Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Int J Mol Sci ; 24(20)2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37895046

ABSTRACT

Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system caused by myelin-specific autoreactive T cells. We previously demonstrated intestinal barrier disruption and signs of inflammation in experimental autoimmune encephalomyelitis (EAE), a model of MS. Fecal calprotectin is a disease activity biomarker in inflammatory bowel diseases, released by neutrophils in response to inflammation. We aimed to further investigate EAE manifestations in the gastrointestinal tract and to determine whether calprotectin is a useful biomarker of intestinal inflammation in EAE. Calprotectin was analyzed in feces, cecal contents, and plasma of EAE mice. Infiltrating neutrophils and goblet cells were investigated in different parts of the gastrointestinal tract before the onset of neurological symptoms and during established disease. We found increased calprotectin levels in feces, cecal content, and plasma preceding EAE onset that further escalated during disease progression. Increased neutrophil infiltration in the intestinal tissue concomitant with IL-17 expression and myeloperoxidase activity was found to correlate well with clinical activity. Increased goblet cells in the intestine, similar to irritable bowel syndrome (IBS), were also observed. The results suggest calprotectin as a good biomarker of gastrointestinal inflammation in EAE and the potential of this model as a useful animal model for IBS.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Irritable Bowel Syndrome , Multiple Sclerosis , Animals , Mice , Multiple Sclerosis/metabolism , Goblet Cells/metabolism , Leukocyte L1 Antigen Complex , Disease Models, Animal , Neutrophil Infiltration , Hyperplasia , Encephalomyelitis, Autoimmune, Experimental/metabolism , Inflammation , Intestines , Feces , Biomarkers
2.
Br J Nutr ; 119(9): 992-1002, 2018 05.
Article in English | MEDLINE | ID: mdl-29457572

ABSTRACT

Gut maturation naturally accelerates at weaning in altricial mammalian species, such as the rat. Mimicking this, gut development can also be induced precociously, 3-4 d earlier than it would occur naturally, by enteral exposure to phytohaemagglutinin (PHA), or various proteases. We investigated the early effects of gut provocation on intestinal barrier and pancreatic functions, to get a better understanding of the mechanisms that initiate gut maturation. The effects of oral administration of protease (trypsin) or PHA to 14-d-old suckling rats were studied during 24 h in comparison with water-fed controls. Intestinal in vivo permeability was assessed by oral administration of different-sized marker molecules and measuring their passage into the blood or urine 3 h later. A period of 24 h following oral administration, both PHA and protease provocation stimulated small intestinal (SI) growth and pancreatic secretion, as indicated by decreased pancreatic trypsin and increased luminal enzyme content. Within 1 h of oral administration, both treatments prevented the absorption of macromolecules to blood that was observed in controls. PHA treatment hindered the passage of fluorescein isothiocyanate-dextran (FD) 4 to blood, whereas protease treatment temporarily increased plasma levels of FD4, and the urine lactulose:mannitol ratio, indicating increased intestinal leakiness. Following protease treatment, fluorescence microscopy showed decreased vesicular uptake of FD70 in the proximal SI and increased epithelial fluorescence in the distal SI. In conclusion, PHA and protease differed in their early effects on the intestinal barrier; both exerted a blocking effect on epithelial endocytosis, whereas protease treatment alone temporarily increased epithelial leakiness, which seemed to be confined to the distal SI.


Subject(s)
Intestines/drug effects , Pancreas/drug effects , Peptide Hydrolases/pharmacology , Phytohemagglutinins/pharmacology , Administration, Oral , Animals , Animals, Newborn , Animals, Suckling , Intestines/growth & development , Organ Size , Pancreas/anatomy & histology , Pancreas/growth & development , Peptide Hydrolases/administration & dosage , Permeability , Phytohemagglutinins/administration & dosage , Rats
3.
Am J Physiol Regul Integr Comp Physiol ; 311(3): R618-27, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27488889

ABSTRACT

Thylakoids reduce body weight gain and body fat accumulation in rodents. This study investigated whether an enhanced oxidation of dietary fat-derived fatty acids in the intestine contributes to the thylakoid effects. Male Sprague-Dawley rats were fed a high-fat diet with (n = 8) or without thylakoids (n = 8) for 2 wk. Body weight, food intake, and body fat were measured, and intestinal mucosa was collected and analyzed. Quantitative real-time PCR was used to measure gene expression levels of key enzymes involved in fatty acid transport, fatty acid oxidation, and ketogenesis. Another set of thylakoid-treated (n = 10) and control rats (n = 10) went through indirect calorimetry. In the first experiment, thylakoid-treated rats (n = 8) accumulated 25% less visceral fat than controls. Furthermore, fatty acid translocase (Fat/Cd36), carnitine palmitoyltransferase 1a (Cpt1a), and mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase 2 (Hmgcs2) genes were upregulated in the jejunum of the thylakoid-treated group. In the second experiment, thylakoid-treated rats (n = 10) gained 17.5% less weight compared with controls and their respiratory quotient was lower, 0.86 compared with 0.91. Thylakoid-intake resulted in decreased food intake and did not cause steatorrhea. These results suggest that thylakoids stimulated intestinal fatty acid oxidation and ketogenesis, resulting in an increased ability of the intestine to handle dietary fat. The increased fatty acid oxidation and the resulting reduction in food intake may contribute to the reduced fat accumulation in thylakoid-treated animals.


Subject(s)
Diet, High-Fat , Fatty Acids/metabolism , Intestinal Mucosa/metabolism , Intra-Abdominal Fat/physiology , Thylakoids/metabolism , Up-Regulation/physiology , Animals , Male , Organ Size/physiology , Oxidation-Reduction , Rats , Rats, Sprague-Dawley , Thylakoids/chemistry
4.
Exp Physiol ; 101(1): 100-12, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26663041

ABSTRACT

The effect of exocrine pancreatic function on the glucose-mediated insulin response and glucose utilization were studied in an exocrine pancreas-insufficient (EPI) pig model. Five 10-week-old EPI pigs after pancreatic duct ligation and 6 age-matched, non-operated control pigs were used in the study. Blood glucose, plasma insulin and C-peptide concentrations were monitored during meal (MGTT), oral (OGTT) and intravenous (IVGTT) glucose tolerance tests. Upon post-mortem examination, the pancreatic remnants of the EPI pigs showed acinar fibrotic atrophy but normal islets and ß-cell morphology. The EPI pigs displayed increased fasting glucose concentrations compared with control animals (6.4 ± 0.4 versus 4.8 ± 0.1 mmol l(-1) , P < 0.0001) but unchanged insulin concentrations (2.4 ± 0.6 versus 2.1 ± 0.2 pmol l(-1) ). During the OGTT and IVGTT, the EPI pigs showed slower, impaired glucose utilization, with the disruption of a well-timed insulin response. Plasma C-peptide concentrations confirmed the delayed insulin response during the IVGTT in EPI pigs. Oral pancreatic enzyme supplementation (PES) of EPI pigs improved glucose clearance during IVGTT [AUC(glucose) 1295 ± 70 mmol l(-1) × (120 min) in EPI versus 1044 ± 32 mmol l(-1) × (120 min) in EPI + PES, P < 0.0001] without reinforcing the release of insulin [AUC(C-peptide) 14.4 ± 3.8 nmol l(-1) × (120 min) in EPI versus 6.4 ± 1.3 nmol l(-1) × (120 min) in EPI + PES, P < 0.002]. The results suggest the existence of an acino-insular axis regulatory communication. The presence of pancreatic enzymes in the gut facilitates glucose utilization in an insulin-independent manner, indicating the existence of a gut-derived pancreatic enzyme-dependent mechanism involved in peripheral glucose utilization.


Subject(s)
Blood Glucose/metabolism , Insulin/blood , Pancreas, Exocrine , Animals , Atrophy , C-Peptide/metabolism , Eating , Fibrosis , Glucose Tolerance Test , Insulin-Secreting Cells/pathology , Islets of Langerhans/pathology , Ligation , Pancreatic Ducts/surgery , Sus scrofa , Swine , Weight Gain
5.
BMC Gastroenterol ; 14: 209, 2014 Dec 11.
Article in English | MEDLINE | ID: mdl-25496312

ABSTRACT

BACKGROUND: Women treated with gonadotropin-releasing hormone (GnRH) analogs may develop enteric neuropathy and dysmotility. Administration of a GnRH analog to rats leads to similar degenerative neuropathy and ganglioneuritis. The aim of this study on rat was to evaluate the early GnRH-induced enteric neuropathy in terms of distribution of neuronal subpopulations and gastrointestinal (GI) function. METHODS: Forty rats were given the GnRH analog buserelin (20 µg, 1 mg/ml) or saline subcutaneously, once daily for 5 days, followed by 3 weeks of recovery, representing one treatment session. Two weeks after the fourth treatment session, the animals were tested for GI transit time and galactose absorption, and fecal weight and fat content was analyzed. After sacrifice, enteric neuronal subpopulations were analyzed. Blood samples were analyzed for zonulin and antibodies against GnRH and luteinizing hormone, and their receptors. RESULTS: Buserelin treatment transiently increased the body weight after 5 and 9 weeks (p < 0.001). Increased estradiol in plasma and thickened uterine muscle layers indicate high estrogen activity. The numbers of both submucous and myenteric neurons were reduced by 27%-61% in ileum and colon. The relative numbers of neurons containing calcitonin gene-related peptide (CGRP), cocaine- and amphetamine-related transcript (CART), galanin, gastrin-releasing peptide (GRP), neuropeptide Y (NPY), nitric oxide synthase (NOS), serotonin, substance P (SP), vasoactive intestinal peptide (VIP) or vesicular acetylcholine transporter (VAchT), and their nerve fiber density, were unchanged after buserelin treatment, but the relative number of submucous neurons containing somatostatin tended to be increased (p = 0.062). The feces weight decreased in buserelin-treated rats (p < 0.01), whereas feces fat content increased (p < 0.05), compared to control rats. Total GI transit time, galactose absorption, zonulin levels in plasma, and antibody titers in serum were unaffected by buserelin treatment. CONCLUSIONS: A marked enteric neuronal loss with modest effects on GI function is found after buserelin treatment. Increased feces fat content is suggested an early sign of dysfunction.


Subject(s)
Gastrointestinal Tract/physiopathology , Intestinal Pseudo-Obstruction/pathology , Intestinal Pseudo-Obstruction/physiopathology , Neurons/pathology , Animals , Buserelin , Colon/pathology , Disease Models, Animal , Estradiol/blood , Feces/chemistry , Female , Gastrointestinal Transit , Ileum/pathology , Intestinal Pseudo-Obstruction/chemically induced , Lipids/analysis , Neurons/chemistry , Rats, Sprague-Dawley , Stomach/pathology , Uterus/anatomy & histology
6.
Br J Nutr ; 106(6): 887-95, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21450114

ABSTRACT

The aim of the present study was to assess the long-term effects of a high-energy-dense diet, supplemented with Lactobacillus plantarum (Lp) or Escherichia coli (Ec), on weight gain, fattening and the gut microbiota in rats. Since the mother's dietary habits can influence offspring physiology, dietary regimens started with the dams at pregnancy and throughout lactation and continued with the offspring for 6 months. The weight gain of group Lp was lower than that of groups C (control) and Ec (P = 0·086). More retroperitoneal adipose tissue (P = 0·030) and higher plasma leptin (P = 0·035) were observed in group Ec compared with group Lp. The viable count of Enterobacteriaceae was higher in group Ec than in group Lp (P = 0·019), and when all animals were compared, Enterobacteriaceae correlated positively with body weight (r 0·428, P = 0·029). Bacterial diversity was lower in group Ec than in groups C (P ≤ 0·05) and Lp (P ≤ 0·05). Firmicutes, Bacteroidetes and Verrucomicrobia dominated in all groups, but Bacteroidetes were more prevalent in group C than in groups Lp (P = 0·036) and Ec (P = 0·056). The same five bacterial families dominated the microbiota of groups Ec and C, and four of these were also present in group Lp. The other five families dominating in group Lp were not found in any of the other groups. Multivariate data analysis pointed in the same directions as the univariate statistics. The present results suggest that supplementation of L. plantarum or E. coli can have long-term effects on the composition of the intestinal microbiota, as well as on weight gain and fattening.


Subject(s)
Escherichia coli/metabolism , Intestines/microbiology , Lactobacillus plantarum/metabolism , Animals , Body Weight , Dietary Supplements , Female , Intestines/embryology , Lipopolysaccharides/metabolism , Liver/pathology , Male , Maternal Exposure , Models, Statistical , Multivariate Analysis , Organ Size , Polymorphism, Restriction Fragment Length , Pregnancy , Pregnancy, Animal , Rats , Rats, Sprague-Dawley
7.
Br J Nutr ; 106(6): 836-44, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21736841

ABSTRACT

Thylakoid membranes, derived from chloroplasts, have previously been shown to retard fat digestion and lower blood glucose levels after oral intake. The purpose of the present study was to investigate the effect of thylakoid membranes on the passage of methyl-glucose, dextran and ovalbumin over rat intestine in vitro using Ussing chambers. The results show that thylakoids retard the passage of each of the test molecules in a dose-dependent way. The thylakoids appear to be attached on the mucosal surface and a mechanism is suggested that the thylakoids delay the passage of the test molecules by sterical hindrance. The present results indicate that thylakoid membranes may be useful both to control intestinal absorption of glucose and to enhance the barrier function of the intestine.


Subject(s)
Chloroplasts/metabolism , Glucose/pharmacokinetics , Intestinal Mucosa/metabolism , Thylakoids/metabolism , 3-O-Methylglucose/metabolism , Animals , Area Under Curve , Dextrans/chemistry , Dose-Response Relationship, Drug , Macromolecular Substances , Mice , Ovalbumin/metabolism , Permeability , Rats , Rats, Sprague-Dawley , Spinacia oleracea/metabolism , Time Factors
8.
Front Nutr ; 8: 687056, 2021.
Article in English | MEDLINE | ID: mdl-34249996

ABSTRACT

Pre-term infants have an immature digestive system predisposing to short- and long-term complications including feeding intolerance, maldigestion and necrotizing enterocolitis (NEC). Optimal feeding strategies are required to promote maturation of the gut including the exocrine pancreas. Little is known about age- and diet-related development of pancreatic exocrine enzymes following pre-term birth. Currently, bovine colostrum supplementation is investigated in clinical trials on pre-term infants. Using pigs as models for infants, we hypothesized that pancreatic enzyme content is (1) immature following pre-term birth, (2) stimulated by early colostrum supplementation, and (3) stimulated by later colostrum fortification. Thus, using piglets as models for infants, we measured trypsin, amylase, lipase and total protein in pancreatic tissue collected from piglets delivered by cesarean section either pre-term (90% gestation) or close to term. Experiment 1:Pre-term and term pigs were compared at birth and 11 days. Experiment 2: Pre-term and term pigs were either enterally supplemented with bovine colostrum or fed total parenteral nutrition for 5 days, followed by exclusive milk feeding until day 26. Experiment 3: Pre-term pigs were fed bovine's milk with or without colostrum fortification until 19 days. The results showed that pancreatic trypsin, amylase and total protein contents were reduced in pre-term vs. term pigs. Trypsin mainly increased with advancing post-conceptional age (2-fold), while amylase was affected predominantly by advancing post-natal age, and mostly in pre-term pigs from birth to 11 or 26 days. Colostrum feeding in both term and pre-term piglets decreased trypsin and increased amylase contents. Lipase activity decreased with advancing gestational age at birth and post-natal age, with no consistent responses to colostrum feeding, with lipase activities decreasing relative to total pancreatic protein content. In summary, key pancreatic enzymes, amylase and trypsin, are immature following pre-term birth, potentially contributing to reduced digestive capacity in pre-term neonates. Rapid post-natal increases occurs within few weeks of pre-term birth, partly stimulated by enteral colostrum intake, reflecting a marked adaptation capacity. Alternatively, lipase is less affected by pre-/post-natal age and feeding. Thus, there is a highly enzyme-specific and asymmetric perinatal development of the exocrine pancreas.

9.
J Pediatr Gastroenterol Nutr ; 50(5): 473-80, 2010 May.
Article in English | MEDLINE | ID: mdl-20639703

ABSTRACT

OBJECTIVES: Enteral exposure to the lectin phytohemagglutinin (PHA) provokes precocious gut maturation in suckling rats coinciding with an early expansion of intestinal mucosal T and B lymphocytes. Here, the role of the immune system in neonatal gut growth and maturation was further studied. MATERIALS AND METHODS: The effects of immunosuppression by cyclosporine A (CyA), 7.5 microg/g of body weight, injected 12 hours before and then daily after the intragastric gavage of PHA, 100 microg/g body weight, to 14-day-old suckling rats were studied after 4 and 12 hours and later after 72 hours. RESULTS: At 4 hours after PHA feeding, an early rapid increase in the intestinal levels of the proinflammatory cytokines interleukin-6, interleukin-1beta, and tumor necrosis factor was obtained, and the CyA treatment did not prevent the temporary PHA-induced intestinal disturbance seen at 12 hours. Later, at 72 hours after PHA gavage the CyA treatment significantly counteracted the PHA-induced gut changes with a decrease in small intestinal growth, a delay in the appearance of adult-phenotype enterocytes in the distal small intestinal, and total inhibition of the PHA-induced pancreas development. Additionally, the increase in plasma level of the acute phase protein, haptoglobin, after PHA feeding was dampened by CyA. CONCLUSIONS: The results indicate that proinflammatory cytokines are involved in the early recruitment of lymphocytes to the gut after PHA challenge, and that the ensuing precocious gut maturation is dependent on activation of the immune system, presumably T cells, in suckling rats.


Subject(s)
Cyclosporine/pharmacology , Cytokines/metabolism , Immunosuppressive Agents/pharmacology , Intestinal Mucosa/drug effects , Intestine, Small/drug effects , Pancreas/drug effects , Animals , Animals, Suckling , Enterocytes/drug effects , Enterocytes/immunology , Haptoglobins/metabolism , Intestinal Mucosa/growth & development , Intestinal Mucosa/immunology , Intestine, Small/growth & development , Intestine, Small/immunology , Lymphocytes/metabolism , Pancreas/growth & development , Phytohemagglutinins/pharmacology , Rats , Rats, Sprague-Dawley
10.
Front Immunol ; 11: 855, 2020.
Article in English | MEDLINE | ID: mdl-32508816

ABSTRACT

In the present review, we highlight the possible "extra-immunological" effects of maternal immunoglobulins (Ig) transferred to the blood circulation of offspring, either via the placenta before birth or via the colostrum/milk across the gut after birth in different mammalian species. Using the newborn pig as a model, since they are naturally born agammaglobulinemic, intravenously (i.v.) infused purified serum Ig rapidly improved the vitality, suckling behavior, and ensured the survival of both preterm and term piglets. In further studies, we found that proper brain development requires i.v. Ig supplementation. Studies have reported on the positive effects of i.v. Ig treatment in children with epilepsy. Moreover, feeding newborn pigs an elementary diet supplemented with Ig improved the gut structure, and recently a positive impact of enteral or parenteral Ig supplementation on the absorption of polyunsaturated fatty acids (PUFAs) was observed in the newborn pig. Summarized, our own results and those found in the literature, indicate the existence of important extra-immune effects of maternal Ig, in addition to the classical protective effects of transferred maternal passive immunity, including effects on the development of the brain, gut, and possibly other organ systems in the neonate. These additional properties of circulating Ig could have an impact on care guidelines for human neonates, especially those born prematurely with low plasma Ig levels.


Subject(s)
Immunity, Maternally-Acquired , Immunoglobulins/immunology , Animals , Animals, Newborn , Colostrum/immunology , Epilepsy , Fatty Acids, Unsaturated/metabolism , Female , Humans , Infant , Milk/immunology , Pregnancy , Swine
11.
Front Immunol ; 11: 1153, 2020.
Article in English | MEDLINE | ID: mdl-32582216

ABSTRACT

The gut is an efficient barrier which protects against the passage of pathogenic microorganisms and potential harmful macromolecules into the body, in addition to its primary function of nutrient digestion and absorption. Contrary to the restricted macromolecular passage in adulthood, enhanced transfer takes place across the intestines during early life, due to the high endocytic capacity of the immature intestinal epithelial cells during the fetal and/or neonatal periods. The timing and extent of this enhanced endocytic capacity is dependent on animal species, with a prominent non-selective intestinal macromolecular transfer in newborn ungulates, e.g., pigs, during the first few days of life, and a selective transfer of mainly immunoglobulin G (IgG), mediated by the FcRn receptor, in suckling rodents, e.g., rats and mice. In primates, maternal IgG is transferred during fetal life via the placenta, and intestinal macromolecular transfer is largely restricted in human neonates. The period of intestinal macromolecular transmission provides passive immune protection through the transfer of IgG antibodies from an immune competent mother; and may even have extra-immune beneficial effects on organ maturation in the offspring. Moreover, intestinal transfer during the fetal/neonatal periods results in increased exposure to microbial and food antigens which are then presented to the underlying immune system, which is both naïve and immature. This likely stimulates the maturation of the immune system and shifts the response toward tolerance induction instead of activation or inflammation, as usually seen in adulthood. Ingestion of mother's milk and the dietary transition to complex food at weaning, as well as the transient changes in the gut microbiota during the neonatal period, are also involved in the resulting immune response. Any disturbances in timing and/or balance of these parallel processes, i.e., intestinal epithelial maturation, luminal microbial colonization and mucosal immune maturation due to, e.g., preterm birth, infection, antibiotic use or nutrient changes during the neonatal period, might affect the establishment of the immune system in the infant. This review will focus on how differing developmental processes in the intestinal epithelium affect the macromolecular passage in different species and the possible impact of such passage on the establishment of immunity during the critical perinatal period in young mammals.


Subject(s)
Immune System/growth & development , Intestinal Mucosa/growth & development , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Animals , Humans , Mammals , Permeability
12.
J Immunol Res ; 2020: 3813250, 2020.
Article in English | MEDLINE | ID: mdl-32090128

ABSTRACT

The current study is aimed at highlighting the impact of enterally or parenterally applied immunoglobulins (Igs) on polyunsaturated fatty acid (PUFA) absorption in newborn pigs. Piglets were chosen as the appropriate model since they are born agammaglobulinemic and any effects of Ig addition can thus be easily monitored. Twenty-one, new born piglets were used in the study. Plasma levels of PUFAs, ARA, DHA, and EPA dropped (similarly to that seen in human infants) by between 40 and 50% in newborn, unsuckled piglets fed an infant formula for 48 h. However, piglets fed the same infant formula but supplied with immunoglobulins (Igs) either orally, by feeding piglets with swine or bovine colostrum, or intravenously, by i.u.a. (intraumbilical artery) infusion of swine or human Ig preparations or swine serum, demonstrated improved growth and PUFA levels similar to those observed at birth. The significant positive correlation was found between the body weight gain, as well as levels of ARA and EPA, and plasma immunoglobulins concentration. These results indicate the importance of the presence of Ig in the blood for appropriate absorption of dietary PUFAs and probably other nutrients in newborn piglets. This may have an impact on the dietary guidelines for human neonates, especially those born prematurely with low plasma Ig levels, since PUFAs are important factors for brain development in early life.


Subject(s)
Fatty Acids, Unsaturated/metabolism , Gastrointestinal Absorption , Immunoglobulin G/blood , Postpartum Period , Animals , Animals, Newborn , Biomarkers , Cattle , Humans , Swine
13.
Br J Nutr ; 101(5): 735-42, 2009 Mar.
Article in English | MEDLINE | ID: mdl-18644165

ABSTRACT

The dietary lectin phytohaemagglutinin (PHA) induces gut growth and precocious maturation in suckling rats after mucosal binding. The present study investigated the dose range in which PHA provokes gut maturation and if it coincided with immune activation. Suckling rats, aged 14 d, were orogastrically fed a single increasing dose of PHA: 0 (control), 2, 10, 50 or 250 microg/g body weight (BW) in saline. The effect on gut, lymphoid organs and appearance of CD3+ (T-lymphocyte) and CD19+ (B-lymphocyte) cells in the small-intestinal mucosa was studied at 12 h (acute) and 3 d (late phase) after treatment. The low PHA doses (2 and 10 microg/g BW) induced intestinal hyperplasia without mucosal disarrangement but did not provoke gut maturation. Only the high PHA doses (50 and 250 microg/g BW) temporarily disturbed the intestinal mucosa with villi shortening and decrease in disaccharidase activities, and later after 3 d provoked precocious maturation, resulting in an increase in maltase and sucrase activities and decrease in lactase activity and disappearance of the fetal vacuolated enterocytes in the distal small intestine. Exposure to the high, but not to the low, PHA doses increased the number of mucosal CD19+ and CD3+ cells in the small intestine after 12 h, a finding also observed in untreated weaned rats aged 21-28 d. In conclusion, there was a dose-related effect of PHA on gastrointestinal growth and precocious maturation that coincided with a rapid expansion of mucosal B- and T-lymphocytes, indicating a possible involvement of the immune system in this process.


Subject(s)
Gastrointestinal Tract/drug effects , Lymphocyte Subsets/drug effects , Phytohemagglutinins/administration & dosage , Animals , Animals, Suckling , Antigens, CD19/analysis , CD3 Complex/analysis , Disease Models, Animal , Dose-Response Relationship, Drug , Gastrointestinal Tract/growth & development , Gastrointestinal Tract/pathology , Hyperplasia/chemically induced , Hyperplasia/immunology , Immunity, Mucosal/drug effects , Intestinal Mucosa/drug effects , Intestinal Mucosa/immunology , Intestine, Small/drug effects , Intestine, Small/immunology , Lymphocyte Activation/drug effects , Lymphocyte Subsets/immunology , Lymphoid Tissue/drug effects , Phytohemagglutinins/pharmacology , Rats , Rats, Sprague-Dawley
14.
Br J Nutr ; 100(2): 332-8, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18179726

ABSTRACT

After birth, the gastrointestinal (GI) tract undergoes vast structural and functional adaptations to be able to digest mother's milk and later, during the weaning period, solid food. Studies on germ-free animals have shown the role of the gut microbiota for stimulating GI maturation, but which groups are involved is unclear. In the present study, we administered the probiotic bacterium, Lactobacillus plantarum 299v (Lp299v), in the drinking water to pregnant and lactating rat dams until their pups had reached an age of 14 d. It was found that Lp299v colonizing the mothers were also able to colonize the pups, which had an impact on their gut growth and function. The small intestine, pancreas and liver weighed more in the 14 d-old pups born from dams exposed to Lp299v than in the control pups from dams given only water. Furthermore, the Lp299v pups showed decreased gut permeability. Despite a heavier spleen in the Lp299v pups, as compared to the control pups, no significant increase in the acute-phase protein, haptoglobin, was found. In conclusion, the results reported here clearly show that manipulating the maternal microflora by exposing expecting mothers to a Gram-positive, probiotic bacterium prior to parturition and during lactation impacts the gut growth and function in the offspring.


Subject(s)
Gastrointestinal Tract/growth & development , Lactobacillus plantarum , Prenatal Exposure Delayed Effects , Probiotics , Animals , Animals, Suckling , Body Weight , Cecum/microbiology , Enterobacteriaceae/isolation & purification , Feces/microbiology , Female , Gastrointestinal Tract/physiology , Haptoglobins/metabolism , Hydrogen-Ion Concentration , Lactation , Lactobacillus plantarum/isolation & purification , Organ Size , Pregnancy , Rats , Rats, Sprague-Dawley , Spleen/growth & development , Stomach/chemistry
15.
Scand J Gastroenterol ; 43(4): 480-9, 2008.
Article in English | MEDLINE | ID: mdl-18365914

ABSTRACT

OBJECTIVE: The initiating events in the onset of pancreatitis are poorly understood. Possible candidates may be endogenous ligands, acting on receptors within ductal, acinar or stellate cells, which have previously been shown to cause a systemic inflammatory response syndrome. The aim of this study was to investigate whether acute pancreatitis could be induced by heparan sulphate (HS)infused into the pancreatic ducts in the rat. MATERIAL AND METHODS: Retrograde biliary-pancreatic infusion of heparan sulphate of different structures, taurodeoxycholate (TDC) or phosphate buffered saline (PBS) was performed. Local pancreatic inflammation was evaluated after 6 h by means of morphological evaluation, neutrophil and macrophage infiltration and levels of plasma amylase. Systemic inflammation was evaluated by measuring plasma IL-6, MCP-1 and CINC-1 concentrations. RESULTS: Heparan sulphate induced a local inflammatory response visualized as a rapid infiltration of neutrophils and macrophages into the pancreas. Heparan sulphate induced inflammation and oedema without causing damage to acinar cells, as measured by morphological changes and plasma amylase concentrations. Furthermore, an increase in serum concentrations of CINC-1 and IL-6 was seen. The positive control (TDC) had increased levels of all variables analysed and the negative control (heparan sulphate administered intraperitoneally) was without effects. CONCLUSIONS: Our findings suggest a receptor-mediated innate immune response of the pancreatic cells induced by heparan sulphate. This finding may be helpful in elucidating some of the mechanisms involved during the initiation of pancreatitis, as well as in the search for a potential future therapeutic application.


Subject(s)
Heparitin Sulfate , Pancreatitis/chemically induced , Acute Disease , Animals , Chemokine CCL2/metabolism , Chemokine CXCL1/metabolism , Heparitin Sulfate/physiology , Interleukin-6 , Male , Pancreas/metabolism , Pancreatitis/metabolism , Pancreatitis/pathology , Pancreatitis/physiopathology , Peroxidase/metabolism , Rats , Rats, Sprague-Dawley , Taurodeoxycholic Acid
16.
J Clin Endocrinol Metab ; 92(9): 3573-81, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17595255

ABSTRACT

CONTEXT: Ghrelin is a novel hormone produced mainly in the gastric body. Hitherto, mapping studies of ghrelin cells covering the entire gastrointestinal (GI) tract in humans have been lacking. Furthermore, the phenotype of extragastric ghrelin cells is not known. OBJECTIVE: The objective of the study was to perform a detailed mapping with specimens from all parts of the GI tract, and colocalization studies to phenotype ghrelin cells along the tract. In addition, mapping of ghrelin cells was performed in porcine GI tract, and the plasma profiles of ghrelin and motilin in blood from the porcine intestine were measured. DESIGN: Biopsies from patients were obtained during gastroscopy or surgery. Ghrelin cell density and phenotyping was assessed with immunocytochemistry, in situ hybridization, and immunogold electron microscopy. Plasma ghrelin and motilin levels were measured in pigs, fitted with cannulas in the mesenteric vein. RESULTS: The upper small intestine is unexpectedly rich in ghrelin cells, and these cells contribute to circulating ghrelin. Ghrelin and motilin are coproduced in the same cells in the duodenum and jejunum of both species, and ghrelin and motilin are stored in all secretory granules of such cells in humans, indicating cosecretion. The plasma profiles of ghrelin and motilin in pig were parallel, and a correlation between ghrelin and motilin (r(2) = 0.22; P < 0.001) was evident in intestinal blood. CONCLUSIONS: The upper small intestine is an important source of ghrelin. The likely cosecretion of intestinal ghrelin and motilin suggests concerted actions of the two hormones. These data may have implications for understanding gut motility and clinical implications for dysmotility and bariatric surgery.


Subject(s)
Enteroendocrine Cells/metabolism , Intestine, Small/metabolism , Motilin/metabolism , Peptide Hormones/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Female , Gastric Mucosa/metabolism , Gastrointestinal Motility/physiology , Ghrelin , Humans , Intestine, Small/cytology , Male , Middle Aged , Swine
17.
J Endocrinol ; 192(2): 345-52, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17283234

ABSTRACT

The duration of breastfeeding has attracted much interest, as a prolonged period of breastfeeding has been shown to reduce the risk of developing obesity. The mechanism behind the reduced risk is, however, poorly understood. The novel hormone ghrelin augments appetite, promotes body weight increase and increases adiposity. The majority of circulating ghrelin emanates from endocrine cells in the oxyntic mucosa of the stomach. In newborn humans and rodents, the number of ghrelin cells is low after birth until weaning, when the cell population is greatly expanded. To date, information about the influence of weaning perturbations on ghrelin cell development is scarce. Therefore, we studied the effect of delayed weaning on gastric ghrelin expression and plasma ghrelin concentration. To this end, special food separator cages were used to prevent the pups from eating solid food, forcing them to drink milk up to 21 days of age. Gastric ghrelin expression was examined by immunocytochemistry and in situ hybridisation, and plasma concentrations were assessed by RIA. Our data showed that gastric ghrelin expression and plasma ghrelin concentration are maintained at a lower level by delayed weaning. We also found that the relation between gastric ghrelin expression and body weight was altered by delayed weaning. Thus, control rats displayed a positive correlation between ghrelin expression and body weight, while no such correlation was evident in animals with delayed weaning. We conclude that delayed weaning exerts a negative influence on ghrelin expression, and that the onset of solid food intake may trigger normal ghrelin expression. Therefore, we suggest that ghrelin may constitute a hormonal link between the duration of breastfeeding and body weight development.


Subject(s)
Peptide Hormones/physiology , Stomach/cytology , Weaning , Animals , Appetite Regulation , Body Weight , Female , Ghrelin , Immunohistochemistry/methods , In Situ Hybridization/methods , Microscopy, Fluorescence , Peptide Hormones/blood , Peptide Hormones/genetics , RNA, Messenger/analysis , Radioimmunoassay , Rats , Rats, Sprague-Dawley , Stomach/chemistry , Stomach/growth & development , Time Factors
19.
World J Gastroenterol ; 23(42): 7531-7540, 2017 Nov 14.
Article in English | MEDLINE | ID: mdl-29204053

ABSTRACT

AIM: To investigate whether gut maturation could be induced precociously in an athymic T-cell deficient neonatal rat model. METHODS: Fourteen day-old athymic (nude) rats (NIH-Foxn1rnu) were gavaged with either phytohaemagglutinin - a lectin from red kidney beans (PHA); trypsin - a protease (Prot); or water - vehicle (control) as a single dose on one day or once a day for 3-day. The nude rats were either nurtured by their mothers or cross-fostered by conventional foster dams of the Sprague-Dawley strain from days 3-5 after birth. At 17 d of age, 72 h after administration of the first treatment, intestinal macromolecular permeability was tested in vivo, prior to euthanasia, after which blood and gut organs were sampled. RESULTS: Provocation with both, PHA and protease, resulted in increased gut growth and maturation in nude rat pups independent of nursing. Foetal-type enterocytes were replaced by non-vacuolated adult-type enterocytes in the distal small intestine epithelium. Decreased intestinal macromolecular permeability (gut closure) was observed, with reduced permeability markers (BIgG and BSA, P < 0.001) in circulation. Increased pancreatic function, with an increased trypsin to protein ratio in pancreas homogenates, was observed independent of nursing in the nude pups. Immunostaining showed the presence of a few CD3+-cells in the intestinal mucosa of the nude pups. The number of CD3+-cells remained unaltered by provocation and no differences were observed between the nursing sets. Growth and vitality of the nude pups were dependent on nurturing, since cross-fostering by conventional dams increased their macromolecular absorptive capacity (BSA, P < 0.05), as well as their passive immunity (RIgG, P < 0.05). CONCLUSION: Precocious gut maturation can be induced by enteral provocation in athymic rat pups, similarly to in euthymic pups, thus showing an independence from thymus-derived T-cells.


Subject(s)
Intestines/growth & development , T-Lymphocytes/physiology , Animals , Animals, Newborn , Animals, Suckling/growth & development , Body Weight , Intestinal Mucosa/metabolism , Intestines/anatomy & histology , Intestines/immunology , Organ Size , Pancreas/growth & development , Permeability , Phytohemagglutinins , Rats , Rats, Nude , Rats, Sprague-Dawley , Trypsin
SELECTION OF CITATIONS
SEARCH DETAIL