Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 235
Filter
Add more filters

Publication year range
1.
Pharmacol Rev ; 75(5): 854-884, 2023 09.
Article in English | MEDLINE | ID: mdl-37028945

ABSTRACT

The two ß-arrestins, ß-arrestin-1 and -2 (systematic names: arrestin-2 and -3, respectively), are multifunctional intracellular proteins that regulate the activity of a very large number of cellular signaling pathways and physiologic functions. The two proteins were discovered for their ability to disrupt signaling via G protein-coupled receptors (GPCRs) via binding to the activated receptors. However, it is now well recognized that both ß-arrestins can also act as direct modulators of numerous cellular processes via either GPCR-dependent or -independent mechanisms. Recent structural, biophysical, and biochemical studies have provided novel insights into how ß-arrestins bind to activated GPCRs and downstream effector proteins. Studies with ß-arrestin mutant mice have identified numerous physiologic and pathophysiological processes regulated by ß-arrestin-1 and/or -2. Following a short summary of recent structural studies, this review primarily focuses on ß-arrestin-regulated physiologic functions, with particular focus on the central nervous system and the roles of ß-arrestins in carcinogenesis and key metabolic processes including the maintenance of glucose and energy homeostasis. This review also highlights potential therapeutic implications of these studies and discusses strategies that could prove useful for targeting specific ß-arrestin-regulated signaling pathways for therapeutic purposes. SIGNIFICANCE STATEMENT: The two ß-arrestins, structurally closely related intracellular proteins that are evolutionarily highly conserved, have emerged as multifunctional proteins able to regulate a vast array of cellular and physiological functions. The outcome of studies with ß-arrestin mutant mice and cultured cells, complemented by novel insights into ß-arrestin structure and function, should pave the way for the development of novel classes of therapeutically useful drugs capable of regulating specific ß-arrestin functions.


Subject(s)
Arrestins , Signal Transduction , Mice , Animals , beta-Arrestins/metabolism , Arrestins/chemistry , Arrestins/metabolism , Receptors, G-Protein-Coupled/metabolism , beta-Arrestin 1/metabolism
2.
Annu Rev Physiol ; 84: 17-40, 2022 02 10.
Article in English | MEDLINE | ID: mdl-34705480

ABSTRACT

ß-Arrestin-1 and -2 (also known as arrestin-2 and -3, respectively) are ubiquitously expressed cytoplasmic proteins that dampen signaling through G protein-coupled receptors. However, ß-arrestins can also act as signaling molecules in their own right. To investigate the potential metabolic roles of the two ß-arrestins in modulating glucose and energy homeostasis, recent studies analyzed mutant mice that lacked or overexpressed ß-arrestin-1 and/or -2 in distinct, metabolically important cell types. Metabolic analysis of these mutant mice clearly demonstrated that both ß-arrestins play key roles in regulating the function of most of these cell types, resulting in striking changes in whole-body glucose and/or energy homeostasis. These studies also revealed that ß-arrestin-1 and -2, though structurally closely related, clearly differ in their metabolic roles under physiological and pathophysiological conditions. These new findings should guide the development of novel drugs for the treatment of various metabolic disorders, including type 2 diabetes and obesity.


Subject(s)
Diabetes Mellitus, Type 2 , Glucose , Animals , Glucose/metabolism , Homeostasis , Humans , Mice , beta-Arrestin 1/metabolism , beta-Arrestins/metabolism
3.
Annu Rev Pharmacol Toxicol ; 61: 421-440, 2021 01 06.
Article in English | MEDLINE | ID: mdl-32746768

ABSTRACT

G protein-coupled receptors (GPCRs) form a superfamily of plasma membrane receptors that couple to four major families of heterotrimeric G proteins, Gs, Gi, Gq, and G12. GPCRs represent excellent targets for drug therapy. Since the individual GPCRs are expressed by many different cell types, the in vivo metabolic roles of a specific GPCR expressed by a distinct cell type are not well understood. The development of designer GPCRs known as DREADDs (designer receptors exclusively activated by a designer drug) that selectively couple to distinct classes of heterotrimeric G proteins has greatly facilitated studies in this area. This review focuses on the use of DREADD technology to explore the physiological and pathophysiological roles of distinct GPCR/G protein cascades in several metabolically important cell types. The novel insights gained from these studies should stimulate the development of GPCR-based treatments for major metabolic diseases such as type 2 diabetes and obesity.


Subject(s)
Diabetes Mellitus, Type 2 , Signal Transduction , Humans , Hypoglycemic Agents , Receptors, G-Protein-Coupled , Technology
4.
Nucleic Acids Res ; 50(16): 9195-9211, 2022 09 09.
Article in English | MEDLINE | ID: mdl-36018801

ABSTRACT

Enhancers establish proximity with distant target genes to regulate temporospatial gene expression and specify cell identity. Lim domain binding protein 1 (LDB1) is a conserved and widely expressed protein that functions as an enhancer looping factor. Previous studies in erythroid cells and neuronal cells showed that LDB1 forms protein complexes with different transcription factors to regulate cell-specific gene expression. Here, we show that LDB1 regulates expression of liver genes by occupying enhancer elements and cooperating with hepatic transcription factors HNF4A, FOXA1, TCF7 and GATA4. Using the glucose transporter SLC2A2 gene, encoding GLUT2, as an example, we find that LDB1 regulates gene expression by mediating enhancer-promoter interactions. In vivo, we find that LDB1 deficiency in primary mouse hepatocytes dysregulates metabolic gene expression and changes the enhancer landscape. Conditional deletion of LDB1 in adult mouse liver induces glucose intolerance. However, Ldb1 knockout hepatocytes show improved liver pathology under high-fat diet conditions associated with increased expression of genes related to liver fatty acid metabolic processes. Thus, LDB1 is linked to liver metabolic functions under normal and obesogenic conditions.


Subject(s)
DNA-Binding Proteins , Transcription Factors , Mice , Animals , Transcription Factors/genetics , Transcription Factors/metabolism , DNA-Binding Proteins/metabolism , LIM-Homeodomain Proteins/genetics , LIM Domain Proteins/metabolism , Gene Expression , Hepatocytes/metabolism , Liver/metabolism
5.
Am J Physiol Renal Physiol ; 325(5): F618-F628, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37675459

ABSTRACT

Acetylcholine plays an essential role in the regulation of detrusor muscle contractions, and antimuscarinics are widely used in the management of overactive bladder syndrome. However, several adverse effects limit their application and patients' compliance. Thus, this study aimed to further analyze the signal transduction of M2 and M3 receptors in the murine urinary bladder to eventually find more specific therapeutic targets. Experiments were performed on adult male wild-type, M2, M3, M2/M3, or Gαq/11 knockout (KO), and pertussis toxin (PTX)-treated mice. Contraction force and RhoA activity were measured in the urinary bladder smooth muscle (UBSM). Our results indicate that carbamoylcholine (CCh)-induced contractions were associated with increased activity of RhoA and were reduced in the presence of the Rho-associated kinase (ROCK) inhibitor Y-27632 in UBSM. CCh-evoked contractile responses and RhoA activation were markedly reduced in detrusor strips lacking either M2 or M3 receptors and abolished in M2/M3 KO mice. Inhibition of Gαi-coupled signaling by PTX treatment shifted the concentration-response curve of CCh to the right and diminished RhoA activation. CCh-induced contractile responses were markedly decreased in Gαq/11 KO mice; however, RhoA activation was unaffected. In conclusion, cholinergic detrusor contraction and RhoA activation are mediated by both M2 and M3 receptors. Furthermore, whereas both Gαi and Gαq/11 proteins mediate UBSM contraction, the activation at the RhoA-ROCK pathway appears to be linked specifically to Gαi. These findings may aid the identification of more specific therapeutic targets for bladder dysfunctions.NEW & NOTEWORTHY Muscarinic acetylcholine receptors are of utmost importance in physiological regulation of micturition and also in the development of voiding disorders. We demonstrate that the RhoA-Rho-associated kinase (ROCK) pathway plays a crucial role in contractions induced by cholinergic stimulation in detrusor muscle. Activation of RhoA is mediated by both M2 and M3 receptors as well as by Gi but not Gq/11 proteins. The Gi-RhoA-ROCK pathway may provide a novel therapeutic target for overactive voiding disorders.

6.
Proc Natl Acad Sci U S A ; 117(48): 30763-30774, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33199639

ABSTRACT

Uridine diphosphate (UDP)-activated purinergic receptor P2Y6 (P2Y6R) plays a crucial role in controlling energy balance through central mechanisms. However, P2Y6R's roles in peripheral tissues regulating energy and glucose homeostasis remain unexplored. Here, we report the surprising finding that adipocyte-specific deletion of P2Y6R protects mice from diet-induced obesity, improving glucose tolerance and insulin sensitivity with reduced systemic inflammation. These changes were associated with reduced JNK signaling and enhanced expression and activity of PPARα affecting downstream PGC1α levels leading to beiging of white fat. In contrast, P2Y6R deletion in skeletal muscle reduced glucose uptake, resulting in impaired glucose homeostasis. Interestingly, whole body P2Y6R knockout mice showed metabolic improvements similar to those observed with mice lacking P2Y6R only in adipocytes. Our findings provide compelling evidence that P2Y6R antagonists may prove useful for the treatment of obesity and type 2 diabetes.


Subject(s)
Adipocytes/metabolism , Glucose/metabolism , Homeostasis , Receptors, Purinergic P2/metabolism , Adipocytes/drug effects , Adipose Tissue/metabolism , Animals , Biomarkers , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat , Disease Models, Animal , Energy Metabolism , Gene Expression Regulation/drug effects , Inflammation/etiology , Inflammation/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , Mice , Mice, Knockout , Mitochondria/genetics , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Obesity/etiology , Obesity/metabolism , Receptors, Purinergic P2/genetics
7.
PLoS Genet ; 15(10): e1008424, 2019 10.
Article in English | MEDLINE | ID: mdl-31622341

ABSTRACT

Type 2 diabetes (T2D) has become a major health problem worldwide. Skeletal muscle (SKM) is the key tissue for whole-body glucose disposal and utilization. New drugs aimed at improving insulin sensitivity of SKM would greatly expand available therapeutic options. ß-arrestin-1 and -2 (Barr1 and Barr2, respectively) are two intracellular proteins best known for their ability to mediate the desensitization and internalization of G protein-coupled receptors (GPCRs). Recent studies suggest that Barr1 and Barr2 regulate several important metabolic functions including insulin release and hepatic glucose production. Since SKM expresses many GPCRs, including the metabolically important ß2-adrenergic receptor, the goal of this study was to examine the potential roles of Barr1 and Barr2 in regulating SKM and whole-body glucose metabolism. Using SKM-specific knockout (KO) mouse lines, we showed that the loss of SKM Barr2, but not of SKM Barr1, resulted in mild improvements in glucose tolerance in diet-induced obese mice. SKM-specific Barr1- and Barr2-KO mice did not show any significant differences in exercise performance. However, lack of SKM Barr2 led to increased glycogen breakdown following a treadmill exercise challenge. Interestingly, mice that lacked both Barr1 and Barr2 in SKM showed no significant metabolic phenotypes. Thus, somewhat surprisingly, our data indicate that SKM ß-arrestins play only rather subtle roles (SKM Barr2) in regulating whole-body glucose homeostasis and SKM insulin sensitivity.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Muscle, Skeletal/metabolism , Obesity/metabolism , beta-Arrestin 1/metabolism , beta-Arrestin 2/metabolism , Animals , Diabetes Mellitus, Type 2/etiology , Diet, High-Fat/adverse effects , Disease Models, Animal , Glucose/administration & dosage , Glucose/metabolism , Glucose Clamp Technique , Glycogen/metabolism , Humans , Insulin/metabolism , Insulin Resistance , Male , Mice , Mice, Knockout , Obesity/etiology , Signal Transduction/genetics , beta-Arrestin 1/genetics , beta-Arrestin 2/genetics
8.
Proc Natl Acad Sci U S A ; 116(37): 18684-18690, 2019 09 10.
Article in English | MEDLINE | ID: mdl-31451647

ABSTRACT

Given the global epidemic in type 2 diabetes, novel antidiabetic drugs with increased efficacy and reduced side effects are urgently needed. Previous work has shown that M3 muscarinic acetylcholine (ACh) receptors (M3Rs) expressed by pancreatic ß cells play key roles in stimulating insulin secretion and maintaining physiological blood glucose levels. In the present study, we tested the hypothesis that a positive allosteric modulator (PAM) of M3R function can improve glucose homeostasis in mice by promoting insulin release. One major advantage of this approach is that allosteric agents respect the ACh-dependent spatiotemporal control of M3R activity. In this study, we first demonstrated that VU0119498, a drug known to act as a PAM at M3Rs, significantly augmented ACh-induced insulin release from cultured ß cells and mouse and human pancreatic islets. This stimulatory effect was absent in islets prepared from mice lacking M3Rs, indicative of the involvement of M3Rs. VU0119498 treatment of wild-type mice caused a significant increase in plasma insulin levels, accompanied by a striking improvement in glucose tolerance. These effects were mediated by ß-cell M3Rs, since they were absent in mutant mice selectively lacking M3Rs in ß cells. Moreover, acute VU0119498 treatment of obese, glucose-intolerant mice triggered enhanced insulin release and restored normal glucose tolerance. Interestingly, doses of VU0119498 that led to pronounced improvements in glucose homeostasis did not cause any significant side effects due to activation of M3Rs expressed by other peripheral cell types. Taken together, the data from this proof-of-concept study strongly suggest that M3R PAMs may become clinically useful as novel antidiabetic agents.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/pharmacology , Islets of Langerhans/drug effects , Muscarinic Agonists/pharmacology , Receptor, Muscarinic M3/drug effects , Acetylcholine/metabolism , Adult , Allosteric Regulation/drug effects , Animals , Blood Glucose/analysis , Blood Glucose/metabolism , Cell Line, Tumor , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/metabolism , Disease Models, Animal , Female , Glucose Intolerance/blood , Glucose Intolerance/drug therapy , Glucose Intolerance/metabolism , Humans , Hypoglycemic Agents/therapeutic use , Insulin Secretion/drug effects , Islets of Langerhans/metabolism , Male , Mice , Mice, Obese , Mice, Transgenic , Middle Aged , Muscarinic Agonists/therapeutic use , Obesity/blood , Obesity/drug therapy , Obesity/metabolism , Primary Cell Culture , Proof of Concept Study , Receptor, Muscarinic M3/genetics , Receptor, Muscarinic M3/metabolism , Young Adult
9.
Int J Mol Sci ; 23(1)2022 Jan 02.
Article in English | MEDLINE | ID: mdl-35008921

ABSTRACT

The two ß-arrestins (ß-arrestin-1 and -2; alternative names: arrestin-2 and -3, respectively) are well known for their ability to inhibit signaling via G protein-coupled receptors. However, ß-arrestins can also act as signaling molecules in their own right. Although the two proteins share a high degree of sequence and structural homology, early studies with cultured cells indicated that ß-arrestin-1 and -2 are not functionally redundant. Recently, the in vivo metabolic roles of the two ß-arrestins have been studied using mutant mice selectively lacking either ß-arrestin-1 or -2 in cell types that are of particular relevance for regulating glucose and energy homeostasis. These studies demonstrated that the ß-arrestin-1 and -2 mutant mice displayed distinct metabolic phenotypes in vivo, providing further evidence for the functional heterogeneity of these two highly versatile signaling proteins.


Subject(s)
Signal Transduction , beta-Arrestin 1/metabolism , beta-Arrestin 2/metabolism , Animals , Diabetes Mellitus/metabolism , Disease Models, Animal , Energy Metabolism , Glucose/metabolism , Mice , Obesity/metabolism , Receptors, G-Protein-Coupled/metabolism
10.
J Neurochem ; 158(3): 603-620, 2021 08.
Article in English | MEDLINE | ID: mdl-33540469

ABSTRACT

DREADDs (Designer Receptors Exclusively Activated by a Designer Drug) are designer G protein-coupled receptors (GPCRs) that are widely used in the neuroscience field to modulate neuronal activity. In this review, we will focus on DREADD studies carried out with genetically engineered mice aimed at elucidating signaling pathways important for maintaining proper glucose and energy homeostasis. The availability of muscarinic receptor-based DREADDs endowed with selectivity for one of the four major classes of heterotrimeric G proteins (Gs , Gi , Gq , and G12 ) has been instrumental in dissecting the physiological and pathophysiological roles of distinct G protein signaling pathways in metabolically important cell types. The novel insights gained from this work should inform the development of novel classes of drugs useful for the treatment of several metabolic disorders including type 2 diabetes and obesity.


Subject(s)
Designer Drugs/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/physiology , Adipocytes/drug effects , Adipocytes/metabolism , Animals , Designer Drugs/pharmacology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Neurons/drug effects , Neurons/metabolism , Obesity/drug therapy , Obesity/metabolism , Signal Transduction/drug effects
11.
J Neurosci ; 38(31): 6921-6932, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29959237

ABSTRACT

Muscarinic receptor antagonists act as potent inducers of oligodendrocyte differentiation and accelerate remyelination. However, the use of muscarinic antagonists in the clinic is limited by poor understanding of the operant receptor subtype, and questions regarding possible species differences between rodents and humans. Based on high selective expression in human oligodendrocyte progenitor cells (OPCs), we hypothesized that M3R is the functionally relevant receptor. Lentiviral M3R knockdown in human primary CD140a/PDGFαR+ OPCs resulted in enhanced differentiation in vitro and substantially reduced the calcium response following muscarinic agonist treatment. Importantly, following transplantation in hypomyelinating shiverer/rag2 mice, M3R knockdown improved remyelination by human OPCs. Furthermore, conditional M3R ablation in adult NG2-expressing OPCs increased oligodendrocyte differentiation and led to improved spontaneous remyelination in mice. Together, we demonstrate that M3R receptor mediates muscarinic signaling in human OPCs that act to delay differentiation and remyelination, suggesting that M3 receptors are viable targets for human demyelinating disease.SIGNIFICANCE STATEMENT The identification of drug targets aimed at improving remyelination in patients with demyelination disease is a key step in development of effective regenerative therapies to treat diseases, such as multiple sclerosis. Muscarinic receptor antagonists have been identified as effective potentiators of remyelination, but the receptor subtypes that mediate these receptors are unclear. In this study, we show that genetic M3R ablation in both mouse and human cells results in improved remyelination and is mediated by acceleration of oligodendrocyte commitment from oligodendrocyte progenitor cells. Therefore, M3R represents an attractive target for induced remyelination in human disease.


Subject(s)
Myelin Sheath/physiology , Neurogenesis/physiology , Oligodendrocyte Precursor Cells/physiology , Receptor, Muscarinic M3/physiology , Remyelination/physiology , Animals , Brain Tissue Transplantation , Calcium Signaling , Cells, Cultured , Fetal Tissue Transplantation , Gene Knockdown Techniques , Humans , Mice , Mice, Neurologic Mutants , Muscarinic Agonists/pharmacology , Muscarinic Antagonists/pharmacology , Prosencephalon/embryology , Prosencephalon/transplantation , RNA Interference , Receptor, Muscarinic M3/agonists , Receptor, Muscarinic M3/antagonists & inhibitors , Spinal Cord/chemistry , Spinal Cord/ultrastructure
12.
FASEB J ; 32(6): 2903-2910, 2018 06.
Article in English | MEDLINE | ID: mdl-29401598

ABSTRACT

We have recently identified a cholinergic chemosensory cell in the urethral epithelium, urethral brush cell (UBC), that, upon stimulation with bitter or bacterial substances, initiates a reflex detrusor activation. Here, we elucidated cholinergic mechanisms that modulate UBC responsiveness. We analyzed muscarinic acetylcholine receptor (M1-5 mAChR) expression by using RT-PCR in UBCs, recorded [Ca2+]i responses to a bitter stimulus in isolated UBCs of wild-type and mAChR-deficient mice, and performed cystometry in all involved strains. The bitter response of UBCs was enhanced by global cholinergic and selective M2 inhibition, diminished by positive allosteric modulation of M5, and unaffected by M1, M3, and M4 mAChR inhibitors. This effect was not observed in M2 and M5 mAChR-deficient mice. In cystometry, M5 mAChR-deficient mice demonstrated signs of detrusor overactivity. In conclusion, M2 and M5 mAChRs attenuate the bitter response of UBC via a cholinergic negative autocrine feedback mechanism. Cystometry suggests that dysfunction, particularly of the M5 receptor, may lead to such symptoms as bladder overactivity.-Deckmann, K., Rafiq, A., Erdmann, C., Illig, C., Durschnabel, M., Wess, J., Weidner, W., Bschleipfer, T., Kummer, W. Muscarinic receptors 2 and 5 regulate bitter response of urethral brush cells via negative feedback.


Subject(s)
Epithelial Cells/metabolism , Muscarinic Antagonists/pharmacology , Receptor, Muscarinic M2 , Receptor, Muscarinic M5 , Urethra/metabolism , Allosteric Regulation/drug effects , Animals , Epithelial Cells/pathology , Mice , Mice, Knockout , Receptor, Muscarinic M2/antagonists & inhibitors , Receptor, Muscarinic M2/biosynthesis , Receptor, Muscarinic M2/genetics , Receptor, Muscarinic M5/antagonists & inhibitors , Receptor, Muscarinic M5/biosynthesis , Receptor, Muscarinic M5/genetics , Reverse Transcriptase Polymerase Chain Reaction , Urethra/pathology , Urethra/physiopathology , Urinary Bladder, Overactive/genetics , Urinary Bladder, Overactive/metabolism , Urinary Bladder, Overactive/pathology , Urinary Bladder, Overactive/physiopathology
13.
Nature ; 504(7478): 101-6, 2013 Dec 05.
Article in English | MEDLINE | ID: mdl-24256733

ABSTRACT

Despite recent advances in crystallography and the availability of G-protein-coupled receptor (GPCR) structures, little is known about the mechanism of their activation process, as only the ß2 adrenergic receptor (ß2AR) and rhodopsin have been crystallized in fully active conformations. Here we report the structure of an agonist-bound, active state of the human M2 muscarinic acetylcholine receptor stabilized by a G-protein mimetic camelid antibody fragment isolated by conformational selection using yeast surface display. In addition to the expected changes in the intracellular surface, the structure reveals larger conformational changes in the extracellular region and orthosteric binding site than observed in the active states of the ß2AR and rhodopsin. We also report the structure of the M2 receptor simultaneously bound to the orthosteric agonist iperoxo and the positive allosteric modulator LY2119620. This structure reveals that LY2119620 recognizes a largely pre-formed binding site in the extracellular vestibule of the iperoxo-bound receptor, inducing a slight contraction of this outer binding pocket. These structures offer important insights into the activation mechanism and allosteric modulation of muscarinic receptors.


Subject(s)
Models, Molecular , Receptors, Muscarinic/chemistry , Receptors, Muscarinic/metabolism , Allosteric Regulation , Binding Sites , Cytoplasm/metabolism , Humans , Isoxazoles/chemistry , Isoxazoles/metabolism , Protein Binding , Protein Structure, Tertiary , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/metabolism
14.
Nature ; 482(7386): 552-6, 2012 Feb 22.
Article in English | MEDLINE | ID: mdl-22358844

ABSTRACT

Acetylcholine, the first neurotransmitter to be identified, exerts many of its physiological actions via activation of a family of G-protein-coupled receptors (GPCRs) known as muscarinic acetylcholine receptors (mAChRs). Although the five mAChR subtypes (M1-M5) share a high degree of sequence homology, they show pronounced differences in G-protein coupling preference and the physiological responses they mediate. Unfortunately, despite decades of effort, no therapeutic agents endowed with clear mAChR subtype selectivity have been developed to exploit these differences. We describe here the structure of the G(q/11)-coupled M3 mAChR ('M3 receptor', from rat) bound to the bronchodilator drug tiotropium and identify the binding mode for this clinically important drug. This structure, together with that of the G(i/o)-coupled M2 receptor, offers possibilities for the design of mAChR subtype-selective ligands. Importantly, the M3 receptor structure allows a structural comparison between two members of a mammalian GPCR subfamily displaying different G-protein coupling selectivities. Furthermore, molecular dynamics simulations suggest that tiotropium binds transiently to an allosteric site en route to the binding pocket of both receptors. These simulations offer a structural view of an allosteric binding mode for an orthosteric GPCR ligand and provide additional opportunities for the design of ligands with different affinities or binding kinetics for different mAChR subtypes. Our findings not only offer insights into the structure and function of one of the most important GPCR families, but may also facilitate the design of improved therapeutics targeting these critical receptors.


Subject(s)
Receptor, Muscarinic M3/chemistry , Receptor, Muscarinic M3/metabolism , Acetylcholine/chemistry , Acetylcholine/metabolism , Allosteric Site , Animals , COS Cells , Crystallization , Crystallography, X-Ray , Kinetics , Ligands , Models, Molecular , Molecular Dynamics Simulation , Radioligand Assay , Rats , Scopolamine Derivatives/chemistry , Scopolamine Derivatives/metabolism , Substrate Specificity , Tiotropium Bromide
15.
Proc Natl Acad Sci U S A ; 112(26): 8124-9, 2015 Jun 30.
Article in English | MEDLINE | ID: mdl-26080439

ABSTRACT

Cholinergic transmission in the striatum functions as a key modulator of dopamine (DA) transmission and synaptic plasticity, both of which are required for reward and motor learning. Acetylcholine (ACh) can elicit striatal DA release through activation of nicotinic ACh receptors (nAChRs) on DA axonal projections. However, it remains controversial how muscarinic ACh receptors (mAChRs) modulate striatal DA release, with studies reporting both potentiation and depression of striatal DA transmission by mAChR agonists. This study investigates the mAChR-mediated regulation of release from three types of midbrain neurons that project to striatum: DA, DA/glutamate, and glutamate neurons. We found that M5 mAChRs potentiate DA and glutamate release only from DA and DA/glutamate projections from the midbrain. We also show that M2/M4 mAChRs depress the nAChR-dependent mechanism of DA release in the striatum. These results suggest that M5 receptors on DA neuron terminals enhance DA release, whereas M2/M4 autoreceptors on cholinergic terminals inhibit ACh release and subsequent nAChR-dependent DA release. Our findings clarify the mechanisms of mAChR-dependent modulation of DA and glutamate transmission in the striatum.


Subject(s)
Dopamine/metabolism , Glutamic Acid/metabolism , Nucleus Accumbens/metabolism , Receptors, Muscarinic/physiology , Animals , Mice , Mice, Inbred C57BL , Neurons/metabolism
16.
Proc Natl Acad Sci U S A ; 112(49): E6818-24, 2015 Dec 08.
Article in English | MEDLINE | ID: mdl-26598688

ABSTRACT

G protein-coupled receptors (GPCRs) regulate virtually all physiological functions including the release of insulin from pancreatic ß-cells. ß-Cell M3 muscarinic receptors (M3Rs) are known to play an essential role in facilitating insulin release and maintaining proper whole-body glucose homeostasis. As is the case with other GPCRs, M3R activity is regulated by phosphorylation by various kinases, including GPCR kinases and casein kinase 2 (CK2). At present, it remains unknown which of these various kinases are physiologically relevant for the regulation of ß-cell activity. In the present study, we demonstrate that inhibition of CK2 in pancreatic ß-cells, knockdown of CK2α expression, or genetic deletion of CK2α in ß-cells of mutant mice selectively augmented M3R-stimulated insulin release in vitro and in vivo. In vitro studies showed that this effect was associated with an M3R-mediated increase in intracellular calcium levels. Treatment of mouse pancreatic islets with CX4945, a highly selective CK2 inhibitor, greatly reduced agonist-induced phosphorylation of ß-cell M3Rs, indicative of CK2-mediated M3R phosphorylation. We also showed that inhibition of CK2 greatly enhanced M3R-stimulated insulin secretion in human islets. Finally, CX4945 treatment protected mice against diet-induced hyperglycemia and glucose intolerance in an M3R-dependent fashion. Our data demonstrate, for the first time to our knowledge, the physiological relevance of CK2 phosphorylation of a GPCR and suggest the novel concept that kinases acting on ß-cell GPCRs may represent novel therapeutic targets.


Subject(s)
Casein Kinase II/physiology , Insulin/metabolism , Receptor, Muscarinic M3/physiology , Animals , COS Cells , Chlorocebus aethiops , Female , HEK293 Cells , Humans , Insulin Secretion , Male , Mice , Mice, Inbred C57BL , Naphthyridines/pharmacology , Phenazines
17.
J Biol Chem ; 291(15): 7809-20, 2016 Apr 08.
Article in English | MEDLINE | ID: mdl-26851281

ABSTRACT

Designerreceptorsexclusivelyactivated by adesignerdrug (DREADDs) are clozapine-N-oxide-sensitive designer G protein-coupled receptors (GPCRs) that have emerged as powerful novel chemogenetic tools to study the physiological relevance of GPCR signaling pathways in specific cell types or tissues. Like endogenous GPCRs, clozapine-N-oxide-activated DREADDs do not only activate heterotrimeric G proteins but can also trigger ß-arrestin-dependent (G protein-independent) signaling. To dissect the relative physiological relevance of G protein-mediatedversusß-arrestin-mediated signaling in different cell types or physiological processes, the availability of G protein- and ß-arrestin-biased DREADDs would be highly desirable. In this study, we report the development of a mutationally modified version of a non-biased DREADD derived from the M3muscarinic receptor that can activate Gq/11with high efficacy but lacks the ability to interact with ß-arrestins. We also demonstrate that this novel DREADD is activein vivoand that cell type-selective expression of this new designer receptor can provide novel insights into the physiological roles of G protein (Gq/11)-dependentversusß-arrestin-dependent signaling in hepatocytes. Thus, this novel Gq/11-biased DREADD represents a powerful new tool to study the physiological relevance of Gq/11-dependent signaling in distinct tissues and cell types, in the absence of ß-arrestin-mediated cellular effects. Such studies should guide the development of novel classes of functionally biased ligands that show high efficacy in various pathophysiological conditions but display a reduced incidence of side effects.


Subject(s)
GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Hepatocytes/metabolism , Protein Interaction Mapping , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Animals , Arrestins/metabolism , COS Cells , Calcium/metabolism , Cells, Cultured , Chlorocebus aethiops , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , Gene Knockdown Techniques , Glucose/metabolism , HEK293 Cells , Humans , Mice, Inbred C57BL , Protein Interaction Mapping/methods , Protein Interaction Maps , beta-Arrestins
18.
N Engl J Med ; 371(25): 2363-74, 2014 Dec 18.
Article in English | MEDLINE | ID: mdl-25470569

ABSTRACT

BACKGROUND: Increased secretion of growth hormone leads to gigantism in children and acromegaly in adults; the genetic causes of gigantism and acromegaly are poorly understood. METHODS: We performed clinical and genetic studies of samples obtained from 43 patients with gigantism and then sequenced an implicated gene in samples from 248 patients with acromegaly. RESULTS: We observed microduplication on chromosome Xq26.3 in samples from 13 patients with gigantism; of these samples, 4 were obtained from members of two unrelated kindreds, and 9 were from patients with sporadic cases. All the patients had disease onset during early childhood. Of the patients with gigantism who did not carry an Xq26.3 microduplication, none presented before the age of 5 years. Genomic characterization of the Xq26.3 region suggests that the microduplications are generated during chromosome replication and that they contain four protein-coding genes. Only one of these genes, GPR101, which encodes a G-protein-coupled receptor, was overexpressed in patients' pituitary lesions. We identified a recurrent GPR101 mutation (p.E308D) in 11 of 248 patients with acromegaly, with the mutation found mostly in tumors. When the mutation was transfected into rat GH3 cells, it led to increased release of growth hormone and proliferation of growth hormone-producing cells. CONCLUSIONS: We describe a pediatric disorder (which we have termed X-linked acrogigantism [X-LAG]) that is caused by an Xq26.3 genomic duplication and is characterized by early-onset gigantism resulting from an excess of growth hormone. Duplication of GPR101 probably causes X-LAG. We also found a recurrent mutation in GPR101 in some adults with acromegaly. (Funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development and others.).


Subject(s)
Acromegaly/genetics , Chromosome Duplication , Chromosomes, Human, X , Gigantism/genetics , Mutation , Receptors, G-Protein-Coupled/genetics , Adolescent , Adult , Age of Onset , Child , Child, Preschool , Female , Human Growth Hormone/metabolism , Humans , Infant , Male , Phenotype , Protein Conformation , Receptors, G-Protein-Coupled/chemistry
19.
PLoS Pathog ; 11(1): e1004636, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25629518

ABSTRACT

Innate immunity is regulated by cholinergic signalling through nicotinic acetylcholine receptors. We show here that signalling through the M3 muscarinic acetylcholine receptor (M3R) plays an important role in adaptive immunity to both Nippostrongylus brasiliensis and Salmonella enterica serovar Typhimurium, as M3R-/- mice were impaired in their ability to resolve infection with either pathogen. CD4 T cell activation and cytokine production were reduced in M3R-/- mice. Immunity to secondary infection with N. brasiliensis was severely impaired, with reduced cytokine responses in M3R-/- mice accompanied by lower numbers of mucus-producing goblet cells and alternatively activated macrophages in the lungs. Ex vivo lymphocyte stimulation of cells from intact BALB/c mice infected with N. brasiliensis and S. typhimurium with muscarinic agonists resulted in enhanced production of IL-13 and IFN-γ respectively, which was blocked by an M3R-selective antagonist. Our data therefore indicate that cholinergic signalling via the M3R is essential for optimal Th1 and Th2 adaptive immunity to infection.


Subject(s)
Adaptive Immunity/genetics , Nippostrongylus/immunology , Receptor, Muscarinic M3/physiology , Salmonella Infections, Animal/immunology , Salmonella typhimurium/immunology , Strongylida Infections/immunology , Animals , Cells, Cultured , Lymphocyte Activation/genetics , Mice , Mice, Inbred BALB C , Mice, Knockout , Salmonella Infections, Animal/genetics , Signal Transduction/genetics , Signal Transduction/immunology , Strongylida Infections/genetics , Th1 Cells/immunology , Th2 Cells/immunology
20.
Learn Mem ; 23(11): 631-638, 2016 11.
Article in English | MEDLINE | ID: mdl-27918283

ABSTRACT

Understanding how episodic memories are formed and retrieved is necessary if we are to treat disorders in which they malfunction. Muscarinic acetylcholine receptors (mAChR) in the hippocampus and cortex underlie memory formation, but there is conflicting evidence regarding their role in memory retrieval. Additionally, there is no consensus on which mAChR subtypes are critical for memory processing. Using pharmacological and genetic approaches, we found that (1) encoding and retrieval of contextual memory requires mAChR in the dorsal hippocampus (DH) and retrosplenial cortex (RSC), (2) memory formation requires hippocampal M3 and cooperative activity of RSC M1 and M3, and (3) memory retrieval is more impaired by inactivation of multiple M1-M4 mAChR in DH or RSC than inactivation of individual receptor subtypes. Contrary to the view that acetylcholine supports learning but is detrimental to memory retrieval, we found that coactivation of multiple mAChR is required for retrieval of both recently and remotely acquired context memories. Manipulations with higher receptor specificity were generally less potent than manipulations targeting multiple receptor subtypes, suggesting that mAChR act in synergy to regulate memory processes. These findings provide unique insight into the development of therapies for amnestic symptoms, suggesting that broadly acting, rather than receptor-specific, mAchR agonists and positive allosteric modulators may be the most effective therapeutic approach.


Subject(s)
Cerebral Cortex/metabolism , Hippocampus/metabolism , Learning/physiology , Memory/physiology , Receptors, Muscarinic/metabolism , Animals , Catheters, Indwelling , Cerebral Cortex/cytology , Cerebral Cortex/drug effects , Dependovirus/genetics , Fear/drug effects , Fear/physiology , Gene Knockout Techniques , Genetic Vectors , Hippocampus/cytology , Hippocampus/drug effects , Immunohistochemistry , Learning/drug effects , Male , Memory/drug effects , Mice, Inbred C57BL , Mice, Transgenic , Motor Activity/drug effects , Motor Activity/physiology , Muscarinic Antagonists/pharmacology , Pirenzepine/analogs & derivatives , Pirenzepine/pharmacology , Receptors, Muscarinic/genetics , Scopolamine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL