Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 380
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(35): e2302070120, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37603745

ABSTRACT

Glucocorticoids (GC) are potent anti-inflammatory agents, broadly used to treat acute and chronic inflammatory diseases, e.g., critically ill COVID-19 patients or patients with chronic inflammatory bowel diseases. GC not only limit inflammation but also promote its resolution although the underlying mechanisms are obscure. Here, we reveal reciprocal regulation of 15-lipoxygenase (LOX) isoform expression in human monocyte/macrophage lineages by GC with respective consequences for the biosynthesis of specialized proresolving mediators (SPM) and their 15-LOX-derived monohydroxylated precursors (mono-15-OH). Dexamethasone robustly up-regulated pre-mRNA, mRNA, and protein levels of ALOX15B/15-LOX-2 in blood monocyte-derived macrophage (MDM) phenotypes, causing elevated SPM and mono-15-OH production in inflammatory cell types. In sharp contrast, dexamethasone blocked ALOX15/15-LOX-1 expression and impaired SPM formation in proresolving M2-MDM. These dexamethasone actions were mimicked by prednisolone and hydrocortisone but not by progesterone, and they were counteracted by the GC receptor (GR) antagonist RU486. Chromatin immunoprecipitation (ChIP) assays revealed robust GR recruitment to a putative enhancer region within intron 3 of the ALOX15B gene but not to the transcription start site. Knockdown of 15-LOX-2 in M1-MDM abolished GC-induced SPM formation and mono-15-OH production. Finally, ALOX15B/15-LOX-2 upregulation was evident in human monocytes from patients with GC-treated COVID-19 or patients with IBD. Our findings may explain the proresolving GC actions and offer opportunities for optimizing GC pharmacotherapy and proresolving mediator production.


Subject(s)
COVID-19 , Glucocorticoids , Humans , Glucocorticoids/pharmacology , Arachidonate 15-Lipoxygenase/genetics , Inflammation , Dexamethasone/pharmacology , Lipids
2.
Eur J Immunol ; 54(3): e2350743, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38233139

ABSTRACT

Candida albicans causes opportunistic infections ranging from mucosal mycoses to life-threatening systemic infections in immunocompromised patients. During C. albicans infection, leukotrienes and prostaglandins are formed from arachidonic acid by 5-lipoxygenase (5-LOX) and cyclooxygenases, respectively to amplify inflammatory conditions, but also to initiate macrophage infiltration to achieve tissue homeostasis. Since less is known about the cellular mechanisms triggering such lipid mediator biosynthesis, we investigated the eicosanoid formation in monocyte-derived M1 and M2 macrophages, neutrophils and HEK293 cells transfected with 5-LOX and 5-LOX-activating protein (FLAP) in response to C. albicans yeast or hyphae. Leukotriene biosynthesis was exclusively induced by hyphae in neutrophils and macrophages, whereas prostaglandin E2 was also formed in response to yeast cells by M1 macrophages. Eicosanoid biosynthesis was significantly higher in M1 compared to M2 macrophages. In HEK_5-LOX/FLAP cells only hyphae activated the essential 5-LOX translocation to the nuclear membrane. Using yeast-locked C. albicans mutants, we demonstrated that hyphal-associated protein expression is critical in eicosanoid formation. For neutrophils and HEK_5-LOX/FLAP cells, hyphal wall protein 1 was identified as the essential surface protein that stimulates leukotriene biosynthesis. In summary, our data suggest that hyphal-associated proteins of C. albicans are central triggers of eicosanoid biosynthesis in human phagocytes.


Subject(s)
Candida albicans , Hyphae , Humans , HEK293 Cells , Eicosanoids/metabolism , Leukotrienes/metabolism
3.
J Immunol ; 210(10): 1564-1575, 2023 05 15.
Article in English | MEDLINE | ID: mdl-37042680

ABSTRACT

Tuberculosis caused by Mycobacterium tuberculosis is a leading cause of death globally and a major health concern. In humans, macrophages are the first line invaded by M. tuberculosis. Upon infection, macrophages upregulate cyclooxygenase-2 (COX-2) expression and consequently elevate the formation of PGs, including PGE2 and PGD2. Although the role of proinflammatory PGE2 in M. tuberculosis infection has been reported, the roles of PGJ2 and 15-deoxy-PGJ2 (collectively named J2-PGs), the metabolites of PGD2 with anti-inflammatory features, remain elusive. In this study, we show that M. tuberculosis (H37Rv strain)-conditioned medium stimulates human monocyte-derived macrophages (MDMs) to elevate COX-2 expression along with robust generation of PGJ2, exceeding PGD2 formation, and to a minor extent also of 15-deoxy-PGJ2. Of interest, in M1-MDM phenotypes, PGJ2 and 15-deoxy-PGJ2 decreased M. tuberculosis (H37Rv strain)-conditioned medium-induced COX-2 expression and related PG formation by a negative feedback loop. Moreover, these J2-PGs downregulated the expression of the proinflammatory cytokines IL-6, IL-1ß, and IFN-γ, but elevated the anti-inflammatory cytokine IL-10 and the M2 markers arginase-1 and CD163. These anti-inflammatory effects of J2-PGs in M1-MDM correlated with impaired activation of TGF-ß-activated kinase 1/NF-κB/MAPK pathways. Finally, we found that J2-PGs regulate COX-2 expression, at least partially, via PGD2 receptor (DP1) and chemoattractant receptor homologue expressed on Th2 cells/DP2 receptors, but independent of the J2-PG receptor peroxisome proliferator-activated receptor-γ. Together, our findings reveal that M. tuberculosis induces COX-2 expression in human M1-MDMs, along with robust formation of J2-PGs that mediates anti-inflammatory effects via a negative feedback loop.


Subject(s)
Mycobacterium tuberculosis , Prostaglandin D2 , Humans , Prostaglandin D2/metabolism , Mycobacterium tuberculosis/metabolism , Cyclooxygenase 2 , Dinoprostone , Feedback , Culture Media, Conditioned , Macrophages/metabolism , Cytokines , Anti-Inflammatory Agents
4.
J Neuroinflammation ; 21(1): 21, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38233951

ABSTRACT

BACKGROUND: Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS), characterized by neuroinflammation, demyelination, and neurodegeneration. Considering the increasing prevalence among young adults worldwide and the disabling phenotype of the disease, a deeper understanding of the complexity of the disease pathogenesis is needed to ultimately improve diagnosis and personalize treatment opportunities. Recent findings suggest that bioactive lipid mediators (LM) derived from ω-3/-6 polyunsaturated fatty acids (PUFA), also termed eicosanoids, may contribute to MS pathogenesis. For example, disturbances in LM profiles and especially those derived from the ω-6 PUFA arachidonic acid (AA) have been reported in people with MS (PwMS), where they may contribute to the chronicity of neuroinflammatory processes. Moreover, we have previously shown that certain AA-derived LMs also associated with neurodegenerative processes in PwMS, suggesting that AA-derived LMs are involved in more pathological events than solely neuroinflammation. Yet, to date, a comprehensive overview of the contribution of these LMs to MS-associated pathological processes remains elusive. MAIN BODY: This review summarizes and critically evaluates the current body of literature on the eicosanoid biosynthetic pathway and its contribution to key pathological hallmarks of MS during different disease stages. Various parts of the eicosanoid pathway are highlighted, namely, the prostanoid, leukotriene, and hydroxyeicosatetraenoic acids (HETEs) biochemical routes that include specific enzymes of the cyclooxygenases (COXs) and lipoxygenases (LOX) families. In addition, cellular sources of LMs and their potential target cells based on receptor expression profiles will be discussed in the context of MS. Finally, we propose novel therapeutic approaches based on eicosanoid pathway and/or receptor modulation to ultimately target chronic neuroinflammation, demyelination and neurodegeneration in MS. SHORT CONCLUSION: The eicosanoid pathway is intrinsically linked to specific aspects of MS pathogenesis. Therefore, we propose that novel intervention strategies, with the aim of accurately modulating the eicosanoid pathway towards the biosynthesis of beneficial LMs, can potentially contribute to more patient- and MS subtype-specific treatment opportunities to combat MS.


Subject(s)
Fatty Acids, Omega-3 , Multiple Sclerosis , Young Adult , Humans , Arachidonic Acid/metabolism , Neuroinflammatory Diseases , Eicosanoids/metabolism , Disease Progression
5.
Bioorg Chem ; 149: 107470, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38838619

ABSTRACT

Targeting protein kinases that regulate signalling pathways in inflammation is an effective pharmacological approach to alleviate uncontrolled inflammatory diseases. In this context, the natural product indirubin and its 6-bromo-substituted analogue 6-bromoindirubin-3 -glycerol-oxime ether (6BIGOE; 1) were identified as potent inhibitors of glycogen synthase kinase-3ß (GSK-3ß). These inhibitors suppress the release of pro-inflammatory cytokines and prostaglandins (PG) from human monocytes. However, indirubin derivatives target several protein kinases such as cyclin-dependent kinases (CDKs) which has been a major concern for their application in inflammation therapy. Here, we report on a library of 13 5-bromo-substituted indirubin derivatives that have been designed to improve potency and target selectivity. Side-by-side comparison of reference compound 1 (6BIGOE) with 5-bromo derivatives revealed its isomer 2 (5BIGOE), as the most potent derivative able to supress pro-inflammatory cytokine and PG release in lipopolysaccharide-stimulated human monocytes. Analysis of protein kinase inhibition in intact monocytes, supported by our in silico findings, proposed higher selectivity of 1 for GSK-3ß inhibition with lesser potency against CDKs 8 and 9. In contrast, 2 supressed the activity of these CDKs with higher effectiveness than GSK-3ß, representing additional targets of indirubins within the inflammatory response. Encapsulation of 1 and 2 into polymer-based nanoparticles (NP) improved their pharmacological potential. In conclusion, the 5- and 6-brominated indirubins 1 and 2 as dual GSK-3ß and CDK8/9 inhibitors represent a novel concept for intervention with inflammatory disorders.


Subject(s)
Indoles , Monocytes , Protein Kinase Inhibitors , Signal Transduction , Humans , Monocytes/drug effects , Monocytes/metabolism , Indoles/pharmacology , Indoles/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Signal Transduction/drug effects , Structure-Activity Relationship , Molecular Structure , Inflammation Mediators/metabolism , Inflammation Mediators/antagonists & inhibitors , Dose-Response Relationship, Drug , Lipopolysaccharides/pharmacology , Lipopolysaccharides/antagonists & inhibitors , Cytokines/metabolism , Cytokines/antagonists & inhibitors , Molecular Docking Simulation
6.
Bioorg Chem ; 147: 107383, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38653151

ABSTRACT

Selective inhibition of microsomal prostaglandin E2 synthase-1 (mPGES-1) is implicated as a new therapeutic modality for the development of new-generation anti-inflammatory drugs. Here, we present the discovery of new and potent inhibitors of human mPGES-1, i.e., compounds 13, 15-25, 29-30 with IC50 values in the range of 5.6-82.3 nM in a cell-free assay of prostaglandin (PG)E2 formation. We also demonstrate that 20 (TG554, IC50 = 5.6 nM) suppresses leukotriene (LT) biosynthesis at low µM concentrations, providing a benchmark compound that dually intervenes with inflammatory PGE2 and LT biosynthesis. Comprehensive lipid mediator (LM) metabololipidomics with activated human monocyte-derived macrophages showed that TG554 selectively inhibits inflammatory PGE2 formation over all cyclooxygenase (COX)-derived prostanoids, does not cause substrate shunting towards 5-lipoxygenase (5-LOX) pathway, and does not interfere with the biosynthesis of the specialized pro-resolving mediators as observed with COX inhibitors, providing a new chemotype for effective and safer anti-inflammatory drug development.


Subject(s)
Dose-Response Relationship, Drug , Oxadiazoles , Prostaglandin-E Synthases , Prostaglandin-E Synthases/antagonists & inhibitors , Prostaglandin-E Synthases/metabolism , Humans , Structure-Activity Relationship , Molecular Structure , Oxadiazoles/chemistry , Oxadiazoles/pharmacology , Oxadiazoles/chemical synthesis , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Microsomes/metabolism , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis
7.
Angew Chem Int Ed Engl ; 63(23): e202401195, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38529534

ABSTRACT

The cosmopolitan marine Roseobacter clade is of global biogeochemical importance. Members of this clade produce sulfur-containing amino lipids (SALs) involved in biofilm formation and marine surface colonization processes. Despite their physiological relevance and abundance, SALs have only been explored through genomic mining approaches and lipidomic studies based on mass spectrometry, which left the relative and absolute structures of SALs unresolved, hindering progress in biochemical and functional investigations. Herein, we report the structural revision of a new group of SALs, which we named cysteinolides, using a combination of analytical techniques, isolation and degradation experiments and total synthetic efforts. Contrary to the previously proposed homotaurine-based structures, cysteinolides are composed of an N,O-acylated cysteinolic acid-containing head group carrying various different (α-hydroxy)carboxylic acids. We also performed the first validated targeted-network based analysis, which allowed us to map the distribution and structural diversity of cysteinolides across bacterial lineages. Beyond offering structural insight, our research provides SAL standards and validated analytical data. This information holds significance for forthcoming investigations into bacterial sulfonolipid metabolism and biogeochemical nutrient cycling within marine environments.


Subject(s)
Lipids , Lipids/chemistry , Roseobacter/metabolism , Roseobacter/chemistry , Molecular Structure , Aquatic Organisms/chemistry
8.
Arterioscler Thromb Vasc Biol ; 42(4): 444-461, 2022 04.
Article in English | MEDLINE | ID: mdl-35236104

ABSTRACT

BACKGROUND: TP (thromboxane A2 receptor) plays an eminent role in the pathophysiology of endothelial dysfunction and cardiovascular disease. Moreover, its expression is reported to increase in the intimal layer of blood vessels of cardiovascular high-risk individuals. Yet it is unknown, whether TP upregulation per se has the potential to affect the homeostasis of the vascular endothelium. METHODS: We combined global transcriptome analysis, lipid mediator profiling, functional cell analyses, and in vivo angiogenesis assays to study the effects of endothelial TP overexpression or knockdown/knockout on the angiogenic capacity of endothelial cells in vitro and in vivo. RESULTS: Here we report that endothelial TP expression induces COX-2 (cyclooxygenase-2) in a Gi/o- and Gq/11-dependent manner, thereby promoting its own activation via the auto/paracrine release of TP agonists, such as PGH2 (prostaglandin H2) or prostaglandin F2 but not TxA2 (thromboxane A2). TP overexpression induces endothelial cell tension and aberrant cell morphology, affects focal adhesion dynamics, and inhibits the angiogenic capacity of human endothelial cells in vitro and in vivo, whereas TP knockdown or endothelial-specific TP knockout exerts opposing effects. Consequently, this TP-dependent feedback loop is disrupted by pharmacological TP or COX-2 inhibition and by genetic reconstitution of PGH2-metabolizing prostacyclin synthase even in the absence of functional prostacyclin receptor expression. CONCLUSIONS: Our work uncovers a TP-driven COX-2-dependent feedback loop and important effector mechanisms that directly link TP upregulation to angiostatic TP signaling in endothelial cells. By these previously unrecognized mechanisms, pathological endothelial upregulation of the TP could directly foster endothelial dysfunction, microvascular rarefaction, and systemic hypertension even in the absence of exogenous sources of TP agonists.


Subject(s)
Endothelial Cells , Receptors, Thromboxane , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/pharmacology , Endothelial Cells/metabolism , Feedback , Homeostasis , Humans , Receptors, Thromboxane/metabolism , Receptors, Thromboxane A2, Prostaglandin H2/genetics , Thromboxane A2/metabolism , Thromboxanes/metabolism , Thromboxanes/pharmacology
9.
Bioorg Med Chem Lett ; 94: 129464, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37634760

ABSTRACT

Simplified analogues of the myxobacterial polyketide ajudazol were obtained by synthesis and evaluated for their biological activities. Potent simplified 5-lipoxygenase inhibitors were identified. Moreover, strong antiproliferative and apoptotic activities were observed in brain cancer cell lines at low nano- to micromolar concentrations.


Subject(s)
Brain Neoplasms , Lipoxygenase Inhibitors , Neuroblastoma , Humans , Arachidonate 5-Lipoxygenase , Cell Line , Neuroblastoma/drug therapy , Lipoxygenase Inhibitors/chemistry , Lipoxygenase Inhibitors/pharmacology
10.
Bioorg Chem ; 139: 106685, 2023 10.
Article in English | MEDLINE | ID: mdl-37418786

ABSTRACT

Inflammatory responses are orchestrated by a plethora of lipid mediators, and perturbations of their biosynthesis or degradation hinder resolution and lead to uncontrolled inflammation, which contributes to diverse pathologies. Small molecules that induce a switch from pro-inflammatory to anti-inflammatory lipid mediators are considered valuable for the treatment of chronic inflammatory diseases. Commonly used non-steroidal anti-inflammatory drugs (NSAIDs) are afflicted with side effects caused by the inhibition of beneficial prostanoid formation and redirection of arachidonic acid (AA) into alternative pathways. Multi-target inhibitors like diflapolin, the first dual inhibitor of soluble epoxide hydrolase (sEH) and 5-lipoxygenase-activating protein (FLAP), promise improved efficacy and safety but are confronted by poor solubility and bioavailability. Four series of derivatives bearing isomeric thiazolopyridines as bioisosteric replacement of the benzothiazole core and two series additionally containing mono- or diaza-isosteres of the phenylene spacer were designed and synthesized to improve solubility. The combination of thiazolo[5,4-b]pyridine, a pyridinylen spacer and a 3,5-Cl2-substituted terminal phenyl ring (46a) enhances solubility and FLAP antagonism, while preserving sEH inhibition. Moreover, the thiazolo[4,5-c]pyridine derivative 41b, although being a less potent sEH/FLAP inhibitor, additionally decreases thromboxane production in activated human peripheral blood mononuclear cells. We conclude that the introduction of nitrogen, depending on the position, not only enhances solubility and FLAP antagonism (46a), but also represents a valid strategy to expand the scope of application towards inhibition of thromboxane biosynthesis.


Subject(s)
5-Lipoxygenase-Activating Protein Inhibitors , Lipoxygenase Inhibitors , Humans , Lipoxygenase Inhibitors/pharmacology , 5-Lipoxygenase-Activating Protein Inhibitors/pharmacology , Solubility , Leukocytes, Mononuclear/metabolism , Epoxide Hydrolases/metabolism , Enzyme Inhibitors/pharmacology , Anti-Inflammatory Agents/pharmacology , Pyridines/pharmacology , Thromboxanes , Lipids
11.
J Clin Periodontol ; 50(3): 380-395, 2023 03.
Article in English | MEDLINE | ID: mdl-36384158

ABSTRACT

AIM: Therapeutic modulation of bacterial-induced inflammatory host response is being investigated in gingival inflammation and periodontal disease pathology. Therefore, dietary intake of the monounsaturated fatty acid (FA) oleic acid (OA (C18:1)), which is the main component of Mediterranean-style diets, and saturated FA palmitic acid (PA (C16:0)), which is a component of Western-style diets, was investigated for their modifying potential in an oral inoculation model of Porphyromonas gingivalis. MATERIALS AND METHODS: Normal-weight C57BL/6-mice received OA- or PA-enriched diets (PA-ED, OA-ED, PA/OA-ED) or normal standard diet for 16 weeks and were inoculated with P. gingivalis/placebo (n = 12/group). Gingival inflammation, alveolar bone structure, circulating lipid mediators, and in vitro cellular response were determined. RESULTS: FA treatment of P. gingivalis-lipopolysaccharide-incubated gingival fibroblasts (GFbs) modified inflammatory activation, which only PA exacerbated with concomitant TNF-α stimulation. Mice exhibited no signs of acute inflammation in gingiva or serum and no inoculation- or nutrition-associated changes of the crestal alveolar bone. However, following P. gingivalis inoculation, OA-ED improved oral trabecular bone micro-architecture and enhanced circulating pro-resolving mediators resolvin D4 (RvD4) and 4-hydroxydocosahexaenoic acid (4-HDHA), whereas PA-ED did not. In vitro experiments demonstrated significantly improved differentiation in RvD4- and 4-HDHA-treated primary osteoblast cultures and reduced the expression of osteoclastogenic factors in GF. Further, P. gingivalis infection of OA-ED animals led to a serum composition that suppressed osteoclastic differentiation in vitro. CONCLUSIONS: Our results underline the preventive impact of Mediterranean-style OA-EDs by indicating their pro-resolving nature beyond anti-inflammatory properties.


Subject(s)
Diet, Mediterranean , Oleic Acid , Mice , Animals , Oleic Acid/pharmacology , Porphyromonas gingivalis , Mice, Inbred C57BL , Cancellous Bone , Inflammation
12.
Int J Mol Sci ; 24(1)2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36614272

ABSTRACT

Macrophages are important cells of the innate immune system that play many different roles in host defense, a fact that is reflected by their polarization into many distinct subtypes. Depending on their function and phenotype, macrophages can be grossly classified into classically activated macrophages (pro-inflammatory M1 cells), alternatively activated macrophages (anti-inflammatory M2 cells), and non-activated cells (resting M0 cells). A fast, label-free and non-destructive characterization of macrophage phenotypes could be of importance for studying the contribution of the various subtypes to numerous pathologies. In this work, single cell Raman spectroscopic imaging was applied to visualize the characteristic phenotype as well as to discriminate between different human macrophage phenotypes without any label and in a non-destructive manner. Macrophages were derived by differentiation of peripheral blood monocytes of human healthy donors and differently treated to yield M0, M1 and M2 phenotypes, as confirmed by marker analysis using flow cytometry and fluorescence imaging. Raman images of chemically fixed cells of those three macrophage phenotypes were processed using chemometric methods of unmixing (N-FINDR) and discrimination (PCA-LDA). The discrimination models were validated using leave-one donor-out cross-validation. The results show that Raman imaging is able to discriminate between pro- and anti-inflammatory macrophage phenotypes with high accuracy in a non-invasive, non-destructive and label-free manner. The spectral differences observed can be explained by the biochemical characteristics of the different phenotypes.


Subject(s)
Macrophages , Spectrum Analysis, Raman , Humans , Monocytes , Macrophage Activation , Anti-Inflammatory Agents
13.
Int J Mol Sci ; 24(8)2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37108702

ABSTRACT

The 5-lipoxygenase (5-LOX) pathway gives rise to bioactive inflammatory lipid mediators, such as leukotrienes (LTs). 5-LOX carries out the oxygenation of arachidonic acid to the 5-hydroperoxy derivative and then to the leukotriene A4 epoxide which is converted to a chemotactic leukotriene B4 (LTB4) by leukotriene A4 hydrolase (LTA4H). In addition, LTA4H possesses aminopeptidase activity to cleave the N-terminal proline of a pro-inflammatory tripeptide, prolyl-glycyl-proline (PGP). Based on the structural characteristics of LTA4H, it is possible to selectively inhibit the epoxide hydrolase activity while sparing the inactivating, peptidolytic, cleavage of PGP. In the current study, chalcogen-containing compounds, 4-(4-benzylphenyl) thiazol-2-amine (ARM1) and its selenazole (TTSe) and oxazole (TTO) derivatives were characterized regarding their inhibitory and binding properties. All three compounds selectively inhibit the epoxide hydrolase activity of LTA4H at low micromolar concentrations, while sparing the aminopeptidase activity. These inhibitors also block the 5-LOX activity in leukocytes and have distinct inhibition constants with recombinant 5-LOX. Furthermore, high-resolution structures of LTA4H with inhibitors were determined and potential binding sites to 5-LOX were proposed. In conclusion, we present chalcogen-containing inhibitors which differentially target essential steps in the biosynthetic route for LTB4 and can potentially be used as modulators of inflammatory response by the 5-LOX pathway.


Subject(s)
Chalcogens , Epoxide Hydrolases , Leukotriene A4 , Epoxide Hydrolases/metabolism , Arachidonate 5-Lipoxygenase , Aminopeptidases/metabolism
14.
Int J Mol Sci ; 24(11)2023 May 25.
Article in English | MEDLINE | ID: mdl-37298183

ABSTRACT

α-Tocopherol-13'-carboxychromanol (α-T-13'-COOH) is an endogenously formed bioactive α-tocopherol metabolite that limits inflammation and has been proposed to exert lipid metabolism-regulatory, pro-apoptotic, and anti-tumoral properties at micromolar concentrations. The mechanisms underlying these cell stress-associated responses are, however, poorly understood. Here, we show that the induction of G0/G1 cell cycle arrest and apoptosis in macrophages triggered by α-T-13'-COOH is associated with the suppressed proteolytic activation of the lipid anabolic transcription factor sterol regulatory element-binding protein (SREBP)1 and with decreased cellular levels of stearoyl-CoA desaturase (SCD)1. In turn, the fatty acid composition of neutral lipids and phospholipids shifts from monounsaturated to saturated fatty acids, and the concentration of the stress-preventive, pro-survival lipokine 1,2-dioleoyl-sn-glycero-3-phospho-(1'-myo-inositol) [PI(18:1/18:1)] decreases. The selective inhibition of SCD1 mimics the pro-apoptotic and anti-proliferative activity of α-T-13'-COOH, and the provision of the SCD1 product oleic acid (C18:1) prevents α-T-13'-COOH-induced apoptosis. We conclude that micromolar concentrations of α-T-13'-COOH trigger cell death and likely also cell cycle arrest by suppressing the SREBP1-SCD1 axis and depleting cells of monounsaturated fatty acids and PI(18:1/18:1).


Subject(s)
Tocopherols , alpha-Tocopherol , alpha-Tocopherol/pharmacology , Sterol Regulatory Element Binding Protein 1/metabolism , Fatty Acids/metabolism , Cell Death , Cell Cycle Checkpoints , Vitamin E , Stearoyl-CoA Desaturase/metabolism
15.
Int J Mol Sci ; 24(15)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37569701

ABSTRACT

In dermatological research, 2,4-dinitrochlorbenzene (DNCB)-induced atopic dermatitis (AD) is a standard model as it displays many disease-associated characteristics of human AD. However, the reproducibility of the model is challenging due to the lack of information regarding the methodology and the description of the phenotype and endotype of the mimicked disease. In this study, a DNCB-induced mouse model was established with a detailed procedure description and classification of the AD human-like skin type. The disease was induced with 1% DNCB in the sensitization phase and repeated applications of 0.3% and 0.5% DNCB in the challenging phase which led to a mild phenotype of AD eczema. Pathophysiological changes of the dorsal skin were measured: thickening of the epidermis and dermis, altered skin barrier proteins, increased TH1 and TH2 cytokine expression, a shift in polyunsaturated fatty acids, increased pro-resolving and inflammatory mediator formation, and dysregulated inflammation-associated gene expression. A link to type I allergy reactions was evaluated by increased mast cell infiltration into the skin accompanied by elevated IgE and histamine levels in plasma. As expected for mild AD, no systemic inflammation was observed. In conclusion, this experimental setup demonstrates many features of a mild human-like extrinsic AD in murine skin.


Subject(s)
Dermatitis, Atopic , Humans , Animals , Mice , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/metabolism , Dinitrochlorobenzene/toxicity , Reproducibility of Results , Immunoglobulin E/metabolism , Skin/metabolism , Cytokines/metabolism , Inflammation/metabolism , Mice, Inbred BALB C , Disease Models, Animal
16.
Inflammopharmacology ; 31(5): 2369-2381, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37603157

ABSTRACT

This study aimed at determining whether there is a difference in the safety profile between fast release (FR) aspirin tablets and regular galenic formulations of aspirin. This study was based on a clinical study database pool (Bayer HealthCare) including 84 clinical studies and 16,095 human subjects. The meta-analysis included 72 studies applying a single dose of aspirin of at most 1000 mg and was, therefore, based on individual data from 9288 subjects. Of these, 6029 subjects took aspirin and 3259 subjects took placebo. Endpoints were adverse events (AEs) of any kind and, especially of gastrointestinal (GI) nature. Event incidence and odds ratios (OR) based on Mantel-Haenszel risk estimates were calcuated. Subjects on aspirin FR had a significantly decreased OR of 0.65 [0.48, 0.90] [95% confidence interval] for all AEs and of 0.39 [0.20, 0.79] for drug-related all AEs versus placebo. The risk of all GI AEs tended to be reduced for subjects on aspirin FR (0.65 [0.41; 1.03]), but not for drug-related GI AEs. Subject on aspirin mono and aspirin mono (plain only, w/o FR) showed an increased risk of drug-related all AEs compared to placebo (1.34 [1.11; 1.62] and 1.43 [1.13; 1.80]). However, subjects on aspirin FR and those on regular aspirin had almost the same risk of all determined AEs. In conclusion, aspirin FR tablets showed a comparable GI tolerability to regular galenic formulations of aspirin after short-term treatment. Major GI complication did not occur after intake of any galenic formulation of aspirin.


Subject(s)
Aspirin , Gastrointestinal Diseases , Humans , Aspirin/adverse effects , Randomized Controlled Trials as Topic , Gastrointestinal Diseases/chemically induced , Gastrointestinal Diseases/drug therapy , Gastrointestinal Diseases/epidemiology , Tablets
17.
Immunology ; 166(1): 47-67, 2022 05.
Article in English | MEDLINE | ID: mdl-35143048

ABSTRACT

Staphylococcus aureus causes severe infections associated with inflammation, such as sepsis or osteomyelitis. Inflammatory processes are regulated by distinct lipid mediators (LMs) but how their biosynthetic pathways are orchestrated in S. aureus infections is elusive. We show that S. aureus strikingly not only modulates pro-inflammatory, but also inflammation-resolving LM pathways in murine osteomyelitis and osteoclasts as well as in human monocyte-derived macrophages (MDMs) with different phenotype. Targeted LM metabololipidomics using ultra-performance liquid chromatography-tandem mass spectrometry revealed massive generation of LM with distinct LM signature profiles in acute and chronic phases of S. aureus-induced murine osteomyelitis in vivo. In human MDM, S. aureus elevated cyclooxygenase-2 (COX-2) and microsomal prostaglandin E2  synthase-1 (mPGES-1), but impaired the levels of 15-lipoxygenase-1 (15-LOX-1), with respective changes in LM signature profiles initiated by these enzymes, that is, elevated PGE2 and impaired specialized pro-resolving mediators, along with reduced M2-like phenotypic macrophage markers. The cell wall component, lipoteichoic acid (LTA), mimicked the impact of S. aureus elevating COX-2/mPGES-1 expression via NF-κB and p38 MAPK signalling in MDM, while the impairment of 15-LOX-1 correlates with reduced expression of Lamtor1. In conclusion, S. aureus dictates LM pathways via LTA resulting in a shift from anti-inflammatory M2-like towards pro-inflammatory M1-like LM signature profiles.


Subject(s)
Osteomyelitis , Staphylococcus aureus , Animals , Cyclooxygenase 2/metabolism , Dinoprostone , Inflammation/metabolism , Lipopolysaccharides , Mice , Prostaglandin-E Synthases/metabolism , Scavenger Receptors, Class E , Teichoic Acids
18.
Chembiochem ; 23(9): e202200073, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35244320

ABSTRACT

δ-Hydroxy-ß-keto esters and δ,ß-dihydroxy esters are characteristic structural motifs of statin-type natural products and drug candidates. Here, we describe the synthesis of functionalized δ-hydroxy-ß-keto esters in good yields and excellent enantioselectivities using Chan's diene and modified Mukaiyama-aldol reaction conditions. Diastereoselective reduction of δ,ß-dihydroxy esters afforded the respective syn- and anti-diols, and saponification yielded the corresponding acids. All products were evaluated for their anti-inflammatory properties, which uncovered a surprising structure-activity relationship.


Subject(s)
Biological Products , Esters , Anti-Inflammatory Agents/pharmacology , Polyenes , Structure-Activity Relationship
19.
J Virol ; 95(10)2021 04 26.
Article in English | MEDLINE | ID: mdl-33637603

ABSTRACT

Infections with SARS-CoV-2 can be asymptomatic, but they can also be accompanied by a variety of symptoms that result in mild to severe coronavirus disease-19 (COVID-19) and are sometimes associated with systemic symptoms. Although the viral infection originates in the respiratory system, it is unclear how the virus can overcome the alveolar barrier, which is observed in severe COVID-19 disease courses. To elucidate the viral effects on the barrier integrity and immune reactions, we used mono-cell culture systems and a complex human chip model composed of epithelial, endothelial, and mononuclear cells. Our data show that SARS-CoV-2 efficiently infected epithelial cells with high viral loads and inflammatory response, including interferon expression. By contrast, the adjacent endothelial layer was neither infected nor did it show productive virus replication or interferon release. With prolonged infection, both cell types were damaged, and the barrier function was deteriorated, allowing the viral particles to overbear. In our study, we demonstrate that although SARS-CoV-2 is dependent on the epithelium for efficient replication, the neighboring endothelial cells are affected, e.g., by the epithelial cytokines or components induced during infection, which further results in the damage of the epithelial/endothelial barrier function and viral dissemination.IMPORTANCESARS-CoV-2 challenges healthcare systems and societies worldwide in unprecedented ways. Although numerous new studies have been conducted, research to better understand the molecular pathogen-host interactions are urgently needed. For this, experimental models have to be developed and adapted. In the present study we used mono cell-culture systems and we established a complex chip model, where epithelial and endothelial cells are cultured in close proximity. We demonstrate that epithelial cells can be infected with SARS-CoV-2, while the endothelium did not show any infection signs. Since SARS-CoV-2 is able to establish viremia, the link to thromboembolic events in severe COVID-19 courses is evident. However, whether the endothelial layer is damaged by the viral pathogens or whether other endothelial-independent homeostatic factors are induced by the virus is essential for understanding the disease development. Therefore, our study is important as it demonstrates that the endothelial layer could not be infected by SARS-CoV-2 in our in vitro experiments, but we were able to show the destruction of the epithelial-endothelial barrier in our chip model. From our experiments we can assume that virus-induced host factors disturbed the epithelial-endothelial barrier function and thereby promote viral spread.

20.
Nat Chem Biol ; 16(7): 783-790, 2020 07.
Article in English | MEDLINE | ID: mdl-32393899

ABSTRACT

Leukotrienes (LT) are lipid mediators of the inflammatory response that are linked to asthma and atherosclerosis. LT biosynthesis is initiated by 5-lipoxygenase (5-LOX) with the assistance of the substrate-binding 5-LOX-activating protein at the nuclear membrane. Here, we contrast the structural and functional consequences of the binding of two natural product inhibitors of 5-LOX. The redox-type inhibitor nordihydroguaiaretic acid (NDGA) is lodged in the 5-LOX active site, now fully exposed by disordering of the helix that caps it in the apo-enzyme. In contrast, the allosteric inhibitor 3-acetyl-11-keto-beta-boswellic acid (AKBA) from frankincense wedges between the membrane-binding and catalytic domains of 5-LOX, some 30 Å from the catalytic iron. While enzyme inhibition by NDGA is robust, AKBA promotes a shift in the regiospecificity, evident in human embryonic kidney 293 cells and in primary immune cells expressing 5-LOX. Our results suggest a new approach to isoform-specific 5-LOX inhibitor development through exploitation of an allosteric site in 5-LOX.


Subject(s)
Arachidonate 5-Lipoxygenase/chemistry , Biological Products/chemistry , Lipoxygenase Inhibitors/chemistry , Masoprocol/chemistry , Triterpenes/chemistry , Allosteric Site , Arachidonate 5-Lipoxygenase/genetics , Arachidonate 5-Lipoxygenase/metabolism , Biological Products/metabolism , Catalytic Domain , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Hydroxyeicosatetraenoic Acids/chemistry , Hydroxyeicosatetraenoic Acids/metabolism , Leukotriene B4/chemistry , Leukotriene B4/metabolism , Lipoxygenase Inhibitors/metabolism , Masoprocol/metabolism , Models, Molecular , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Multimerization , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity , Triterpenes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL