ABSTRACT
Severe respiratory infections can result in acute respiratory distress syndrome (ARDS)1. There are no effective pharmacological therapies that have been shown to improve outcomes for patients with ARDS. Although the host inflammatory response limits spread of and eventually clears the pathogen, immunopathology is a major contributor to tissue damage and ARDS1,2. Here we demonstrate that respiratory viral infection induces distinct fibroblast activation states, which we term extracellular matrix (ECM)-synthesizing, damage-responsive and interferon-responsive states. We provide evidence that excess activity of damage-responsive lung fibroblasts drives lethal immunopathology during severe influenza virus infection. By producing ECM-remodelling enzymes-in particular the ECM protease ADAMTS4-and inflammatory cytokines, damage-responsive fibroblasts modify the lung microenvironment to promote robust immune cell infiltration at the expense of lung function. In three cohorts of human participants, the levels of ADAMTS4 in the lower respiratory tract were associated with the severity of infection with seasonal or avian influenza virus. A therapeutic agent that targets the ECM protease activity of damage-responsive lung fibroblasts could provide a promising approach to preserving lung function and improving clinical outcomes following severe respiratory infections.
Subject(s)
ADAMTS4 Protein/metabolism , Fibroblasts/enzymology , Fibroblasts/pathology , Influenza A virus/pathogenicity , Lung/pathology , Lung/physiopathology , ADAMTS4 Protein/antagonists & inhibitors , Animals , Birds/virology , Extracellular Matrix/enzymology , Gene Expression Profiling , Humans , Influenza in Birds/virology , Influenza, Human/pathology , Influenza, Human/therapy , Influenza, Human/virology , Interferons/immunology , Interferons/metabolism , Leukocyte Common Antigens/metabolism , Lung/enzymology , Lung/virology , Mice , Respiratory Distress Syndrome/enzymology , Respiratory Distress Syndrome/physiopathology , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/virology , Seasons , Single-Cell Analysis , Stromal Cells/metabolismABSTRACT
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
ABSTRACT
BACKGROUND: Recent outbreaks of avian influenza and ongoing virus reassortment have drawn focus on spill-over infections. The increase in human infections with highly pathogenic avian influenza H5N6 virus and its high fatality rate posed a potential threat, necessitating the search for a more effective treatment. METHODS: Longitudinal clinical data and specimens were collected from five H5N6 patients after admission. All patients received antiviral treatment of either sequential monotherapy of oseltamivir and baloxavir or the two drugs in combination. Severity of illness; viral load in sputum, urine, and blood; and cytokine levels in serum and sputum were serially analyzed. FINDINGS: All patients developed acute respiratory distress syndrome (ARDS) and viral sepsis within 1 week after disease onset. When delayed oseltamivir showed poor effects, baloxavir was administered and rapidly decreased viral load. In addition, levels of IL-18, M-CSF, IL-6, and HGF in sputum and Mig and IL-18 in serum that reflected ARDS and sepsis deterioration, respectively, were also reduced with baloxavir usage. However, three patients eventually died from exacerbation of underlying disease and secondary bacterial infection. Nonsurvivors had more severe extrapulmonary organ dysfunction and insufficient H5N6 virus-specific antibody response. CONCLUSIONS: For critical human cases of H5N6 infection, baloxavir demonstrated effects on viral load and pulmonary/extrapulmonary cytokines, even though treatment was delayed. Baloxavir could be regarded as a first-line treatment to limit continued viral propagation, with potential future application in avian influenza human infections and poultry workers exhibiting influenza-like illness. FUNDING: This work was funded by the National Natural Science Foundation of China (81761128014).
Subject(s)
Dibenzothiepins , Influenza A virus , Influenza in Birds , Influenza, Human , Morpholines , Pyridones , Respiratory Distress Syndrome , Sepsis , Triazines , Animals , Humans , Influenza in Birds/drug therapy , Influenza in Birds/epidemiology , Oseltamivir/therapeutic use , Influenza A Virus, H5N6 Subtype , Interleukin-18/therapeutic use , Influenza, Human/drug therapy , Influenza, Human/epidemiology , Respiratory Distress Syndrome/drug therapy , Sepsis/drug therapyABSTRACT
Background: Acute exacerbation of chronic obstructive pulmonary disease (AECOPD) is associated with high mortality rates. Viral and bacterial coinfection is the primary cause of AECOPD. How coinfection with these microbes influences host inflammatory response and the gut microbiota composition is not entirely understood. Methods: We developed a mouse model of AECOPD by cigarette smoke exposure and sequential infection with influenza H1N1 virus and non-typeable Haemophilus influenzae (NTHi). Viral and bacterial titer was determined using MDCK cells and chocolate agar plates, respectively. The levels of cytokines, adhesion molecules, and inflammatory cells in the lungs were measured using Bio-Plex and flow cytometry assays. Gut microbiota was analyzed using 16S rRNA gene sequencing. Correlations between cytokines and gut microbiota were determined using Spearman's rank correlation coefficient test. Results: Coinfection with H1N1 and NTHi resulted in more severe lung injury, higher mortality, declined lung function in COPD mice. H1N1 enhanced NTHi growth in the lungs, but NTHi had no effect on H1N1. In addition, coinfection increased the levels of cytokines and adhesion molecules, as well as immune cells including total and M1 macrophages, neutrophils, monocytes, NK cells, and CD4 + T cells. In contrast, alveolar macrophages were depleted. Furthermore, coinfection caused a decline in the diversity of gut bacteria. Muribaculaceae, Lactobacillus, Akkermansia, Lachnospiraceae, and Rikenella were further found to be negatively correlated with cytokine levels, whereas Bacteroides was positively correlated. Conclusion: Coinfection with H1N1 and NTHi causes a deterioration in COPD mice due to increased lung inflammation, which is correlated with dysbiosis of the gut microbiota.
ABSTRACT
ETHNOPHARMACOLOGICAL RELEVANCE: Liu Shen Wan (LSW) is a traditional Chinese medicine (TCM) with detoxification and antiphlogistic activity; it is composed of bezoar, toad venom, musk, pearl powder, borneol and realgar. In recent years, LSW has been widely used in traditional medicine for the treatment of influenza, tonsillitis, pharyngitis, mumps, cancer and leukaemia. AIM OF STUDY: The anti-influenza virus properties of LSW and its inhibition of the inflammatory response was demonstrated in our previous research; however, the effect and potential mechanism of LSW against influenza induced secondary bacteria have remained obscure. Therefore, in the present study, a model of influenza virus PR8 with secondary infection by Staphylococcus aureus (S. aureus) in vitro and in mice was established to examine the effect and potential mechanism by which LSW inhibits bacterial adhesion and subsequent severe pneumonia after viral infection. MATERIALS AND METHODS: We investigated the effect of LSW on the PR8-induced adhesion of live S. aureus in A549 cells. RT-qPCR was used to detect the expression of adhesion molecules. Western blotting was used to determine the expression of CEACAM1, RIG-1, MDA5, p-NF-κB, and NF-κB in A549 cells. Inflammatory cytokines were detected using a Bio-Plex Pro Human Cytokine Screening Panel (R&D) in A549 cells and Mouse Magnetic Luminex Assays (R&D) in mice infected with PR8 virus and secondarily with S. aureus, respectively. Moreover, the survival rate, lung index, viral titre, bacterial loads and pathological changes in the lung tissue of mice infected with PR8 and S. aureus were investigated to estimate the effect of LSW in inhibiting severe pneumonia. RESULTS: LSW significantly decreased S. aureus adhesion following influenza virus infection in A549 cells, which may have occurred by suppressing expression of the adhesion molecule CEACAM1. In addition, treatment with LSW dramatically suppressed the induction of proinflammatory cytokines (CCL2/MCP-1 and CXCL-9/MIG) and chemokines (IL-6 and TNF-α) by PR8 infection following secondary LPS stimulation in A549 cells. Upregulation of related signalling proteins (RIG-I, MDA5 and NF-κB) induced by viruses and bacteria was suppressed by LSW in A549 cells. LSW significantly decreased the viral titres and bacterial load, prolonged survival time, and ameliorated lung inflammation and injury in mice with S. aureus infection secondary to PR8 infection. CONCLUSIONS: We demonstrated that LSW prevents S. aureus adherence to influenza virus-infected A549 cells, perhaps by inhibiting the expression of the adhesion molecule CEACAM1. The upregulation of proinflammatory cytokines and related signalling proteins induced by viruses and bacteria was suppressed by LSW in A549 cells. LSW significantly ameliorated lung injury caused by viral and secondary bacterial infection. These findings provide a further evaluation of LSW and suggest a beneficial effect of LSW for the prevention of secondary bacterial infection and related complications.
Subject(s)
Complex Mixtures/pharmacology , Influenza, Human/complications , Lung Diseases/drug therapy , Staphylococcal Infections/drug therapy , A549 Cells , Animals , Cytokines/metabolism , Dogs , Female , Humans , Influenza, Human/drug therapy , Lung Diseases/microbiology , Lung Diseases/virology , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred BALB C , Staphylococcal Infections/microbiology , Staphylococcus aureus/isolation & purification , Survival RateABSTRACT
Primary influenza virus (IV) infection can predispose hosts to secondary infection with Haemophilus influenzae (H. influenzae), which further increases the severity and mortality of the disease. While adhesion molecules play a key role in the host inflammatory response and H. influenzae colonization, it remains to be clarified which types of adhesion molecules are associated with H. influenzae colonization and invasion following IV infection. In this study, we established a mouse model of co-infection with influenza A virus (A/Puerto Rico/8/34, H1N1) (PR8) and non-typeable H. influenzae (NTHi) and found that sequential infection with PR8 and NTHi induced a lethal synergy in mice. This outcome may be possibly due to increased NTHi loads, greater lung damage and higher levels of cytokines. Furthermore, the protein levels of intracellular adhesion molecules-1 (ICAM-1) and Fibronectin (Fn) were significantly increased in the lungs of coinfected mice, but the levels of carcinoembryonic adhesion molecule (CEACAM)-1, CEACAM-5 and platelet-activating factor receptor (PAFr) were unaffected. Both the protein levels of ICAM-1 and Fn were positively correlated with NTHi growth. These results indicate the correlation between adhesion molecules, including ICAM-1 and Fn, and NTHi growth in secondary NTHi pneumonia following primary IV infection.
Subject(s)
Haemophilus Infections , Influenza A Virus, H1N1 Subtype , Orthomyxoviridae Infections , Animals , Haemophilus Infections/complications , Haemophilus influenzae/metabolism , Inflammation , Intercellular Adhesion Molecule-1 , Mice , Orthomyxoviridae Infections/complicationsABSTRACT
BACKGROUND: Alstonia scholaris is a folk medicine used to treat cough, asthma and chronic obstructive pulmonary disease in China. Total alkaloids (TA) from A. scholaris exhibit anti-inflammatory properties in acute respiratory disease, which suggests their possible anti-inflammatory effect on influenza virus infection. PURPOSE: To assess the clinical use of TA by demonstrating their anti-influenza and anti-inflammatory effects and the possible mechanism underlying the effect of TA on influenza A virus (IAV) infection in vitro and to reveal the inhibitory effect of TA on lung immunopathology caused by IAV infection. METHODS: Antiviral and anti-inflammatory activities were assessed in Madin-Darby canine kidney (MDCK) and A549 cells and U937-derived macrophages infected with influenza A/PR/8/34 (H1N1) virus. Proinflammatory cytokine levels were measured by real-time quantitative PCR and Bio-Plex assays. The activation of innate immune signaling induced by H1N1 virus in the absence or presence of TA was detected in A549 cells by Western blot. Furthermore, mice were infected intranasally with H1N1 virus and treated with TA (50, 25 and 12.5 mg/kg/d) or oseltamivir (60 mg/kg/d) for 5 days in vivo. The survival rates and body weight were recorded, and the viral titer, proinflammatory cytokine levels, innate immune cell populations and histopathological changes in the lungs were analyzed. RESULTS: TA significantly inhibited viral replication in A549 cells and U937-derived macrophages and markedly reduced cytokine and chemokine production at the mRNA and protein levels. Furthermore, TA blocked the activation of pattern recognition receptor (PRR)- and IFN-activated signal transduction in A549 cells. Critically, TA also increased the survival rate, reduced the viral titer, suppressed proinflammatory cytokine production and innate immune cell infiltration and improved lung histopathology in a lethal PR8 mouse model. CONCLUSION: TA exhibits anti-viral and anti-inflammatory effects against IAV infection by interfering with PRR- and IFN-activated signal transduction.
Subject(s)
Alkaloids/pharmacology , Alstonia/chemistry , Antiviral Agents/pharmacology , Influenza A Virus, H1N1 Subtype/drug effects , Lung/drug effects , A549 Cells , Alkaloids/chemistry , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antiviral Agents/chemistry , Cytokines/metabolism , Dogs , Female , Humans , Immunity, Innate/drug effects , Influenza A Virus, H1N1 Subtype/physiology , Influenza, Human/drug therapy , Lung/immunology , Lung/pathology , Lung/virology , Madin Darby Canine Kidney Cells , Mice, Inbred C57BL , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/pathology , Virus Replication/drug effectsABSTRACT
OBJECTIVE: To construct eukaryotic expression vectors carrying Brucella melitensis outer membrane protein 19 (OMP19), express them in transfected Huh7.5.1 and JEG-3 cells, and analyze their role in cell apoptosis. METHODS: Brucella melitensis lipidated OMP19 (L-OMP19) gene and unlipidated OMP19 (U-OMP19) gene were amplified by PCR and inserted into the vector pZeroBack/blunt. The correct L-OMP19 and U-OMP19 genes verified by XbaI and BamHI double digestion and sequencing were cloned into the lentivirus expression vector pHAGE-CMV-MCS-IZsGreen to construct vectors pHAGE-L-OMP19 and pHAGE-U-OMP19, which were separately transfected into 293FT cells, Huh7.5.1 and JEG-3 cells. L-OMP19 and U-OMP19 in the cells were detected by Western blotting and immunofluorescence technique. Flow cytometry combined with annexin V-PE/7-AAD staining was used to detect the cell apoptosis. RESULTS: The lentiviral vectors pHAGE-L-OMP19 and pHAGE-U-OMP19 were constructed correctly and the recombinant lipoproteins L-OMP19 and U-OMP19 expressed in the above cells were well recognized by the specific antibodies against L-OMP19 in Western blotting and immunofluorescence technique. L-OMP19 and U-OMP19 induced JEG-3 cell death, but did not induce the apoptosis of Huh7.5.1 cells. CONCLUSION: The eukaryotic expression vectors of L-OMP19 and U-OMP19 have been constructed successfully. Recombinant lipoproteins L-OMP19 and U-OMP19 expressed in cells have a good antigenicity, which could be used as experimental materials for the research on the relationship between host cells and lipoproteins in Brucella infection.
Subject(s)
Antigens, Bacterial/genetics , Bacterial Outer Membrane Proteins/genetics , Brucella melitensis/genetics , Gene Expression , Genetic Vectors/genetics , Lipoproteins/genetics , Antigens, Bacterial/metabolism , Bacterial Outer Membrane Proteins/metabolism , Cell Line, Tumor , Genetic Vectors/metabolism , Humans , Lipoproteins/metabolism , TransfectionABSTRACT
It is essential to monitor the occurrence of drug-resistant strains and to provide guidance for clinically adapted antiviral treatment of HIV/AIDS. In this study, an individual patient's HIV-1 pol gene encoding the full length of protease and part of the reverse transcriptase was packaged into a modified lentivirus carrying dual-reporters ZsGreen and luciferase. The optimal coefficient of correlation between drug concentration and luciferase activity was optimized. A clear-cut dose-dependent relationship between lentivirus production and luciferase activity was found in the phenotypic testing system. Fold changes (FC) to a wild-type control HIV-1 strain ratios were determined reflecting the phenotypic susceptibility of treatment-exposed patient's HIV-1 strains to 12 HIV-1 inhibitors including 6 nucleoside reverse-transcriptase inhibitors (NRTIs), 4 non-nucleoside reverse transcriptase inhibitors (NNRTIs) and 2 protease inhibitors (PIs). Phenotypic susceptibility calls from 8 HIV-1 infected patients were consistent with 80-90% genotypic evaluations, while phenotypic assessments rectified 10-20% genotypic resistance calls. By a half of replacement with ZsGreen reporter, the consumption of high cost Bright-Glo Luciferase Assay is reduced, making this assay cheaper when a large number of HIV-1 infected individuals are tested. The study provides a useful tool for interpreting meaningful genotypic mutations and guiding tailored antiviral treatment of HIV/AIDS in clinical practice.
Subject(s)
Anti-HIV Agents/analysis , Anti-HIV Agents/pharmacology , Drug Evaluation, Preclinical/economics , Drug Evaluation, Preclinical/methods , Drug Resistance, Viral/drug effects , HIV-1/drug effects , Cell Count , Genotype , HIV-1/genetics , Humans , Lentivirus/metabolism , Mutation/genetics , Phenotype , Recombination, Genetic/genetics , Reproducibility of Results , Time FactorsABSTRACT
In recent years, the number of cases of human brucellosis has been increasing by approximately 10% per year in China. Most cases were caused by Brucella melitensis through contacts with infected sheep, goats or their products. An attenuated B. melitensis vaccine M5-90 is currently used to vaccinate both animals in China. This vaccine has not been investigated for critical parameters such as immune response and its association with protective efficacy. In this study, humoral and cellular immune response to the periplasmic protein BP26 and the outer membrane protein OMP31 were evaluated in M5-90 vaccinated Chinese merino and Kazak sheep. Antibodies to BP26 or OMP31 were detected at low levels, and specific IFN-γ response was quantified. Strongly reactive peptides derived from BP26 and OMP31 identified five T-cell epitopes (BP26-6, -8, -11, -12 and OMP31-23) common to both sheep species, five species-specific epitopes (BP26-10, -18, -21 and -22 and OMP31-12) and four animal-specific epitopes (BP26-15, -23, OMP31-6 and -21), which stimulated specific IFN-γ response in vaccinated sheep. Among those T-cell epitopes, reactivity to BP26-18 and -21 epitopes was significantly associated with MHC-I B allele (P=0.024). However, a specific T-cell response induced by the M5-90 vaccine was relatively week and did not sustain long enough, which might be suppressed by rapid activation of T-regulatory (Treg) cells following vaccination. These findings provide an insight in designing a safer and more effective vaccine for use in animals and in humans.
Subject(s)
Bacterial Outer Membrane Proteins/immunology , Brucella Vaccine/immunology , Brucellosis/immunology , Immunity, Cellular , Immunity, Humoral , Membrane Proteins/immunology , Sheep Diseases/immunology , Animals , Antibodies, Bacterial/blood , Brucella melitensis , Brucellosis/prevention & control , Brucellosis/veterinary , Epitopes, T-Lymphocyte/immunology , Female , Interferon-gamma/immunology , Sheep/immunology , Sheep Diseases/microbiology , Sheep Diseases/prevention & control , Sheep, Domestic/immunology , T-Lymphocytes/immunologySubject(s)
Cholecystectomy , Extracorporeal Membrane Oxygenation/methods , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/virology , Acids, Carbocyclic , Anti-Bacterial Agents/therapeutic use , Antiviral Agents/therapeutic use , Cyclopentanes/therapeutic use , Female , Guanidines/therapeutic use , Herpesvirus 4, Human/drug effects , Herpesvirus 4, Human/pathogenicity , Humans , Influenza A Virus, H7N9 Subtype/drug effects , Influenza A Virus, H7N9 Subtype/pathogenicity , Middle Aged , Oseltamivir/therapeutic use , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/microbiologyABSTRACT
Recombinant interferon-γ (IFNγ) production in cultured lentivirus (LV) was explored for inhibition of target virus in cells co-infected with adenovirus type 5 (Ad5). The ability of three different promoters of CMV, EF1α and Ubiquitin initiating the enhanced green fluorescence protein (GFP) activities within lentiviruses was systematically assessed in various cell lines, which showed that certain cell lines selected the most favorable promoter driving a high level of transgenic expression. Recombinant IFNγ lentivirus carrying CMV promoter (LV-CMV-IFNγ) was generated to co-infect 293A cells with a viral surrogate of recombinant GFP Ad5 in parallel with LV-CMV-GFP control. The best morphologic conditions were observed from the two lentiviruses co-infected cells, while single adenovirus infected cells underwent clear pathologic changes. Viral load of adenoviruses from LV-CMV-IFNγ or LV-CMV-GFP co-infected cell cultures was significantly lower than that from adenovirus alone infected cells (P=0.005-0.041), and the reduction of adenoviral load in the co-infected cells was 86% and 61%, respectively. Ad5 viral load from LV-CMV-IFNγ co-infected cells was significantly lower than that from LV-CMV-GFP co-infection (P=0.032), which suggested that IFNγ rather than GFP could further enhance the inhibition of Ad5 replication in the recombinant lentivirus co-infected cells. The results suggest that LV-CMV-IFNγ co-infection could significantly inhibit the target virus replication and might be a potential approach for alternative therapy of severe viral diseases.