are implicated in the pathogenesis of these viruses, and some proteins interact with the viral IRES elements to affect function. Here, we report for the first time that cellular hnRNP L specifically interacts with the IRES of the picornavirus FMDV and negatively regulates FMDV replication through inhibiting viral RNA synthesis. Further, our results showed that hnRNP L coimmunoprecipitates with FMDV 3Dpol in a viral RNA-dependent manner, suggesting that it may remain in the replication complex to function. The data presented here would facilitate further understanding of virus-host interactions and the pathogenesis of picornavirus infections.


Subject(s)
5' Untranslated Regions , Foot-and-Mouth Disease Virus/physiology , Heterogeneous-Nuclear Ribonucleoprotein L/metabolism , Internal Ribosome Entry Sites/physiology , RNA, Viral/biosynthesis , Virus Replication/physiology , Animals , Cell Line , Foot-and-Mouth Disease Virus/genetics , Gene Expression Regulation, Viral , Gene Knockout Techniques , HEK293 Cells , Heterogeneous-Nuclear Ribonucleoprotein L/genetics , Host Microbial Interactions/physiology , Humans , Immunoprecipitation , Protein Binding , RNA, Viral/genetics , Transcriptome
17.
Infect Immun ; 88(5)2020 04 20.
Article in English | MEDLINE | ID: mdl-32094251

ABSTRACT

Gamma interferon (IFN-γ)-induced innate immune responses play important roles in the inhibition of Toxoplasma gondii infection. It has been reported that IFN-γ stimulates non-acidification-dependent growth restriction of T. gondii in HeLa cells, but the mechanism remains unclear. Here, we found that γ-aminobutyric acid (GABA) receptor-associated protein-like 2 (GABARAPL2) plays a critical role in parasite restriction in IFN-γ-treated HeLa cells. GABARAPL2 is recruited to membrane structures surrounding parasitophorous vacuoles (PV). Autophagy adaptors are required for the proper localization and function of GABARAPL2 in the IFN-γ -induced immune response. These findings provide further understanding of a noncanonical autophagy pathway responsible for IFN-γ-dependent inhibition of T. gondii growth in human HeLa cells and demonstrate the critical role of GABARAPL2 in this response.


Subject(s)
Autophagy-Related Protein 8 Family/immunology , Interferon-gamma/immunology , Toxoplasma/immunology , Toxoplasmosis/immunology , Autophagy/immunology , Cell Line , Cell Line, Tumor , HeLa Cells , Humans , Immunity, Innate/immunology , Vacuoles/immunology
18.
RNA Biol ; 17(3): 335-349, 2020 03.
Article in English | MEDLINE | ID: mdl-31840571

ABSTRACT

Foot-and-mouth disease virus (FMDV) is a positive-strand RNA virus of the family Picornaviridae. Early studies show that some viruses of Picornaviridae, such as EMCV and EV71, induce NLRP3 inflammasome activation. Our current study demonstrates that FMDV induces the secretion of caspase-1 and interleukin 1 beta (IL-1ß), as well as activates the NLRP3 inflammasome in a dose- and time-dependent manner. Meanwhile, NLRP3 inflammasome can suppress FMDV replication during virus infection. Both FMDV RNA and viroporin 2B stimulate NLRP3 inflammasome activation. FMDV RNA triggers NLRP3 inflammasome through p-NF-κB/p65 pathway not dependent on RIG-I inflammasome. FMDV 2B activates NLRP3 inflammasome through elevation of intracellular ion, but not dependent on mitochondrial reactive oxygen species (ROS) and lysosomal cathepsin B. It further demonstrates that 2B viroporin activates NLRP3 inflammasome and induces IL-1ß in mice, which enhances the specific immune response against FMDV as an ideal self-adjuvant for FMD VLPs vaccine in guinea pigs. The results reveal a series of regulations between NLRP3 inflammasome complex and FMDV. Amino acids 140-145 of 2B is essential for forming an ion channel. By mutating the amino acid and changing the hydrophobic properties, the helical transmembrane region of the viroporin 2B is altered, so that the 2B is insufficient to trigger the activation of NLRP3 inflammasome. This study demonstrates the functions of FMDV RNA and 2B viroporin activate NLRP3 inflammasome and provides some useful information for the development of FMD vaccine self-adjuvant, which is also helpful for the establishment of effective prevention strategies by targeting NLRP3 inflammasome.


Subject(s)
Foot-and-Mouth Disease Virus/pathogenicity , Foot-and-Mouth Disease/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Viral Nonstructural Proteins/metabolism , Animals , Female , Foot-and-Mouth Disease/virology , Foot-and-Mouth Disease Virus/genetics , Foot-and-Mouth Disease Virus/metabolism , Guinea Pigs , Host-Pathogen Interactions/physiology , Inflammasomes/metabolism , Interleukin-1beta/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , RAW 264.7 Cells , RNA, Viral/metabolism , Viroporin Proteins/chemistry , Viroporin Proteins/metabolism
19.
Nature ; 514(7521): 233-6, 2014 Oct 09.
Article in English | MEDLINE | ID: mdl-25119050

ABSTRACT

The balance between stem cell self-renewal and differentiation is controlled by intrinsic factors and niche signals. In the Drosophila melanogaster ovary, some intrinsic factors promote germline stem cell (GSC) self-renewal, whereas others stimulate differentiation. However, it remains poorly understood how the balance between self-renewal and differentiation is controlled. Here we use D. melanogaster ovarian GSCs to demonstrate that the differentiation factor Bam controls the functional switch of the COP9 complex from self-renewal to differentiation via protein competition. The COP9 complex is composed of eight Csn subunits, Csn1-8, and removes Nedd8 modifications from target proteins. Genetic results indicated that the COP9 complex is required intrinsically for GSC self-renewal, whereas other Csn proteins, with the exception of Csn4, were also required for GSC progeny differentiation. Bam-mediated Csn4 sequestration from the COP9 complex via protein competition inactivated the self-renewing function of COP9 and allowed other Csn proteins to promote GSC differentiation. Therefore, this study reveals a protein-competition-based mechanism for controlling the balance between stem cell self-renewal and differentiation. Because numerous self-renewal factors are ubiquitously expressed throughout the stem cell lineage in various systems, protein competition may function as an important mechanism for controlling the self-renewal-to-differentiation switch.


Subject(s)
Binding, Competitive , Cell Differentiation , Drosophila melanogaster/cytology , Drosophila melanogaster/metabolism , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Peptide Hydrolases/chemistry , Peptide Hydrolases/metabolism , Stem Cells/cytology , Stem Cells/metabolism , Adaptor Proteins, Signal Transducing , Animals , COP9 Signalosome Complex , Cell Proliferation , DNA Helicases/metabolism , Drosophila Proteins/metabolism , Female , Intracellular Signaling Peptides and Proteins/metabolism , Male , NEDD8 Protein , Ovary/cytology , Protein Binding , Ubiquitins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL