Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Nature ; 563(7731): 421-425, 2018 11.
Article in English | MEDLINE | ID: mdl-30405241

ABSTRACT

Inspired by the period-four oscillation in flash-induced oxygen evolution of photosystem II discovered by Joliot in 1969, Kok performed additional experiments and proposed a five-state kinetic model for photosynthetic oxygen evolution, known as Kok's S-state clock or cycle1,2. The model comprises four (meta)stable intermediates (S0, S1, S2 and S3) and one transient S4 state, which precedes dioxygen formation occurring in a concerted reaction from two water-derived oxygens bound at an oxo-bridged tetra manganese calcium (Mn4CaO5) cluster in the oxygen-evolving complex3-7. This reaction is coupled to the two-step reduction and protonation of the mobile plastoquinone QB at the acceptor side of PSII. Here, using serial femtosecond X-ray crystallography and simultaneous X-ray emission spectroscopy with multi-flash visible laser excitation at room temperature, we visualize all (meta)stable states of Kok's cycle as high-resolution structures (2.04-2.08 Å). In addition, we report structures of two transient states at 150 and 400 µs, revealing notable structural changes including the binding of one additional 'water', Ox, during the S2→S3 state transition. Our results suggest that one water ligand to calcium (W3) is directly involved in substrate delivery. The binding of the additional oxygen Ox in the S3 state between Ca and Mn1 supports O-O bond formation mechanisms involving O5 as one substrate, where Ox is either the other substrate oxygen or is perfectly positioned to refill the O5 position during O2 release. Thus, our results exclude peroxo-bond formation in the S3 state, and the nucleophilic attack of W3 onto W2 is unlikely.


Subject(s)
Oxygen/metabolism , Photosynthesis , Water/chemistry , Water/metabolism , Calcium/metabolism , Crystallography, X-Ray , Cyanobacteria/chemistry , Lasers , Manganese/metabolism , Models, Molecular , Oxidation-Reduction , Photosystem II Protein Complex/chemistry , Photosystem II Protein Complex/metabolism , Plastoquinone/metabolism
2.
Angew Chem Int Ed Engl ; 58(3): 801-805, 2019 01 14.
Article in English | MEDLINE | ID: mdl-30452104

ABSTRACT

A biohybrid photobioanode mimicking the Z-scheme has been developed by functional integration of photosystem II (PSII) and PbS quantum dots (QDs) within an inverse opal TiO2 architecture giving rise to a rather negative water oxidation potential of about -0.55 V vs. Ag/AgCl, 1 m KCl at neutral pH. The electrical linkage between both light-sensitive entities has been established through an Os-complex-modified redox polymer (POs ), which allows the formation of a multi-step electron-transfer chain under illumination starting with the photo-activated water oxidation at PSII followed by an electron transfer from PSII through POs to the photo-excited QDs and finally to the TiO2 electrode. The photobioanode was coupled to a novel, transparent, inverse-opal ATO cathode modified with an O2 -reducing bilirubin oxidase for the construction of a H2 O/O2 photobioelectrochemical cell reaching a high open-circuit voltage of about 1 V under illumination.


Subject(s)
Lead/chemistry , Photosystem II Protein Complex/chemistry , Quantum Dots/chemistry , Sulfides/chemistry , Water/chemistry , Bioelectric Energy Sources , Biomimetic Materials/chemistry , Electricity , Electrodes , Electron Transport , Models, Molecular , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL