Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
ACS Photonics ; 11(1): 42-52, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38249683

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) has had a tremendous impact on humanity. Prevention of transmission by disinfection of surfaces and aerosols through a chemical-free method is highly desirable. Ultraviolet C (UVC) light is uniquely positioned to achieve inactivation of pathogens. We report the inactivation of SARS-CoV-2 virus by UVC radiation and explore its mechanisms. A dose of 50 mJ/cm2 using a UVC laser at 266 nm achieved an inactivation efficiency of 99.89%, while infectious virions were undetectable at 75 mJ/cm2 indicating >99.99% inactivation. Infection by SARS-CoV-2 involves viral entry mediated by the spike glycoprotein (S), and viral reproduction, reliant on translation of its genome. We demonstrate that UVC radiation damages ribonucleic acid (RNA) and provide in-depth characterization of UVC-induced damage of the S protein. We find that UVC severely impacts SARS-CoV- 2 spike protein's ability to bind human angiotensin-converting enzyme 2 (hACE2) and this correlates with loss of native protein conformation and aromatic amino acid integrity. This report has important implications for the design and development of rapid and effective disinfection systems against the SARS-CoV-2 virus and other pathogens.

2.
Biotechniques ; 72(3): 104-109, 2022 03.
Article in English | MEDLINE | ID: mdl-35152705

ABSTRACT

Single-nuclei RNA sequencing allows single cell-based analysis in frozen tissue, ameliorating cell recovery biases associated with enzymatic dissociation methods. The authors present two optimized methods for isolating and sequencing nuclei from esophageal tissue using a commercial EZ and citric acid (CA)-based method. Despite high endogenous RNase activity, these protocols produced libraries of expected fragment length (average length EZ: 745 bp; CA: 1232 bp) with comparable complexity (median Transcript/Gene number, EZ: 496/254; CA: 483/256). CA nuclei showed a higher proportion of ribosomal gene reads, potentially reflecting co-isolation of nuclei and adherent ribosomes. The authors identified 11 cell lineages in the combined datasets, with differences in cell type recovery between the two methods, providing utility dependent on experimental needs.


Subject(s)
Cell Nucleus , Gene Expression Profiling , Cell Nucleus/genetics , Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, RNA/methods , Transcriptome
3.
Commun Biol ; 3(1): 736, 2020 12 04.
Article in English | MEDLINE | ID: mdl-33277618

ABSTRACT

Biomedical research often involves conducting experiments on model organisms in the anticipation that the biology learnt will transfer to humans. Previous comparative studies of mouse and human tissues were limited by the use of bulk-cell material. Here we show that transfer learning-the branch of machine learning that concerns passing information from one domain to another-can be used to efficiently map bone marrow biology between species, using data obtained from single-cell RNA sequencing. We first trained a multiclass logistic regression model to recognize different cell types in mouse bone marrow achieving equivalent performance to more complex artificial neural networks. Furthermore, it was able to identify individual human bone marrow cells with 83% overall accuracy. However, some human cell types were not easily identified, indicating important differences in biology. When re-training the mouse classifier using data from human, less than 10 human cells of a given type were needed to accurately learn its representation. In some cases, human cell identities could be inferred directly from the mouse classifier via zero-shot learning. These results show how simple machine learning models can be used to reconstruct complex biology from limited data, with broad implications for biomedical research.


Subject(s)
Bone Marrow Cells/classification , Machine Learning , Sequence Analysis, RNA , Single-Cell Analysis , Animals , Cell Separation , Humans , Mice
4.
Cancer Cell ; 32(6): 777-791.e6, 2017 Dec 11.
Article in English | MEDLINE | ID: mdl-29198913

ABSTRACT

Monoclonal antibodies (mAbs) can destroy tumors by recruiting effectors such as myeloid cells, or targeting immunomodulatory receptors to promote cytotoxic T cell responses. Here, we examined the therapeutic potential of combining a direct tumor-targeting mAb, anti-CD20, with an extended panel of immunomodulatory mAbs. Only the anti-CD27/CD20 combination provided cures. This was apparent in multiple lymphoma models, including huCD27 transgenic mice using the anti-huCD27, varlilumab. Detailed mechanistic analysis using single-cell RNA sequencing demonstrated that anti-CD27 stimulated CD8+ T and natural killer cells to release myeloid chemo-attractants and interferon gamma, to elicit myeloid infiltration and macrophage activation. This study demonstrates the therapeutic advantage of using an immunomodulatory mAb to regulate lymphoid cells, which then recruit and activate myeloid cells for enhanced killing of mAb-opsonized tumors.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/pharmacology , Lymphoma/immunology , Tumor Necrosis Factor Receptor Superfamily, Member 7/agonists , Animals , Antibodies, Monoclonal, Humanized , Humans , Immunotherapy/methods , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Macrophage Activation/drug effects , Macrophage Activation/immunology , Mice , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL