Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 146
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Cell ; 83(19): 3397-3399, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37802020

ABSTRACT

In this issue, Abe et al1 report a novel mechanism by which RANKL stimulates osteoclast differentiation and bone resorption through non-coding RNAs that bind PGC-1ß and convert the NCoR/HDAC3 co-repressor complex into a co-activator of AP-1- and NFκB-regulated genes.


Subject(s)
Bone Resorption , Osteoclasts , Humans , Osteoclasts/metabolism , RNA/metabolism , Bone Resorption/metabolism , NF-kappa B/metabolism , Gene Expression , Cell Differentiation , RANK Ligand/genetics , RANK Ligand/metabolism
2.
Osteoarthritis Cartilage ; 32(6): 680-689, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38432607

ABSTRACT

OBJECTIVE: Phlpp1 inhibition is a potential therapeutic strategy for cartilage regeneration and prevention of post-traumatic osteoarthritis (PTOA). To understand how Phlpp1 loss affects cartilage structure, cartilage elastic modulus was measured with atomic force microscopy (AFM) in male and female mice after injury. METHODS: Osteoarthritis was induced in male and female Wildtype (WT) and Phlpp1-/- mice by destabilization of the medial meniscus (DMM). At various timepoints post-injury, activity was measured, and knee joints examined with AFM and histology. In another cohort of WT mice, the PHLPP inhibitor NSC117079 was intra-articularly injected 4 weeks after injury. RESULTS: Male WT mice showed decreased activity and histological signs of cartilage damage at 12 but not 6-weeks post-DMM. Female mice showed a less severe response to DMM by comparison, with no histological changes seen at any time point. In both sexes the elastic modulus of medial condylar cartilage was decreased in WT mice but not Phlpp1-/- mice after DMM as measured by AFM. By 6-weeks, cartilage modulus had decreased from 2 MPa to 1 MPa in WT mice. Phlpp1-/- mice showed no change in modulus at 6-weeks and only a 25% decrease at 12-weeks. The PHLPP inhibitor NSC117079 protected cartilage structure and prevented signs of OA 6-weeks post-injury. CONCLUSIONS: AFM is a sensitive method for detecting early changes in articular cartilage post-injury. Phlpp1 suppression, either through genetic deletion or pharmacological inhibition, protects cartilage degradation in a model of PTOA, validating Phlpp1 as a therapeutic target for PTOA.


Subject(s)
Cartilage, Articular , Phosphoprotein Phosphatases , Animals , Cartilage, Articular/pathology , Cartilage, Articular/drug effects , Phosphoprotein Phosphatases/antagonists & inhibitors , Phosphoprotein Phosphatases/genetics , Male , Female , Mice , Disease Models, Animal , Nuclear Proteins/genetics , Nuclear Proteins/antagonists & inhibitors , Mice, Knockout , Microscopy, Atomic Force , Osteoarthritis/pathology , Elastic Modulus , Osteoarthritis, Knee/etiology , Osteoarthritis, Knee/pathology , Tibial Meniscus Injuries/complications
3.
Curr Osteoporos Rep ; 21(6): 842-853, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37759135

ABSTRACT

PURPOSE OF REVIEW: The purpose of this article is to review the current understanding of inflammatory processes on bone, including direct impacts of inflammatory factors on bone cells, the effect of senescence on inflamed bone, and the critical role of inflammation in bone pain and healing. RECENT FINDINGS: Advances in osteoimmunology have provided new perspectives on inflammatory bone loss in recent years. Characterization of so-called inflammatory osteoclasts has revealed insights into physiological and pathological bone loss. The identification of inflammation-associated senescent markers in bone cells indicates that therapies that reduce senescent cell burden may reverse bone loss caused by inflammatory processes. Finally, novel studies have refined the role of inflammation in bone healing, including cross talk between nerves and bone cells. Except for the initial stages of fracture healing, inflammation has predominately negative effects on bone and increases fracture risk. Eliminating senescent cells, priming the osteo-immune axis in bone cells, and alleviating pro-inflammatory cytokine burden may ameliorate the negative effects of inflammation on bone.


Subject(s)
Bone Density , Bone Diseases , Humans , Bone and Bones/pathology , Osteoclasts/physiology , Bone Diseases/pathology , Inflammation
4.
Sensors (Basel) ; 23(4)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36850434

ABSTRACT

The mechanical properties of biological tissues influence their function and can predict degenerative conditions before gross histological or physiological changes are detectable. This is especially true for structural tissues such as articular cartilage, which has a primarily mechanical function that declines after injury and in the early stages of osteoarthritis. While atomic force microscopy (AFM) has been used to test the elastic modulus of articular cartilage before, there is no agreement or consistency in methodologies reported. For murine articular cartilage, methods differ in two major ways: experimental parameter selection and sample preparation. Experimental parameters that affect AFM results include indentation force and cantilever stiffness; these are dependent on the tip, sample, and instrument used. The aim of this project was to optimize these experimental parameters to measure murine articular cartilage elastic modulus by AFM micro-indentation. We first investigated the effects of experimental parameters on a control material, polydimethylsiloxane gel (PDMS), which has an elastic modulus on the same order of magnitude as articular cartilage. Experimental parameters were narrowed on this control material, and then finalized on wildtype C57BL/6J murine articular cartilage samples that were prepared with a novel technique that allows for cryosectioning of epiphyseal segments of articular cartilage and long bones without decalcification. This technique facilitates precise localization of AFM measurements on the murine articular cartilage matrix and eliminates the need to separate cartilage from underlying bone tissues, which can be challenging in murine bones because of their small size. Together, the new sample preparation method and optimized experimental parameters provide a reliable standard operating procedure to measure microscale variations in the elastic modulus of murine articular cartilage.


Subject(s)
Cartilage, Articular , Osteoarthritis , Animals , Mice , Elastic Modulus , Microscopy, Atomic Force , Bone and Bones
5.
Physiol Rev ; 95(4): 1359-81, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26378079

ABSTRACT

Histone deacetylases (Hdacs) are conserved enzymes that remove acetyl groups from lysine side chains in histones and other proteins. Eleven of the 18 Hdacs encoded by the human and mouse genomes depend on Zn(2+) for enzymatic activity, while the other 7, the sirtuins (Sirts), require NAD2(+). Collectively, Hdacs and Sirts regulate numerous cellular and mitochondrial processes including gene transcription, DNA repair, protein stability, cytoskeletal dynamics, and signaling pathways to affect both development and aging. Of clinical relevance, Hdacs inhibitors are United States Food and Drug Administration-approved cancer therapeutics and are candidate therapies for other common diseases including arthritis, diabetes, epilepsy, heart disease, HIV infection, neurodegeneration, and numerous aging-related disorders. Hdacs and Sirts influence skeletal development, maintenance of mineral density and bone strength by affecting intramembranous and endochondral ossification, as well as bone resorption. With few exceptions, inhibition of Hdac or Sirt activity though either loss-of-function mutations or prolonged chemical inhibition has negative and/or toxic effects on skeletal development and bone mineral density. Specifically, Hdac/Sirt suppression causes abnormalities in physiological development such as craniofacial dimorphisms, short stature, and bone fragility that are associated with several human syndromes or diseases. In contrast, activation of Sirts may protect the skeleton from aging and immobilization-related bone loss. This knowledge may prolong healthspan and prevent adverse events caused by epigenetic therapies that are entering the clinical realm at an unprecedented rate. In this review, we summarize the general properties of Hdacs/Sirts and the research that has revealed their essential functions in bone forming cells (e.g., osteoblasts and chondrocytes) and bone resorbing osteoclasts. Finally, we offer predictions on future research in this area and the utility of this knowledge for orthopedic applications and bone tissue engineering.


Subject(s)
Bone Development/physiology , Bone and Bones/metabolism , Bone and Bones/physiology , Histone Deacetylases/metabolism , Animals , Humans , Skeleton
6.
J Biol Chem ; 295(51): 17713-17723, 2020 12 18.
Article in English | MEDLINE | ID: mdl-33454009

ABSTRACT

Hdac3 is a lysine deacetylase that removes acetyl groups from histones and additional proteins. Although Hdac3 functions within mesenchymal lineage skeletal cells are defined, little is known about Hdac3 activities in bone-resorbing osteoclasts. In this study we conditionally deleted Hdac3 within Ctsk-expressing cells and examined the effects on bone modeling and osteoclast differentiation in mice. Hdac3 deficiency reduced femur and tibia periosteal circumference and increased cortical periosteal osteoclast number. Trabecular bone was likewise reduced and was accompanied by increased osteoclast number per trabecular bone surface. We previously showed that Hdac3 deacetylates the p65 subunit of the NF-κB transcriptional complex to decrease DNA-binding and transcriptional activity. Hdac3-deficient osteoclasts demonstrate increased K310 NF-κB acetylation and NF-κB transcriptional activity. Hdac3-deficient osteoclast lineage cells were hyper-responsive to RANKL and showed elevated ex vivo osteoclast number and size and enhanced bone resorption in pit formation assays. Osteoclast-directed Hdac3 deficiency decreased cortical and trabecular bone mass parameters, suggesting that Hdac3 regulates coupling of bone resorption and bone formation. We surveyed a panel of osteoclast-derived coupling factors and found that Hdac3 suppression diminished sphingosine-1-phosphate production. Osteoclast-derived sphingosine-1-phosphate acts in paracrine to promote bone mineralization. Mineralization of WT bone marrow stromal cells cultured with conditioned medium from Hdac3-deficient osteoclasts was markedly reduced. Expression of alkaline phosphatase, type 1a1 collagen, and osteocalcin was also suppressed, but no change in Runx2 expression was observed. Our results demonstrate that Hdac3 controls bone modeling by suppressing osteoclast lineage cell responsiveness to RANKL and coupling to bone formation.


Subject(s)
Bone Remodeling/drug effects , Histone Deacetylases/metabolism , RANK Ligand/pharmacology , Animals , Cell Differentiation/drug effects , Core Binding Factor Alpha 1 Subunit/metabolism , Female , Femur/diagnostic imaging , Femur/pathology , Histone Deacetylases/chemistry , Histone Deacetylases/genetics , Lysophospholipids/metabolism , Male , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/metabolism , Osteoclasts/cytology , Osteoclasts/metabolism , Osteogenesis/drug effects , Phosphotransferases (Alcohol Group Acceptor)/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Sphingosine/analogs & derivatives , Sphingosine/metabolism
7.
J Biol Chem ; 295(23): 7877-7893, 2020 06 05.
Article in English | MEDLINE | ID: mdl-32332097

ABSTRACT

Bone-stimulatory therapeutics include bone morphogenetic proteins (e.g. BMP2), parathyroid hormone, and antibody-based suppression of WNT antagonists. Inhibition of the epigenetic enzyme enhancer of zeste homolog 2 (EZH2) is both bone anabolic and osteoprotective. EZH2 inhibition stimulates key components of bone-stimulatory signaling pathways, including the BMP2 signaling cascade. Because of high costs and adverse effects associated with BMP2 use, here we investigated whether BMP2 dosing can be reduced by co-treatment with EZH2 inhibitors. Co-administration of BMP2 with the EZH2 inhibitor GSK126 enhanced differentiation of murine (MC3T3) osteoblasts, reflected by increased alkaline phosphatase activity, Alizarin Red staining, and expression of bone-related marker genes (e.g. Bglap and Phospho1). Strikingly, co-treatment with BMP2 (10 ng/ml) and GSK126 (5 µm) was synergistic and was as effective as 50 ng/ml BMP2 at inducing MC3T3 osteoblastogenesis. Similarly, the BMP2-GSK126 co-treatment stimulated osteogenic differentiation of human bone marrow-derived mesenchymal stem/stromal cells, reflected by induction of key osteogenic markers (e.g. Osterix/SP7 and IBSP). A combination of BMP2 (300 ng local) and GSK126 (5 µg local and 5 days of 50 mg/kg systemic) yielded more consistent bone healing than single treatments with either compound in a mouse calvarial critical-sized defect model according to results from µCT, histomorphometry, and surgical grading of qualitative X-rays. We conclude that EZH2 inhibition facilitates BMP2-mediated induction of osteogenic differentiation of progenitor cells and maturation of committed osteoblasts. We propose that epigenetic priming, coupled with bone anabolic agents, enhances osteogenesis and could be leveraged in therapeutic strategies to improve bone mass.


Subject(s)
Bone Morphogenetic Protein 2/metabolism , Cell Differentiation/drug effects , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Indoles/pharmacology , Osteogenesis/drug effects , Pyridones/pharmacology , 3T3 Cells , Animals , Bone Morphogenetic Protein 2/administration & dosage , Cells, Cultured , Enhancer of Zeste Homolog 2 Protein/metabolism , Humans , Indoles/administration & dosage , Mice , Osteoblasts/drug effects , Pyridones/administration & dosage
8.
Curr Osteoporos Rep ; 19(2): 131-140, 2021 04.
Article in English | MEDLINE | ID: mdl-33559841

ABSTRACT

PURPOSE OF REVIEW: The ability to analyze the molecular events occurring within individual cells as opposed to populations of cells is revolutionizing our understanding of musculoskeletal tissue development and disease. Single cell studies have the great potential of identifying cellular subpopulations that work in a synchronized fashion to regenerate and repair damaged tissues during normal homeostasis. In addition, such studies can elucidate how these processes break down in disease as well as identify cellular subpopulations that drive the disease. This review highlights three emerging technologies: single cell RNA sequencing (scRNA-seq), Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq), and Cytometry by Time-Of-Flight (CyTOF) mass cytometry. RECENT FINDINGS: Technological and bioinformatic tools to analyze the transcriptome, epigenome, and proteome at the individual cell level have advanced rapidly making data collection relatively easy; however, understanding how to access and interpret the data remains a challenge for many scientists. It is, therefore, of paramount significance to educate the musculoskeletal community on how single cell technologies can be used to answer research questions and advance translation. This article summarizes talks given during a workshop on "Single Cell Omics" at the 2020 annual meeting of the Orthopedic Research Society. Studies that applied scRNA-seq, ATAC-seq, and CyTOF mass cytometry to cartilage development and osteoarthritis are reviewed. This body of work shows how these cutting-edge tools can advance our understanding of the cellular heterogeneity and trajectories of lineage specification during development and disease.


Subject(s)
Musculoskeletal Development/physiology , Musculoskeletal Diseases/physiopathology , Musculoskeletal System/cytology , Single-Cell Analysis/methods , Chromatin Immunoprecipitation Sequencing , Flow Cytometry , Homeostasis/physiology , Humans , RNA-Seq
9.
Adv Exp Med Biol ; 1283: 53-62, 2021.
Article in English | MEDLINE | ID: mdl-33155137

ABSTRACT

Primary bone tumors are rare cancers that cause significant morbidity and mortality. The recent identification of recurrent mutations in histone genes H3F3A and H3F3B within specific bone cancers, namely, chondroblastomas and giant cell tumors of bone (GCTB), has provided insights into the cellular and molecular origins of these neoplasms and enhanced understanding of how histone variants control chromatin function. Somatic mutations in H3F3A and H3F3B produce oncohistones, H3.3G34W and H3.3K36M, in more than nine of ten GCTB and chondroblastomas, respectively. Incorporation of the mutant histones into nucleosomes inhibits histone methyltransferases NSD2 and SETD2 to alter the chromatin landscape and change gene expression patterns that control cell proliferation, survival, and differentiation, as well as DNA repair and chromosome stability. The discovery of these histone mutations has facilitated more accurate diagnoses of these diseases and stratification of malignant tumors from benign tumors so that appropriate care can be delivered. The broad-scale epigenomic and transcriptomic changes that arise from incorporation of mutant histones into chromatin provide opportunities to develop new and disease-specific therapies. In this chapter, we review how mutant histones inhibit SETD2 and NSD2 function in bone tumors and discuss how this information could lead to better treatments for these cancers.


Subject(s)
Bone Neoplasms , Chondroblastoma , Giant Cell Tumor of Bone , Histones/genetics , Mutation , Bone Neoplasms/genetics , Chondroblastoma/genetics , Giant Cell Tumor of Bone/genetics , Histone-Lysine N-Methyltransferase , Humans , Repressor Proteins
10.
J Biol Chem ; 294(31): 11772-11784, 2019 08 02.
Article in English | MEDLINE | ID: mdl-31189651

ABSTRACT

Enhanced osteoclast-mediated bone resorption and diminished formation may promote bone loss. Pleckstrin homology (PH) domain and leucine-rich repeat protein phosphatase 1 (Phlpp1) regulates protein kinase C (PKC) and other proteins in the control of bone mass. Germline Phlpp1 deficiency reduces bone volume, but the mechanisms remain unknown. Here, we found that conditional Phlpp1 deletion in murine osteoclasts increases their numbers, but also enhances bone mass. Despite elevating osteoclasts, Phlpp1 deficiency did not increase serum markers of bone resorption, but elevated serum markers of bone formation. These results suggest that Phlpp1 suppresses osteoclast formation and production of paracrine factors controlling osteoblast activity. Phlpp1 deficiency elevated osteoclast numbers and size in ex vivo osteoclastogenesis assays, accompanied by enhanced expression of proto-oncogene C-Fms (C-Fms) and hyper-responsiveness to macrophage colony-stimulating factor (M-CSF) in bone marrow macrophages. Although Phlpp1 deficiency increased TRAP+ cell numbers, it suppressed actin-ring formation and bone resorption in these assays. We observed that Phlpp1 deficiency increases activity of PKCζ, a PKC isoform controlling cell polarity, and that addition of a PKCζ pseudosubstrate restores osteoclastogenesis and bone resorption of Phlpp1-deficient osteoclasts. Moreover, Phlpp1 deficiency increased expression of the bone-coupling factor collagen triple helix repeat-containing 1 (Cthrc1). Conditioned growth medium derived from Phlpp1-deficient osteoclasts enhanced mineralization of ex vivo osteoblast cultures, an effect that was abrogated by Cthrc1 knockdown. In summary, Phlpp1 critically regulates osteoclast numbers, and Phlpp1 deficiency enhances bone mass despite higher osteoclast numbers because it apparently disrupts PKCζ activity, cell polarity, and bone resorption and increases secretion of bone-forming Cthrc1.


Subject(s)
Osteogenesis , Phosphoprotein Phosphatases/metabolism , Animals , Bone Density , Bone Resorption/metabolism , Bone Resorption/pathology , Bone and Bones/diagnostic imaging , Bone and Bones/physiology , Cell Differentiation/drug effects , Culture Media, Conditioned/pharmacology , Extracellular Matrix Proteins/metabolism , Female , Macrophage Colony-Stimulating Factor/pharmacology , Male , Mice , Mice, Knockout , Osteoclasts/cytology , Osteoclasts/metabolism , Osteogenesis/drug effects , Phosphoprotein Phosphatases/antagonists & inhibitors , Phosphoprotein Phosphatases/genetics , Protein Kinase C/metabolism , RNA Interference , RNA, Small Interfering/metabolism
11.
J Immunol ; 201(3): 1086-1096, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29914885

ABSTRACT

The bone marrow microenvironment harbors and protects leukemic cells from apoptosis-inducing agents via mechanisms that are incompletely understood. We previously showed SDF-1 (CXCL-12), a chemokine readily abundant within the bone marrow microenvironment, induces apoptosis in acute myeloid leukemia (AML) cells that express high levels of the SDF-1 receptor CXCR4. However, differentiating osteoblasts found within this niche protect cocultured AML cells from apoptosis. Additionally, this protection was abrogated upon treatment of the differentiating osteoblasts with histone deacetylase inhibitors (HDACi). In this study, we begin to characterize and target the molecular mechanisms that mediate this osteoblast protection. Quantitative RT-PCR revealed that HDACi treatment of differentiating osteoblasts (mouse MC3T3 osteoblast cell line) reduced expression of multiple genes required for osteoblast differentiation, including genes important for producing mineralized bone matrix. Interestingly, pretreating differentiating osteoblasts with cyclosporine A, a drug known to inhibit osteoblast differentiation, similarly impaired osteoblast-mediated protection of cocultured AML cells (KG1a and U937 human AML cell lines). Both HDACi and cyclosporine A reduced osteoblast expression of the key mineralization enzyme tissue-nonspecific alkaline phosphatase (TNAP; encoded by Alpl). Moreover, specifically reducing TNAP expression or activity in differentiating osteoblasts significantly impaired the ability of the osteoblasts to protect cocultured AML cells. Together, our results indicate that inhibiting osteoblast matrix mineralization by specifically targeting TNAP is sufficient to significantly impair osteoblast-mediated protection of AML cells. Therefore, designing combination therapies that additionally target the osteoblast-produced mineralized bone matrix may improve treatment of AML by reducing the protection of leukemic cells within the bone marrow microenvironment.


Subject(s)
Alkaline Phosphatase/metabolism , Apoptosis/physiology , Leukemia, Myeloid, Acute/metabolism , Osteoblasts/metabolism , 3T3 Cells , Animals , Apoptosis/drug effects , Bone Marrow/drug effects , Bone Marrow/metabolism , Calcification, Physiologic/drug effects , Cell Differentiation/drug effects , Cell Line , Cell Line, Tumor , Cellular Microenvironment/drug effects , Chemokine CXCL12/metabolism , Coculture Techniques/methods , Histone Deacetylase Inhibitors/pharmacology , Humans , Leukemia, Myeloid, Acute/drug therapy , Mice , Receptors, CXCR4/metabolism , U937 Cells
12.
J Biol Chem ; 293(49): 19001-19011, 2018 12 07.
Article in English | MEDLINE | ID: mdl-30327434

ABSTRACT

Ezh2 is a histone methyltransferase that suppresses osteoblast maturation and skeletal development. We evaluated the role of Ezh2 in chondrocyte lineage differentiation and endochondral ossification. Ezh2 was genetically inactivated in the mesenchymal, osteoblastic, and chondrocytic lineages in mice using the Prrx1-Cre, Osx1-Cre, and Col2a1-Cre drivers, respectively. WT and conditional knockout mice were phenotypically assessed by gross morphology, histology, and micro-CT imaging. Ezh2-deficient chondrocytes in micromass culture models were evaluated using RNA-Seq, histologic evaluation, and Western blotting. Aged mice with Ezh2 deficiency were also evaluated for premature development of osteoarthritis using radiographic analysis. Ezh2 deficiency in murine chondrocytes reduced bone density at 4 weeks of age but caused no other gross developmental effects. Knockdown of Ezh2 in chondrocyte micromass cultures resulted in a global reduction in trimethylation of histone 3 lysine 27 (H3K27me3) and altered differentiation in vitro RNA-Seq analysis revealed enrichment of an osteogenic gene expression profile in Ezh2-deficient chondrocytes. Joint development proceeded normally in the absence of Ezh2 in chondrocytes without inducing excessive hypertrophy or premature osteoarthritis in vivo In summary, loss of Ezh2 reduced H3K27me3 levels, increased the expression of osteogenic genes in chondrocytes, and resulted in a transient post-natal bone phenotype. Remarkably, Ezh2 activity is dispensable for normal chondrocyte maturation and endochondral ossification in vivo, even though it appears to have a critical role during early stages of mesenchymal lineage commitment.


Subject(s)
Cartilage/metabolism , Chondrocytes/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics , Osteogenesis/physiology , Animals , Cell Differentiation/physiology , Chondrogenesis , Gene Knockdown Techniques , Histones/chemistry , Histones/metabolism , Lysine/chemistry , Methylation , Mice , Transcriptome
13.
J Biol Chem ; 293(33): 12894-12907, 2018 08 17.
Article in English | MEDLINE | ID: mdl-29899112

ABSTRACT

Epigenetic mechanisms control skeletal development and osteoblast differentiation. Pharmacological inhibition of the histone 3 Lys-27 (H3K27) methyltransferase enhancer of zeste homolog 2 (EZH2) in WT mice enhances osteogenesis and stimulates bone formation. However, conditional genetic loss of Ezh2 early in the mesenchymal lineage (i.e. through excision via Prrx1 promoter-driven Cre) causes skeletal abnormalities due to patterning defects. Here, we addressed the key question of whether Ezh2 controls osteoblastogenesis at later developmental stages beyond patterning. We show that Ezh2 loss in committed pre-osteoblasts by Cre expression via the osterix/Sp7 promoter yields phenotypically normal mice. These Ezh2 conditional knock-out mice (Ezh2 cKO) have normal skull bones, clavicles, and long bones but exhibit increased bone marrow adiposity and reduced male body weight. Remarkably, in vivo Ezh2 loss results in a low trabecular bone phenotype in young mice as measured by micro-computed tomography and histomorphometry. Thus, Ezh2 affects bone formation stage-dependently. We further show that Ezh2 loss in bone marrow-derived mesenchymal cells suppresses osteogenic differentiation and impedes cell cycle progression as reflected by decreased metabolic activity, reduced cell numbers, and changes in cell cycle distribution and in expression of cell cycle markers. RNA-Seq analysis of Ezh2 cKO calvaria revealed that the cyclin-dependent kinase inhibitor Cdkn2a is the most prominent cell cycle target of Ezh2 Hence, genetic loss of Ezh2 in mouse pre-osteoblasts inhibits osteogenesis in part by inducing cell cycle changes. Our results suggest that Ezh2 serves a bifunctional role during bone formation by suppressing osteogenic lineage commitment while simultaneously facilitating proliferative expansion of osteoprogenitor cells.


Subject(s)
Cell Cycle/physiology , Enhancer of Zeste Homolog 2 Protein/metabolism , Osteoblasts/metabolism , Osteogenesis/physiology , Sex Characteristics , Animals , Enhancer of Zeste Homolog 2 Protein/genetics , Female , Male , Mice , Mice, Transgenic , Osteoblasts/cytology
14.
Biochem Biophys Res Commun ; 519(3): 566-571, 2019 11 12.
Article in English | MEDLINE | ID: mdl-31537378

ABSTRACT

Patients with non-small cell lung cancer (NSLC) often develop skeletal complications and fractures. To understand mechanisms of bone loss, we developed a murine model of non-metastatic NSLC. Decreased bone mineral density, trabecular thickness and mineralization, without an increase in bone resorption, were observed in vivo in mice injected with Lewis lung adenocarcinoma (LLC1) cells in the absence of tumor cell metastases. A decrease in trabecular bone mineral density was observed in mice injected with cell-free LLC1 CM. Plasma osteoblast biomarkers and PTH-related peptide (PTHrP) were reduced, and parathyroid hormone (PTH), 1,25-dihydroxyvitamin D, calcium and phosphate concentrations were normal in tumor-bearing mice. LLC1 cell conditioned medium (CM) inhibited alkaline phosphatase activity, osteoblast mineralization, and expression of Alpl and Ocn/Bglap mRNA in MC3T3 osteoblast cultures, whereas non-CM or CM from NIH/3T3 fibroblasts did not induce similar changes. LLC1 CM reduced Wnt3a-stimulated Tcf/Lef reporter plasmid activity and Wnt5A, Tcf1 and Lef1 mRNA expression in MC3T3 cells. Although concentrations of the Wnt inhibitor, DKK2, were increased in LLC1 CM compared to non-CM, depletion of DKK2 from LLC1 CM did not completely restore Wnt3a activity in MC3T3 cultures, and recombinant DKK2 failed to inhibit osteoblast mineralization. The data indicate that in a model of lung adenocarcinoma without bone metastases, tumor cells elaborate a secreted factor(s) that reduces bone mass, bone formation and osteoblast Wnt signaling without increases in bone resorption or calcium-regulating hormone concentrations. The factor(s) mediating this inhibition of osteoblast mineralization require further characterization.


Subject(s)
Calcification, Physiologic , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/metabolism , Osteoblasts/metabolism , Animals , Carcinoma, Non-Small-Cell Lung/pathology , Female , Lung Neoplasms/pathology , Male , Mice , Mice, Inbred C57BL
15.
J Cell Physiol ; 233(4): 2671-2680, 2018 04.
Article in English | MEDLINE | ID: mdl-28840938

ABSTRACT

Type 2 diabetes is an emerging global health epidemic. Foundations for new therapies are arising from understanding interactions between body systems. Bone-derived factors that reduce RANKL (receptor activator of NF-kappa B ligand) signaling in the liver may prevent insulin resistance and the onset of type 2 diabetes. Here we demonstrate that deletion of the epigenetic regulator, Hdac3, in Osx1-expressing osteoprogenitors prevents insulin resistance induced by high fat diet by increasing serum and skeletal gene expression levels of osteoprotegerin (Opg), a natural inhibitor of RANKL signaling. Removal of one Opg allele in mice lacking Hdac3 in Osx1+ osteoprogenitors increases the insulin resistance of the Hdac3-deficient mice on a high fat diet. Thus, Hdac3-depletion in osteoblasts increases expression of Opg, subsequently preserving insulin sensitivity. The Hdac inhibitor vorinostat also increased Opg transcription and histone acetylation of the Opg locus. These results define a new mechanism by which bone regulates systemic insulin sensitivity.


Subject(s)
Bone and Bones/metabolism , Histone Deacetylases/deficiency , Insulin Resistance , Osteoprotegerin/metabolism , Stem Cells/metabolism , Alleles , Animals , Biomarkers/blood , Diet, High-Fat , Gene Deletion , Histone Deacetylases/metabolism , Mice, Inbred C57BL , Mice, Knockout , Osteoblasts/metabolism , Osteoprotegerin/blood , Osteoprotegerin/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Weight Gain
16.
J Cell Biochem ; 119(9): 7470-7478, 2018 09.
Article in English | MEDLINE | ID: mdl-29775231

ABSTRACT

The protein phosphatase Phlpp1 is an essential enzyme for proper chondrocyte function. Altered Phlpp1 levels are associated with cancer and degenerative diseases such as osteoarthritis. While much is known about the post-transcriptional mechanisms controlling Phlpp1 levels, transcriptional regulation of the Phlpp1 gene locus is underexplored. We previously showed that CpG methylation of the PHLPP1 promoter is lower in osteoarthritic cartilage than in normal cartilage, and indirectly correlates with gene expression. Here we further defined the effects of DNA methylation on PHLPP1 promoter activity in chondrocytes. We cloned a 1791 bp fragment of the PHLPP1 promoter (-1589:+202) and found that the first 500 bp were required for maximal promoter activity. General methylation of CpG sites within this fragment significantly blunts transcriptional activity, whereas site-specific methyltransferases HhaI or HpaII decrease transcriptional activation by approximately 50%. We located putative FoxO consensus sites within the PHLPP1 promoter region. Inhibition of DNA methylation by incorporation of 5-azacytidine increases Phlpp1 mRNA levels, but FoxO inhibition abolishes this induction. To determine which FoxO transcription factor mediates Phlpp1 expression, we performed overexpression and siRNA-mediated knock down experiments. Overexpression of FoxO3a, but not FoxO1, increases Phlpp1 levels. Likewise, siRNAs targeting FoxO3a, but not FoxO1, diminished Phlpp1 levels. Last, FoxO inhibition increases glycosaminoglycan staining of cultured chondrocytes and leads to concomitant increases in FGF18 and HAS2 expression. Together, these data demonstrate that CpG methylation and FoxO3a regulate PHLPP1 expression.


Subject(s)
Chondrocytes/metabolism , DNA Methylation , Forkhead Box Protein O3/metabolism , Nuclear Proteins/genetics , Osteoarthritis/metabolism , Phosphoprotein Phosphatases/genetics , Promoter Regions, Genetic , Animals , Cells, Cultured , CpG Islands , Gene Expression Regulation , Mice , Osteoarthritis/genetics
17.
J Biol Chem ; 291(47): 24594-24606, 2016 Nov 18.
Article in English | MEDLINE | ID: mdl-27758858

ABSTRACT

Perturbations in skeletal development and bone degeneration may result in reduced bone mass and quality, leading to greater fracture risk. Bone loss is mitigated by bone protective therapies, but there is a clinical need for new bone-anabolic agents. Previous work has demonstrated that Ezh2 (enhancer of zeste homolog 2), a histone 3 lysine 27 (H3K27) methyltransferase, suppressed differentiation of osteogenic progenitors. Here, we investigated whether inhibition of Ezh2 can be leveraged for bone stimulatory applications. Pharmacologic inhibition and siRNA knockdown of Ezh2 enhanced osteogenic commitment of MC3T3 preosteoblasts. Next generation RNA sequencing of mRNAs and real time quantitative PCR profiling established that Ezh2 inactivation promotes expression of bone-related gene regulators and extracellular matrix proteins. Mechanistically, enhanced gene expression was linked to decreased H3K27 trimethylation (H3K27me3) near transcriptional start sites in genome-wide sequencing of chromatin immunoprecipitations assays. Administration of an Ezh2 inhibitor modestly increases bone density parameters of adult mice. Furthermore, Ezh2 inhibition also alleviated bone loss in an estrogen-deficient mammalian model for osteoporosis. Ezh2 inhibition enhanced expression of Wnt10b and Pth1r and increased the BMP-dependent phosphorylation of Smad1/5. Thus, these data suggest that inhibition of Ezh2 promotes paracrine signaling in osteoblasts and has bone-anabolic and osteoprotective potential in adults.


Subject(s)
Enhancer of Zeste Homolog 2 Protein/metabolism , Osteoblasts/metabolism , Osteogenesis , Osteoporosis/metabolism , Paracrine Communication , Animals , Cell Line , Enhancer of Zeste Homolog 2 Protein/genetics , Female , Methylation/drug effects , Mice , Osteoblasts/pathology , Osteoporosis/pathology , Ovariectomy , RNA, Small Interfering/pharmacology , Receptor, Parathyroid Hormone, Type 1 , Smad1 Protein/genetics , Smad1 Protein/metabolism , Smad5 Protein/genetics , Smad5 Protein/metabolism , Wnt Proteins/genetics , Wnt Proteins/metabolism
18.
Connect Tissue Res ; 58(1): 27-36, 2017 01.
Article in English | MEDLINE | ID: mdl-27662443

ABSTRACT

Histone deacetylase (Hdac3) inhibitors are emerging therapies for many diseases including cancers and neurological disorders; however, these drugs are teratogens to the developing skeleton. Hdac3 is essential for proper endochondral ossification as its deletion in chondrocytes increases cytokine signaling and the expression of matrix remodeling enzymes. Here we explored the mechanism by which Hdac3 controls matrix metalloproteinase (Mmp)-13 expression in chondrocytes. In Hdac3-depleted chondrocytes, extracellular signal-regulated kinase (Erk)1/2 as well as its downstream substrate, Runx2, were hyperphosphorylated as a result of decreased expression and activity of the Erk1/2 specific phosphatase, Dusp6. Erk1/2 kinase inhibitors and Dusp6 adenoviruses reduced Mmp13 expression and partially rescued matrix production in Hdac3-deficient chondrocytes. Postnatal chondrocyte-specific deletion of Hdac3 with an inducible Col2a1-Cre caused premature production of pErk1/2 and Mmp13 in the growth plate. Thus, Hdac3 controls the temporal and spatial expression of tissue-remodeling genes in chondrocytes to ensure proper endochondral ossification during development.


Subject(s)
Chondrocytes/metabolism , Histone Deacetylases/metabolism , Matrix Metalloproteinase 13/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Animals , Cells, Cultured , Chondrocytes/cytology , Dual Specificity Phosphatase 6/genetics , Dual Specificity Phosphatase 6/metabolism , Growth Plate/cytology , Growth Plate/metabolism , Histone Deacetylases/genetics , Matrix Metalloproteinase 13/genetics , Mice , Mitogen-Activated Protein Kinase 3/genetics , Osteogenesis/physiology , Phosphorylation/physiology
19.
Genes Chromosomes Cancer ; 55(8): 640-9, 2016 08.
Article in English | MEDLINE | ID: mdl-27113271

ABSTRACT

Nodular fasciitis (NF) is a clonal self-limited neoplastic proliferation characterized by rearrangements of the USP6 locus in most examples. To our knowledge well-documented malignant behavior has never been previously observed in NF. In this report we present an unusual case of NF with classical histologic features that showed a protracted clinical course characterized by multiple recurrences and eventual metastatic behavior over a period of 10 years. Molecular analyses revealed the presence and amplification of the novel PPPR6-USP6 gene fusion, which resulted in USP6 mRNA transcriptional upregulation. These findings further support the oncogenic role of the USP6 protease in mesenchymal neoplasia and expand the biologic potential of NF. © 2016 Wiley Periodicals, Inc.


Subject(s)
Fasciitis/genetics , Oncogene Proteins, Fusion/genetics , Phosphoprotein Phosphatases/genetics , Proto-Oncogene Proteins/genetics , Ubiquitin Thiolesterase/genetics , Adult , Carcinogenesis/genetics , Comparative Genomic Hybridization , Fasciitis/pathology , Female , Gene Expression Regulation, Neoplastic , Humans , In Situ Hybridization, Fluorescence , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , RNA, Messenger/genetics
20.
J Biol Chem ; 290(1): 118-26, 2015 Jan 02.
Article in English | MEDLINE | ID: mdl-25389289

ABSTRACT

Histone deacetylases (Hdacs) regulate endochondral ossification by suppressing gene transcription and modulating cellular responses to growth factors and cytokines. We previously showed that Hdac7 suppresses Runx2 activity and osteoblast differentiation. In this study, we examined the role of Hdac7 in postnatal chondrocytes. Hdac7 was highly expressed in proliferating cells within the growth plate. Postnatal tissue-specific ablation of Hdac7 with a tamoxifen-inducible collagen type 2a1-driven Cre recombinase increased proliferation and ß-catenin levels in growth plate chondrocytes and expanded the proliferative zone. Similar results were obtained in primary chondrocyte cultures where Hdac7 was deleted with adenoviral-Cre. Hdac7 bound ß-catenin in proliferating chondrocytes, but stimulation of chondrocyte maturation promoted the translocation of Hdac7 to the cytoplasm where it was degraded by the proteasome. As a result, ß-catenin levels and transcription activity increased in the nucleus. These data demonstrate that Hdac7 suppresses proliferation and ß-catenin activity in chondrocytes. Reducing Hdac7 levels in early chondrocytes may promote the expansion and regeneration of cartilage tissues.


Subject(s)
Cartilage/metabolism , Chondrocytes/metabolism , Chondrogenesis/genetics , Growth Plate/metabolism , Histone Deacetylases/genetics , beta Catenin/genetics , Adenoviridae/genetics , Animals , Animals, Newborn , Cartilage/cytology , Cartilage/growth & development , Cell Differentiation , Cell Nucleus/metabolism , Cell Proliferation , Chondrocytes/cytology , Cytoplasm/metabolism , Gene Expression Regulation, Developmental , Genetic Vectors , Growth Plate/cytology , Growth Plate/growth & development , Histone Deacetylases/deficiency , Integrases/genetics , Integrases/metabolism , Mice , Mice, Knockout , Protein Transport , Proteolysis , Signal Transduction , beta Catenin/agonists , beta Catenin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL