Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Am J Hum Genet ; 111(3): 584-593, 2024 03 07.
Article in English | MEDLINE | ID: mdl-38417439

ABSTRACT

Variants of uncertain significance (VUSs) in BRCA2 are a common result of hereditary cancer genetic testing. While more than 4,000 unique VUSs, comprised of missense or intronic variants, have been identified in BRCA2, the few missense variants now classified clinically as pathogenic or likely pathogenic are predominantly located in the region encoding the C-terminal DNA binding domain (DBD). We report on functional evaluation of the influence of 462 BRCA2 missense variants affecting the DBD on DNA repair activity of BRCA2 using a homology-directed DNA double-strand break repair assay. Of these, 137 were functionally abnormal, 313 were functionally normal, and 12 demonstrated intermediate function. Comparisons with other functional studies of BRCA2 missense variants yielded strong correlations. Sequence-based in silico prediction models had high sensitivity, but limited specificity, relative to the homology-directed repair assay. Combining the functional results with clinical and genetic data in an American College of Medical Genetics (ACMG)/Association for Molecular Pathology (AMP)-like variant classification framework from a clinical testing laboratory, after excluding known splicing variants and functionally intermediate variants, classified 431 of 442 (97.5%) missense variants (129 as pathogenic/likely pathogenic and 302 as benign/likely benign). Functionally abnormal variants classified as pathogenic by ACMG/AMP rules were associated with a slightly lower risk of breast cancer (odds ratio [OR] 5.15, 95% confidence interval [CI] 3.43-7.83) than BRCA2 DBD protein truncating variants (OR 8.56, 95% CI 6.03-12.36). Overall, functional studies of BRCA2 variants using validated assays substantially improved the variant classification yield from ACMG/AMP models and are expected to improve clinical management of many individuals found to harbor germline BRCA2 missense VUS.


Subject(s)
Breast Neoplasms , Genetic Predisposition to Disease , Humans , Female , BRCA2 Protein/genetics , Genetic Testing , Mutation, Missense/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Germ Cells/pathology , DNA
2.
Am J Hum Genet ; 111(9): 2044-2058, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39142283

ABSTRACT

The ENIGMA research consortium develops and applies methods to determine clinical significance of variants in hereditary breast and ovarian cancer genes. An ENIGMA BRCA1/2 classification sub-group, formed in 2015 as a ClinGen external expert panel, evolved into a ClinGen internal Variant Curation Expert Panel (VCEP) to align with Food and Drug Administration recognized processes for ClinVar contributions. The VCEP reviewed American College of Medical Genetics and Genomics/Association of Molecular Pathology (ACMG/AMP) classification criteria for relevance to interpreting BRCA1 and BRCA2 variants. Statistical methods were used to calibrate evidence strength for different data types. Pilot specifications were tested on 40 variants and documentation revised for clarity and ease of use. The original criterion descriptions for 13 evidence codes were considered non-applicable or overlapping with other criteria. Scenario of use was extended or re-purposed for eight codes. Extensive analysis and/or data review informed specification descriptions and weights for all codes. Specifications were applied to pilot variants with pre-existing ClinVar classification as follows: 13 uncertain significance or conflicting, 14 pathogenic and/or likely pathogenic, and 13 benign and/or likely benign. Review resolved classification for 11/13 uncertain significance or conflicting variants and retained or improved confidence in classification for the remaining variants. Alignment of pre-existing ENIGMA research classification processes with ACMG/AMP classification guidelines highlighted several gaps in the research processes and the baseline ACMG/AMP criteria. Calibration of evidence strength was key to justify utility and strength of different data types for gene-specific application. The gene-specific criteria demonstrated value for improving ACMG/AMP-aligned classification of BRCA1 and BRCA2 variants.


Subject(s)
BRCA1 Protein , BRCA2 Protein , Genetic Variation , Humans , BRCA2 Protein/genetics , BRCA1 Protein/genetics , Female , Breast Neoplasms/genetics , Genomics/methods , Databases, Genetic , Ovarian Neoplasms/genetics , Genetic Predisposition to Disease , Genetic Testing/methods
3.
HGG Adv ; 4(4): 100240, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37718511

ABSTRACT

Carriers of BRCA1 germline pathogenic variants are at substantially higher risk of developing breast and ovarian cancer than the general population. Accurate identification of at-risk individuals is crucial for risk stratification and the implementation of targeted preventive and therapeutic interventions. Despite significant progress in variant classification efforts, a sizable portion of reported BRCA1 variants remain as variants of uncertain clinical significance (VUSs). Variants leading to premature protein termination and loss of essential functional domains are typically classified as pathogenic. However, the impact of frameshift variants that result in an extended incorrect terminus is not clear. Using validated functional assays, we conducted a systematic functional assessment of 17 previously reported BRCA1 extended incorrect terminus variants (EITs) and concluded that 16 constitute loss-of-function variants. This suggests that most EITs are likely to be pathogenic. However, one variant, c.5578dup, displayed a protein expression level, affinity to known binding partners, and activity in transcription and homologous recombination assays comparable to the wild-type BRCA1 protein. Twenty-three additional carriers of c.5578dup were identified at a US clinical diagnostic lab and assessed using a family history likelihood model providing, in combination with the functional data, a likely benign interpretation. These results, consistent with family history data in the current study and available data from ClinVar, indicate that most, but not all, BRCA1 variants leading to an extended incorrect terminus constitute loss-of-function variants and underscore the need for comprehensive assessment of individual variants.


Subject(s)
Genetic Predisposition to Disease , Ovarian Neoplasms , Female , Humans , Protein C , BRCA1 Protein/genetics , Ovarian Neoplasms/epidemiology , Germ-Line Mutation/genetics
4.
Ann Surg Oncol ; 17(6): 1688-94, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20107913

ABSTRACT

INTRODUCTION: Columnar cell lesions (CCL) and atypical ductal hyperplasia (ADH) frequently coexist and share molecular changes with in situ and invasive components, suggesting that CCL and ADH may be precursors to breast cancer. These conclusions are largely based on studies examining CCL and/or ADH from patients diagnosed with more advanced disease. We assessed allelic imbalance (AI) in pure CCL or ADH specimens to characterize molecular changes in nonneoplastic breast lesions. METHODS: DNA samples were obtained from laser-microdissected pure CCL (n = 42) or ADH (n = 31). AI was assessed at 26 chromosomal regions commonly altered in breast cancer. Data were analyzed using Fisher's exact and Student's t-tests using a cutoff of P < 0.05. RESULTS: The average AI frequency was 6.2% in CCL and 6.1% in ADH; approximately 33% of nonneoplastic lesions had no detectable genetic changes. Levels of AI in CCL and ADH were significantly (P < 0.0001) lower than observed in either low- or high-grade ductal carcinoma in situ (DCIS) lesions. Genetic changes characteristic of in situ and invasive disease, especially on chromosomes 16q and 17p, were infrequent in pure nonneoplastic lesions. CONCLUSIONS: Pure CCL and ADH lesions demonstrate lower levels of genetic alterations than DCIS, invasive carcinomas or CCL/ADH lesions from cancerous breasts; alterations of chromosomes 16q and 17p were not detected. Pure CCL and ADH lesions are not genetically advanced, and molecular profiles do not support these lesions as obligatory precursors to more advanced disease. Molecular differences between pure and synchronous lesions support re-evaluation of current models of disease initiation, progression, and risk.


Subject(s)
Allelic Imbalance , Breast Diseases/genetics , Breast/pathology , Chromosome Aberrations , Precancerous Conditions/genetics , Precancerous Conditions/pathology , Algorithms , Breast Diseases/pathology , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Carcinoma, Ductal, Breast/genetics , Carcinoma, Ductal, Breast/pathology , Chromosomes, Human, Pair 16/genetics , Chromosomes, Human, Pair 17/genetics , DNA/genetics , Disease Progression , Female , Humans , Hyperplasia/genetics , Risk , Statistics, Nonparametric
6.
Curr Med Chem ; 15(26): 2680-701, 2008.
Article in English | MEDLINE | ID: mdl-18991630

ABSTRACT

In modern industrialized societies, people are exposed to thousands of naturally occurring and synthetic chemicals throughout their lifetime. Although certain occupational chemicals are known to be carcinogenic in humans, it has been difficult to definitively determine the adverse health effects of many environmental pollutants due to their tremendous chemical diversity and absence of a consistent structural motif. Many environmental chemicals are metabolized in the body to reactive intermediates that readily react with DNA to form modified bases known as adducts, while other compounds mimic the biological function of estrogen. Because environmental chemicals tend to accumulate in human tissues and have carcinogenic and/or estrogenic properties, there is heightened interest in determining whether environmental chemicals increase risk for endocrine-related cancers, including breast cancer. Breast cancer is the most common cancer in women worldwide, but established risk factors account for a relatively small proportion of cases and causative factors remain ambiguous and poorly defined. In this review, we outline the structural chemistry of environmental contaminants, describe mechanisms of carcinogenesis and molecular pathways through which these chemicals may exert detrimental health effects, review current knowledge of relationships between chemicals and breast cancer risk, and highlight future directions for research on environmental contributions to breast cancer. Improved understanding of the relationship between environmental chemicals and breast cancer will help to educate the general public about real and perceived dangers of these pollutants in our environment and has the potential to reduce individual risk by changing corporate practices and improving public health policies.


Subject(s)
Breast Neoplasms/chemically induced , Carcinogens, Environmental/chemistry , Carcinogens, Environmental/toxicity , Animals , Breast Neoplasms/epidemiology , Breast Neoplasms/metabolism , Epidemiologic Research Design , Humans , Occupational Exposure , Risk
7.
Am Soc Clin Oncol Educ Book ; 37: 825-832, 2017.
Article in English | MEDLINE | ID: mdl-28561705

ABSTRACT

Otto Warburg's discovery in the 1920s that tumor cells took up more glucose and produced more lactate than normal cells provided the first clues that cancer cells reprogrammed their metabolism. For many years, however, it was unclear as to whether these metabolic alterations were a consequence of tumor growth or an adaptation that provided a survival advantage to these cells. In more recent years, interest in the metabolic differences in cancer cells has surged, as tumor proliferation and survival have been shown to be dependent upon these metabolic changes. In this educational review, we discuss some of the mechanisms that tumor cells use for reprogramming their metabolism to provide the energy and nutrients that they need for quick or sustained proliferation and discuss the potential for therapeutic targeting of these pathways to improve patient outcomes.


Subject(s)
Cell Proliferation/genetics , Energy Metabolism/genetics , Neoplasms/metabolism , Cellular Reprogramming/genetics , Humans , Metabolic Networks and Pathways/genetics , Neoplasms/drug therapy , Neoplasms/pathology
8.
Mol Cancer Res ; 14(7): 589-98, 2016 07.
Article in English | MEDLINE | ID: mdl-27330105

ABSTRACT

The renal cell carcinomas (RCC), clear cell, papillary, and chromophobe, have recently undergone an unmatched genomic characterization by The Cancer Genome Atlas. This analysis has revealed new insights into each of these malignancies and underscores the unique biology of clear cell, papillary, and chromophobe RCC. Themes that have emerged include distinct mechanisms of metabolic dysregulation and common mutations in chromatin modifier genes. Importantly, the papillary RCC classification encompasses a heterogeneous group of diseases, each with highly distinct genetic and molecular features. In conclusion, this review summarizes RCCs that represent a diverse set of malignancies, each with novel biologic programs that define new paradigms for cancer biology. Mol Cancer Res; 14(7); 589-98. ©2016 AACR.


Subject(s)
Carcinoma, Renal Cell/genetics , Kidney Neoplasms/genetics , Animals , Carcinoma, Renal Cell/pathology , Genome , Humans , Kidney Neoplasms/pathology
9.
PLoS One ; 11(12): e0167205, 2016.
Article in English | MEDLINE | ID: mdl-27911940

ABSTRACT

The gene KRAS is commonly mutated in lung cancer to encode a constitutively active and oncogenic protein that is well established to initiate and maintain lung tumorigenesis. However, the remaining wild-type KRAS protein, or the other family members HRAS and NRAS, can still be activated in the presence of oncogenic KRAS. Moreover, loss of any one of these three genes has been shown to increase the sensitivity of mice to the carcinogen urethane, which induces Kras mutation-positive early lung lesions. To determine the contribution of progressively disrupting Hras and Nras genes on urethane lung tumorigenesis, mice with different combinations of wild-type and null alleles of Hras and Nras were exposed with urethane and tumor burden was assessed. As previously reported, loss of one allele of Hras increased the sensitivity of mice to this carcinogen, and this effect was further exacerbated by the loss of the second Hras allele. However, loss of one or both alleles of Nras failed to alter tumor burden, either in the absence or presence of Hras, after exposure to urethane. Additionally, no obvious difference between lung lesions in mice with wild-type versus null alleles was detected, suggesting that wild-type Ras proteins may exert a tumor suppressive effects at the time of initiation, although other interpretations are certainly possible. In summary, these data suggest that in some genetic backgrounds inactivation of different wild-type Ras genes can have different effects on urethane-induced lung tumorigenesis.


Subject(s)
Alleles , Cell Transformation, Neoplastic , Lung Neoplasms , Neoplasms, Experimental , Proto-Oncogene Proteins p21(ras) , Tumor Suppressor Proteins , Urethane/toxicity , Animals , Isoenzymes/genetics , Isoenzymes/metabolism , Lung Neoplasms/chemically induced , Lung Neoplasms/enzymology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Mice, Knockout , Neoplasms, Experimental/chemically induced , Neoplasms, Experimental/enzymology , Neoplasms, Experimental/genetics , Neoplasms, Experimental/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
10.
Redox Biol ; 5: 414, 2015 08.
Article in English | MEDLINE | ID: mdl-28162272

ABSTRACT

BACKGROUND: The RAS family of small GTPases is comprised of HRAS, NRAS, and KRAS. KRAS is invariably oncogenically mutated in pancreatic cancers, which is known to induce this disease. Beyond oncogenic KRAS, redox-dependent reactions have been implicated in the activation of the remaining wild-type RAS proteins in pancreatic cancer cell lines. These results suggest a possible involvement of wild-type RAS proteins in pancreatic cancer. AIMS: To evaluate the impact of genetically suppressing wild-type RAS expression on pancreatic cancer. METHODS: Hras homozygous null mice (Hras-/-) were crossed into a Pdx-Cre; LSL-KrasG12D/+ (KC) murine background in which oncogenic Kras is activated in the pancreas to promote preinvasive pancreatic cancer. Tumor burden was then measured at different stages of disease. RESULTS: HRas-/-;KC mice exhibited more precancerous lesions in the pancreas and more off-target skin papillomas compared to their wild-type counterparts, suggesting that Hras suppresses early oncogenic Kras-driven tumorigenesis, possibly at the time of initiation. Loss of Hras also reduced the survival of mice engineered to develop aggressive pancreatic cancer by the additional disruption of one allele of the tumor suppressor p53 (Trp53R172H/+). However, this survival advantage was lost when both alleles of Trp53 were mutated, suggesting that wild-type Hras inhibits tumorigenesis in a p53-dependent fashion. CONCLUSIONS: Loss of wild-type Hras promotes the earliest stages of pancreatic tumorigenesis, and moreover results in more rapid progression of the disease. As such, mechanisms leading to activation of wild-type Ras proteins, including but not limited to redox-dependent reactions, may influence the development of pancreatic cancer.


Subject(s)
Pancreatic Neoplasms/enzymology , Proto-Oncogene Proteins p21(ras)/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Enzyme Activation/genetics , Mice , Mice, Knockout , Neoplasm Staging , Pancreatic Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Proteins/genetics
11.
PLoS One ; 10(10): e0140253, 2015.
Article in English | MEDLINE | ID: mdl-26452271

ABSTRACT

Oncogenic, activating mutations in KRAS initiate pancreatic cancer. There are, however, two other Ras family members, Nras and Hras, which can be activated in the presence of oncogenic Kras. The role of these wild-type Ras proteins in cancer remains unclear, as their disruption has been shown to enhance or inhibit tumorigenesis depending upon the context. As pancreatic cancer is critically dependent upon Ras signaling, we tested and now report that loss of Hras increases tumor load and reduces survival in an oncogenic Kras-driven pancreatic adenocarcinoma mouse model. These effects were traced to the earliest stages of pancreatic cancer, suggesting that wild-type Hras may suppress tumor initiation. In normal cells, activated Ras can suppress proliferation through p53-dependent mechanisms. We find that the tumor suppressive effects of Hras are nullified in a homozygous mutant p53 background. As such, loss of wild-type Hras fosters the earliest stages of pancreatic cancer in a p53-dependent manner.


Subject(s)
Carcinogenesis/genetics , Pancreatic Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Tumor Suppressor Protein p53/genetics , Animals , Cell Proliferation/genetics , Humans , Mice , Mice, Transgenic , Mutation , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/therapy , Proto-Oncogene Proteins p21(ras)/metabolism , Signal Transduction/genetics , Tumor Suppressor Protein p53/metabolism
12.
Circ Cardiovasc Genet ; 7(2): 151-60, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24563419

ABSTRACT

BACKGROUND: Healthy lifestyle changes are thought to mediate cardiovascular disease risk through pathways affecting endothelial function and progression of atherosclerosis; however, the extent, persistence, and clinical significance of molecular change during lifestyle modification are not well known. We examined the effect of a rigorous cardiovascular disease risk reduction program on peripheral blood gene expression profiles in 63 participants and 63 matched controls to characterize molecular responses and identify regulatory pathways important to cardiovascular health. METHODS AND RESULTS: Dramatic changes in dietary fat intake (-61%; P<0.001 versus controls) and physical fitness (+34%; P<0.001) led to significant improvements in cardiovascular disease risk factors. Analysis of variance with false discovery rate correction for multiple testing (P<0.05) identified 26 genes after 12 weeks and 143 genes after 52 weeks that were differentially expressed from baseline in participants. Controls showed little change in cardiovascular disease risk factors or gene expression. Quantitative reverse transcription polymerase chain reaction validated differential expression for selected transcripts. Lifestyle modification effectively reduced expression of proinflammatory genes associated with neutrophil activation and molecular pathways important to vascular function, including cytokine production, carbohydrate metabolism, and steroid hormones. Prescription medications did not significantly affect changes in gene expression. CONCLUSIONS: Successful and sustained modulation of gene expression through lifestyle changes may have beneficial effects on the vascular system not apparent from traditional risk factors. Healthy lifestyles may restore homeostasis to the leukocyte transcriptome by downregulating lactoferrin and other genes important in the pathogenesis of atherosclerosis. Clinical Trial Registration- URL: www.clinicaltrials.gov. Unique identifier: NCT01805492.


Subject(s)
Cardiovascular Diseases/genetics , Cardiovascular System/physiopathology , Gene Expression , Aged , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/physiopathology , Feeding Behavior , Female , Humans , Life Style , Male , Middle Aged , Physical Fitness , Prospective Studies , Risk Factors , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL