Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
Add more filters

Publication year range
1.
Circulation ; 149(5): 379-390, 2024 01 30.
Article in English | MEDLINE | ID: mdl-37950738

ABSTRACT

BACKGROUND: Left bundle branch area pacing (LBBAP) may be associated with greater improvement in left ventricular ejection fraction and reduction in death or heart failure hospitalization compared with biventricular pacing (BVP) in patients requiring cardiac resynchronization therapy. We sought to compare the occurrence of sustained ventricular tachycardia (VT) or ventricular fibrillation (VF) and new-onset atrial fibrillation (AF) in patients undergoing BVP and LBBAP. METHODS: The I-CLAS study (International Collaborative LBBAP Study) included patients with left ventricular ejection fraction ≤35% who underwent BVP or LBBAP for cardiac resynchronization therapy between January 2018 and June 2022 at 15 centers. We performed propensity score-matched analysis of LBBAP and BVP in a 1:1 ratio. We assessed the incidence of VT/VF and new-onset AF among patients with no history of AF. Time to sustained VT/VF and time to new-onset AF was analyzed using the Cox proportional hazards survival model. RESULTS: Among 1778 patients undergoing cardiac resynchronization therapy (BVP, 981; LBBAP, 797), there were 1414 propensity score-matched patients (propensity score-matched BVP, 707; propensity score-matched LBBAP, 707). The occurrence of VT/VF was significantly lower with LBBAP compared with BVP (4.2% versus 9.3%; hazard ratio, 0.46 [95% CI, 0.29-0.74]; P<0.001). The incidence of VT storm (>3 episodes in 24 hours) was also significantly lower with LBBAP compared with BVP (0.8% versus 2.5%; P=0.013). Among 299 patients with cardiac resynchronization therapy pacemakers (BVP, 111; LBBAP, 188), VT/VF occurred in 8 patients in the BVP group versus none in the LBBAP group (7.2% versus 0%; P<0.001). In 1194 patients with no history of VT/VF or antiarrhythmic therapy (BVP, 591; LBBAP, 603), the occurrence of VT/VF was significantly lower with LBBAP than with BVP (3.2% versus 7.3%; hazard ratio, 0.46 [95% CI, 0.26-0.81]; P=0.007). Among patients with no history of AF (n=890), the occurrence of new-onset AF >30 s was significantly lower with LBBAP than with BVP (2.8% versus 6.6%; hazard ratio, 0.34 [95% CI, 0.16-0.73]; P=0.008). The incidence of AF lasting >24 hours was also significantly lower with LBBAP than with BVP (0.7% versus 2.9%; P=0.015). CONCLUSIONS: LBBAP was associated with a lower incidence of sustained VT/VF and new-onset AF compared with BVP. This difference remained significant after adjustment for differences in baseline characteristics between patients with BVP and LBBAP. Physiological resynchronization by LBBAP may be associated with lower risk of arrhythmias compared with BVP.


Subject(s)
Cardiac Resynchronization Therapy , Heart Failure , Tachycardia, Ventricular , Humans , Cardiac Resynchronization Therapy/adverse effects , Stroke Volume , Ventricular Function, Left , Treatment Outcome , Tachycardia, Ventricular/epidemiology , Tachycardia, Ventricular/etiology , Tachycardia, Ventricular/therapy , Ventricular Fibrillation/epidemiology , Ventricular Fibrillation/etiology , Ventricular Fibrillation/therapy , Heart Failure/epidemiology , Heart Failure/therapy , Electrocardiography
2.
J Cardiovasc Electrophysiol ; 34(6): 1431-1440, 2023 06.
Article in English | MEDLINE | ID: mdl-36786511

ABSTRACT

INTRODUCTION: It is not known whether the optimal atrioventricular (AVopt ) delay varies between left ventricular (LV) pacing site during endocardial biventricular pacing (BiVP) and may therefore needs consideration. METHODS: We assessed the hemodynamic AVopt in patients with chronic heart failure undergoing endocardial LV lead implantation. AVopt was assessed during atrio-BiVP with a "roving LV lead." Up to four locations were studied: mid-lateral wall, mid-septum (or a close alternative), site of greatest hemodynamic improvement, and LV lead implant site. The AVopt was compared to a fixed AV delay of 180 ms. RESULTS: Seventeen patients were included (12 male, aged 66.5 ± 12.8 years, ejection fraction 26 ± 7%, 16 left bundle branch block or high percentage of right ventricular pacing [RVP], QRS duration 167 ± 27 ms). In most locations (62/63), AVopt increased systolic blood pressure during BiVP compared with RVP (relative improvement 6 mmHg, interquartile range [IQR] 4-9 mmHg). Compared to a fixed AV delay, the hemodynamic improvement at AVopt was higher (1 mmHg, IQR 0.2-2.6 mmHg, p < .001). Within most patients (16/17), we observed a difference in AVopt between pacing sites (median paced AVopt 209 ms, IQR 117-250). Within this range, the hemodynamic impact of these differences was small (median loss 0.6 mmHg, IQR 0.1-2.6 mmHg). CONCLUSION: Within a patient, different endocardial LV lead locations have slightly different hemodynamic AVopt which are superior to a fixed AV delay. The hemodynamic consequence of applying an optimum from a different lead location is small.


Subject(s)
Cardiac Resynchronization Therapy , Heart Failure , Humans , Male , Cardiac Resynchronization Therapy/adverse effects , Hemodynamics/physiology , Bundle-Branch Block , Heart Failure/diagnosis , Heart Failure/therapy , Heart Ventricles , Ventricular Function, Left/physiology , Cardiac Pacing, Artificial
3.
Europace ; 25(3): 1060-1067, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36734205

ABSTRACT

AIMS: Left bundle branch area pacing (LBBAP) is a promising method for delivering cardiac resynchronization therapy (CRT), but its relative physiological effectiveness compared with His bundle pacing (HBP) is unknown. We conducted a within-patient comparison of HBP, LBBAP, and biventricular pacing (BVP). METHODS AND RESULTS: Patients referred for CRT were recruited. We assessed electrical response using non-invasive mapping, and acute haemodynamic response using a high-precision haemodynamic protocol. Nineteen patients were recruited: 14 male, mean LVEF of 30%. Twelve had time for BVP measurements. All three modalities reduced total ventricular activation time (TVAT), (ΔTVATHBP -43 ± 14 ms and ΔTVATLBBAP -35 ± 20 ms vs. ΔTVATBVP -19 ± 30 ms, P = 0.03 and P = 0.1, respectively). HBP produced a significantly greater reduction in TVAT compared with LBBAP in all 19 patients (-46 ± 15 ms, -36 ± 17 ms, P = 0.03). His bundle pacing and LBBAP reduced left ventricular activation time (LVAT) more than BVP (ΔLVATHBP -43 ± 16 ms, P < 0.01 vs. BVP, ΔLVATLBBAP -45 ± 17 ms, P < 0.01 vs. BVP, ΔLVATBVP -13 ± 36 ms), with no difference between HBP and LBBAP (P = 0.65). Acute systolic blood pressure was increased by all three modalities. In the 12 with BVP, greater improvement was seen with HBP and LBBAP (6.4 ± 3.8 mmHg BVP, 8.1 ± 3.8 mmHg HBP, P = 0.02 vs. BVP and 8.4 ± 8.2 mmHg for LBBAP, P = 0.3 vs. BVP), with no difference between HBP and LBBAP (P = 0.8). CONCLUSION: HBP delivered better ventricular resynchronization than LBBAP because right ventricular activation was slower during LBBAP. But LBBAP was not inferior to HBP with respect to LV electrical resynchronization and acute haemodynamic response.


Subject(s)
Cardiac Resynchronization Therapy , Heart Failure , Humans , Male , Bundle of His , Cardiac Resynchronization Therapy/adverse effects , Cardiac Resynchronization Therapy/methods , Bundle-Branch Block/diagnosis , Bundle-Branch Block/therapy , Electrocardiography/methods , Treatment Outcome , Heart Failure/diagnosis , Heart Failure/therapy , Hemodynamics , Cardiac Pacing, Artificial/methods
4.
Europace ; 25(2): 341-350, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36305545

ABSTRACT

AIMS: The effect of atrial fibrillation catheter ablation on cardiovascular outcomes in heart failure is an important outstanding research question. We undertook a meta-analysis of randomized controlled trials comparing ablation to medical therapy in patients with AF and heart failure. METHODS AND RESULTS: We systematically identified all trials comparing catheter ablation to medical therapy in patients with heart failure and atrial fibrillation. The pre-specified primary endpoint was all-cause mortality in trials with at least 2 years of follow-up. The secondary endpoint was heart failure hospitalization. Sensitivity analyses were performed for trials with any follow-up and trials deemed at low risk of bias. Eight trials (1390 patients) were included. Seven hundred and seven patients were randomized to catheter ablation and 683 to medical therapy. In the primary analysis (three trials, n = 977), catheter ablation reduced mortality compared with medical therapy [relative risk (RR): 0.61, 95% confidence interval (CI): 0.44 to 0.84, P = 0.003]. Catheter ablation also reduced heart failure hospitalizations compared with medical therapy (RR: 0.60, 95% CI: 0.49-0.74, P < 0.001). The effect on stroke was not statistically significant (RR: 0.62, 95% CI: 0.28-1.37, P = 0.237). There was low heterogeneity between studies. Sensitivity analyses were consistent with the primary analyses. CONCLUSION: In patients with atrial fibrillation and heart failure, catheter ablation reduces mortality and the occurrence of heart failure hospitalizations.


Subject(s)
Atrial Fibrillation , Catheter Ablation , Heart Failure , Humans , Atrial Fibrillation/diagnosis , Atrial Fibrillation/surgery , Atrial Fibrillation/complications , Anti-Arrhythmia Agents/therapeutic use , Randomized Controlled Trials as Topic , Heart Failure/diagnosis , Heart Failure/therapy , Catheter Ablation/methods , Treatment Outcome
5.
Europace ; 25(3): 1077-1086, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36352513

ABSTRACT

Guidelines recommend patients undergoing a first pacemaker implant who have even mild left ventricular (LV) impairment should receive biventricular or conduction system pacing (CSP). There is no corresponding recommendation for patients who already have a pacemaker. We conducted a meta-analysis of randomized controlled trials (RCTs) and observational studies assessing device upgrades. The primary outcome was the echocardiographic change in LV ejection fraction (LVEF). Six RCTs (randomizing 161 patients) and 47 observational studies (2644 patients) assessing the efficacy of upgrade to biventricular pacing were eligible for analysis. Eight observational studies recruiting 217 patients of CSP upgrade were also eligible. Fourteen additional studies contributed data on complications (25 412 patients). Randomized controlled trials of biventricular pacing upgrade showed LVEF improvement of +8.4% from 35.5% and observational studies: +8.4% from 25.7%. Observational studies of left bundle branch area pacing upgrade showed +11.1% improvement from 39.0% and observational studies of His bundle pacing upgrade showed +12.7% improvement from 36.0%. New York Heart Association class decreased by -0.4, -0.8, -1.0, and -1.2, respectively. Randomized controlled trials of biventricular upgrade found improvement in Minnesota Heart Failure Score (-6.9 points) and peak oxygen uptake (+1.1 mL/kg/min). This was also seen in observational studies of biventricular upgrades (-19.67 points and +2.63 mL/kg/min, respectively). In studies of the biventricular upgrade, complication rates averaged 2% for pneumothorax, 1.4% for tamponade, and 3.7% for infection over 24 months of mean follow-up. Lead-related complications occurred in 3.3% of biventricular upgrades and 1.8% of CSP upgrades. Randomized controlled trials show significant physiological and symptomatic benefits of upgrading pacemakers to biventricular pacing. Observational studies show similar effects between biventricular pacing upgrade and CSP upgrade.


Subject(s)
Cardiac Resynchronization Therapy , Heart Failure , Pacemaker, Artificial , Ventricular Dysfunction, Left , Humans , Cardiac Resynchronization Therapy/adverse effects , Cardiac Pacing, Artificial/adverse effects , Cardiac Conduction System Disease/therapy , Heart Conduction System , Ventricular Function, Left , Stroke Volume/physiology , Treatment Outcome , Heart Failure/diagnosis , Heart Failure/therapy
6.
Europace ; 25(10)2023 10 05.
Article in English | MEDLINE | ID: mdl-37815462

ABSTRACT

AIMS: Left bundle branch pacing (LBBP) can deliver physiological left ventricular activation, but typically at the cost of delayed right ventricular (RV) activation. Right ventricular activation can be advanced through anodal capture, but there is uncertainty regarding the mechanism by which this is achieved, and it is not known whether this produces haemodynamic benefit. METHODS AND RESULTS: We recruited patients with LBBP leads in whom anodal capture eliminated the terminal R-wave in lead V1. Ventricular activation pattern, timing, and high-precision acute haemodynamic response were studied during LBBP with and without anodal capture. We recruited 21 patients with a mean age of 67 years, of whom 14 were males. We measured electrocardiogram timings and haemodynamics in all patients, and in 16, we also performed non-invasive mapping. Ventricular epicardial propagation maps demonstrated that RV septal myocardial capture, rather than right bundle capture, was the mechanism for earlier RV activation. With anodal capture, QRS duration and total ventricular activation times were shorter (116 ± 12 vs. 129 ± 14 ms, P < 0.01 and 83 ± 18 vs. 90 ± 15 ms, P = 0.01). This required higher outputs (3.6 ± 1.9 vs. 0.6 ± 0.2 V, P < 0.01) but without additional haemodynamic benefit (mean difference -0.2 ± 3.8 mmHg compared with pacing without anodal capture, P = 0.2). CONCLUSION: Left bundle branch pacing with anodal capture advances RV activation by stimulating the RV septal myocardium. However, this requires higher outputs and does not improve acute haemodynamics. Aiming for anodal capture may therefore not be necessary.


Subject(s)
Bundle of His , Cardiac Pacing, Artificial , Male , Humans , Aged , Female , Cardiac Pacing, Artificial/methods , Heart Conduction System , Hemodynamics , Heart Ventricles , Electrocardiography/methods
7.
Pacing Clin Electrophysiol ; 46(9): 1077-1084, 2023 09.
Article in English | MEDLINE | ID: mdl-37594233

ABSTRACT

BACKGROUND: The use of left bundle branch area pacing (LBBAP) for bradycardia pacing and cardiac resynchronization is increasing, but implants are not always successful. We prospectively studied consecutive patients to determine whether septal scar contributes to implant failure. METHODS: Patients scheduled for bradycardia pacing or cardiac resynchronization therapy were prospectively enrolled. Recruited patients underwent preprocedural scar assessment by cardiac MRI with late gadolinium enhancement imaging. LBBAP was attempted using a lumenless lead (Medtronic 3830) via a transeptal approach. RESULTS: Thirty-five patients were recruited: 29 male, mean age 68 years, 10 ischemic, and 16 non-ischemic cardiomyopathy. Pacing indication was bradycardia in 26% and cardiac resynchronization in 74%. The lead was successfully deployed to the left ventricular septum in 30/35 (86%) and unsuccessful in the remaining 5/35 (14%). Septal late gadolinium enhancement was significantly less extensive in patients where left septal lead deployment was successful, compared those where it was unsuccessful (median 8%, IQR 2%-18% vs. median 54%, IQR 53%-57%, p < .001). CONCLUSIONS: The presence of septal scar appears to make it more challenging to deploy a lead to the left ventricular septum via the transeptal route. Additional implant tools or alternative approaches may be required in patients with extensive septal scar.


Subject(s)
Ventricular Septum , Humans , Male , Aged , Ventricular Septum/diagnostic imaging , Bradycardia , Cicatrix , Contrast Media , Gadolinium
8.
Eur Heart J ; 43(40): 4161-4173, 2022 10 21.
Article in English | MEDLINE | ID: mdl-35979843

ABSTRACT

AIMS: Permanent transseptal left bundle branch area pacing (LBBAP) is a promising new pacing method for both bradyarrhythmia and heart failure indications. However, data regarding safety, feasibility and capture type are limited to relatively small, usually single centre studies. In this large multicentre international collaboration, outcomes of LBBAP were evaluated. METHODS AND RESULTS: This is a registry-based observational study that included patients in whom LBBAP device implantation was attempted at 14 European centres, for any indication. The study comprised 2533 patients (mean age 73.9 years, female 57.6%, heart failure 27.5%). LBBAP lead implantation success rate for bradyarrhythmia and heart failure indications was 92.4% and 82.2%, respectively. The learning curve was steepest for the initial 110 cases and plateaued after 250 cases. Independent predictors of LBBAP lead implantation failure were heart failure, broad baseline QRS and left ventricular end-diastolic diameter. The predominant LBBAP capture type was left bundle fascicular capture (69.5%), followed by left ventricular septal capture (21.5%) and proximal left bundle branch capture (9%). Capture threshold (0.77 V) and sensing (10.6 mV) were stable during mean follow-up of 6.4 months. The complication rate was 11.7%. Complications specific to the ventricular transseptal route of the pacing lead occurred in 209 patients (8.3%). CONCLUSIONS: LBBAP is feasible as a primary pacing technique for both bradyarrhythmia and heart failure indications. Success rate in heart failure patients and safety need to be improved. For wider use of LBBAP, randomized trials are necessary to assess clinical outcomes.


Subject(s)
Bundle of His , Heart Failure , Humans , Female , Aged , Cardiac Pacing, Artificial/adverse effects , Cardiac Pacing, Artificial/methods , Bundle-Branch Block/therapy , Bundle-Branch Block/etiology , Bradycardia/therapy , Bradycardia/etiology , Electrocardiography/methods , Treatment Outcome
9.
Eur Heart J ; 43(47): 4872-4883, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36030464

ABSTRACT

BACKGROUND: The subcutaneous implantable cardioverter-defibrillator (S-ICD) is developed to overcome lead-related complications and systemic infections, inherent to transvenous ICD (TV-ICD) therapy. The PRAETORIAN trial demonstrated that the S-ICD is non-inferior to the TV-ICD with regard to the combined primary endpoint of inappropriate shocks and complications. This prespecified secondary analysis evaluates all complications in the PRAETORIAN trial. METHODS AND RESULTS: The PRAETORIAN trial is an international, multicentre, randomized trial in which 849 patients with an indication for ICD therapy were randomized to receive an S- ICD (N = 426) or TV-ICD (N = 423) and followed for a median of 49 months. Endpoints were device-related complications, lead-related complications, systemic infections, and the need for invasive interventions. Thirty-six device-related complications occurred in 31 patients in the S-ICD group of which bleedings were the most frequent. In the TV-ICD group, 49 complications occurred in 44 patients of which lead dysfunction was most frequent (HR: 0.69; P = 0.11). In both groups, half of all complications were within 30 days after implantation. Lead-related complications and systemic infections occurred significantly less in the S-ICD group compared with the TV-ICD group (P < 0.001, P = 0.03, respectively). Significantly more complications required invasive interventions in the TV-ICD group compared with the S-ICD group (8.3% vs. 4.3%, HR: 0.59; P = 0.047). CONCLUSION: This secondary analysis shows that lead-related complications and systemic infections are more prevalent in the TV-ICD group compared with the S-ICD group. In addition, complications in the TV-ICD group were more severe as they required significantly more invasive interventions. This data contributes to shared decision-making in clinical practice.


Subject(s)
Death, Sudden, Cardiac , Defibrillators, Implantable , Humans , Treatment Outcome , Defibrillators, Implantable/adverse effects
10.
J Card Fail ; 28(6): 963-972, 2022 06.
Article in English | MEDLINE | ID: mdl-35041933

ABSTRACT

OBJECTIVE: Patients with heart failure (HF) are at an increased risk of hospital admissions. The aim of this report is to describe the feasibility, safety and accuracy of a novel wireless left atrial pressure (LAP) monitoring system in patients with HF. METHODS: The V-LAP Left Atrium Monitoring systEm for Patients With Chronic sysTOlic & Diastolic Congestive heart Failure (VECTOR-HF) study is a prospective, multicenter, single-arm, open-label, first-in human clinical trial to assess the safety, performance and usability of the V-LAP system (Vectorious Medical Technologies) in patients with New York Heart Association class III HF. The device was implanted in the interatrial septum via a percutaneous, trans-septal approach guided by fluoroscopy and echocardiography. Primary endpoints included the successful deployment of the implant, the ability to perform initial pressure measurements and safety outcomes. RESULTS: To date, 24 patients have received implants of the LAP-monitoring device. No device-related complications have occurred. LAP was reported accurately, agreeing well with wedge pressure at 3 months (Lin concordance correlation coefficient = 0.850). After 6 months, New York Heart Association class improved in 40% of the patients (95% CI = 16.4%-63.5%), while the 6-minute walk test distance had not changed significantly (313.9 ± 144.9 vs 232.5 ± 129.9 meters; P = 0.076). CONCLUSION: The V-LAP left atrium monitoring system appears to be safe and accurate.


Subject(s)
Atrial Pressure , Heart Failure , Cardiac Catheterization , Humans , Prospective Studies , Stroke Volume
11.
Pacing Clin Electrophysiol ; 45(4): 461-470, 2022 04.
Article in English | MEDLINE | ID: mdl-34967945

ABSTRACT

BACKGROUND: Hemodynamically optimal atrioventricular (AV) delay can be derived by echocardiography or beat-by-beat blood pressure (BP) measurements, but analysis is labor intensive. Laser Doppler perfusion monitoring measures blood flow and can be incorporated into future implantable cardiac devices. We assess whether laser Doppler can be used instead of BP to optimize AV delay. METHODS: Fifty eight patients underwent 94 AV delay optimizations with biventricular or His-bundle pacing using laser Doppler and simultaneous noninvasive beat-by-beat BP. Optimal AV delay was defined using a curve of hemodynamic response to switching from AAI (reference state) to DDD (test state) at several AV delays (40-320 ms), with automatic quality control checking precision of the optimum. Five subsequent patients underwent an extended protocol to test the impact of greater numbers of alternations on optimization quality. RESULTS: 55/94 optimizations passed quality control resulting in an optimal AV delay on laser Doppler similar to that derived by BP (median absolute deviation 12 ms). An extended protocol with increasing number of replicates consistently improved quality and reduced disagreement between laser Doppler and BP optima. With only five replicates, no optimization passed quality control, and the median absolute deviation would be 29 ms. These improved progressively until at 50 replicates, all optimizations passed quality control and the median absolute deviation was only 13 ms. CONCLUSIONS: Laser Doppler perfusion produces hemodynamic optima equivalent to BP. Quality control can be automatic. Adding more replicates, consistently improves quality. Future implantable devices could use such methods to dynamically and reliably optimize AV delays.


Subject(s)
Atrioventricular Node , Pacemaker, Artificial , Biomarkers , Cardiac Pacing, Artificial/methods , Heart Ventricles , Hemodynamics , Humans
12.
J Cardiovasc Electrophysiol ; 32(2): 235-244, 2021 02.
Article in English | MEDLINE | ID: mdl-33421265

ABSTRACT

BACKGROUND: Ganglionated plexuses (GPs) are implicated in atrial fibrillation (AF). Endocardial high-frequency stimulation (HFS) delivered within the local atrial refractory period can trigger ectopy and AF from specific GP sites (ET-GP). The aim of this study was to understand the role of ET-GP ablation in the treatment of AF. METHODS: Patients with paroxysmal AF indicated for ablation were recruited. HFS mapping was performed globally around the left atrium to identify ET-GP. ET-GP was defined as atrial ectopy or atrial arrhythmia triggered by HFS. All ET-GP were ablated, and PVs were left electrically connected. Outcomes were compared with a control group receiving pulmonary vein isolation (PVI). Patients were followed-up for 12 months with multiple 48-h Holter ECGs. Primary endpoint was ≥30 s AF/atrial tachycardia in ECGs. RESULTS: In total, 67 patients were recruited and randomized to ET-GP ablation (n = 39) or PVI (n = 28). In the ET-GP ablation group, 103 ± 28 HFS sites were tested per patient, identifying 21 ± 10 (20%) GPs. ET-GP ablation used 23.3 ± 4.1 kWs total radiofrequency (RF) energy per patient, compared with 55.7 ± 22.7 kWs in PVI (p = <.0001). Duration of procedure was 3.7 ± 1.0 and 3.3 ± 0.7 h in ET-GP ablation group and PVI, respectively (p = .07). Follow-up at 12 months showed that 61% and 49% were free from ≥30 s of AF/AT with PVI and ET-GP ablation respectively (log-rank p = .27). CONCLUSIONS: It is feasible to perform detailed global functional mapping with HFS and ablate ET-GP to prevent AF. This provides direct evidence that ET-GPs are part of the AF mechanism. The lower RF requirement implies that ET-GP targets the AF pathway more specifically.


Subject(s)
Atrial Fibrillation , Catheter Ablation , Pulmonary Veins , Atrial Fibrillation/diagnosis , Atrial Fibrillation/surgery , Electrocardiography, Ambulatory , Heart Atria , Humans , Pulmonary Veins/diagnostic imaging , Pulmonary Veins/surgery , Recurrence , Treatment Outcome
13.
J Cardiovasc Electrophysiol ; 32(2): 428-438, 2021 02.
Article in English | MEDLINE | ID: mdl-33345379

ABSTRACT

BACKGROUND: His bundle pacing (HBP) is an alternative to biventricular pacing (BVP) for delivering cardiac resynchronization therapy (CRT) in patients with heart failure and left bundle branch block (LBBB). It is not known whether ventricular activation times and patterns achieved by HBP are equivalent to intact conduction systems and not all patients with LBBB are resynchronized by HBP. OBJECTIVE: To compare activation times and patterns of His-CRT with BVP-CRT, LBBB and intact conduction systems. METHODS: In patients with LBBB, noninvasive epicardial mapping (ECG imaging) was performed during BVP and temporary HBP. Intrinsic activation was mapped in all subjects. Left ventricular activation times (LVAT) were measured and epicardial propagation mapping (EPM) was performed, to visualize epicardial wavefronts. Normal activation pattern and a normal LVAT range were determined from normal subjects. RESULTS: Forty-five patients were included, 24 with LBBB and LV impairment, and 21 with normal 12-lead ECG and LV function. In 87.5% of patients with LBBB, His-CRT successfully shortened LVAT by ≥10 ms. In 33.3%, His-CRT resulted in complete ventricular resynchronization, with activation times and patterns indistinguishable from normal subjects. EPM identified propagation discontinuity artifacts in 83% of patients with LBBB. This was the best predictor of whether successful resynchronization was achieved by HBP (logarithmic odds ratio, 2.19; 95% confidence interval, 0.07-4.31; p = .04). CONCLUSION: Noninvasive electrocardiographic mapping appears to identify patients whose LBBB can be resynchronized by HBP. In contrast to BVP, His-CRT may deliver the maximum potential ventricular resynchronization, returning activation times, and patterns to those seen in normal hearts.


Subject(s)
Cardiac Resynchronization Therapy , Heart Failure , Bundle of His , Bundle-Branch Block/diagnosis , Bundle-Branch Block/therapy , Electrocardiography , Heart Failure/diagnosis , Heart Failure/therapy , Humans , Treatment Outcome , Ventricular Function, Left
14.
Europace ; 23(2): 305-312, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33083839

ABSTRACT

AIMS: Rate adaptation of the action potential ensures spatial heterogeneities in conduction across the myocardium are minimized at different heart rates providing a protective mechanism against ventricular fibrillation (VF) and sudden cardiac death (SCD), which can be quantified by the ventricular conduction stability (V-CoS) test previously described. We tested the hypothesis that patients with a history of aborted SCD due to an underlying channelopathy or cardiomyopathy have a reduced capacity to maintain uniform activation following exercise. METHODS AND RESULTS: Sixty individuals, with (n = 28) and without (n = 32) previous aborted-SCD event underwent electro-cardiographic imaging recordings following exercise treadmill test. These included 25 Brugada syndrome, 13 hypertrophic cardiomyopathy, 12 idiopathic VF, and 10 healthy controls. Data were inputted into the V-CoS programme to calculate a V-CoS score that indicate the percentage of ventricle that showed no significant change in ventricular activation, with a lower score indicating the development of greater conduction heterogeneity. The SCD group, compared to those without, had a lower median (interquartile range) V-CoS score at peak exertion [92.8% (89.8-96.3%) vs. 97.3% (94.9-99.1%); P < 0.01] and 2 min into recovery [95.2% (91.1-97.2%) vs. 98.9% (96.9-99.5%); P < 0.01]. No significant difference was observable later into recovery at 5 or 10 min. Using the lowest median V-CoS scores obtained during the entire recovery period post-exertion, SCD survivors had a significantly lower score than those without for each of the different underlying aetiologies. CONCLUSION: Data from this pilot study demonstrate the potential use of this technique in risk stratification for the inherited cardiac conditions.


Subject(s)
Death, Sudden, Cardiac , Ventricular Fibrillation , Death, Sudden, Cardiac/etiology , Heart , Humans , Pilot Projects , Risk Factors , Survivors , Ventricular Fibrillation/diagnosis
15.
J Cardiovasc Electrophysiol ; 31(11): 2964-2974, 2020 11.
Article in English | MEDLINE | ID: mdl-32976636

ABSTRACT

AIMS: A prolonged PR interval may adversely affect ventricular filling and, therefore, cardiac function. AV delay can be corrected using right ventricular pacing (RVP), but this induces ventricular dyssynchrony, itself harmful. Therefore, in intermittent heart block, pacing avoidance algorithms are often implemented. We tested His-bundle pacing (HBP) as an alternative. METHODS: Outpatients with a long PR interval (>200 ms) and intermittent need for ventricular pacing were recruited. We measured within-patient differences in high-precision hemodynamics between AV-optimized RVP and HBP, as well as a pacing avoidance algorithm (Managed Ventricular Pacing [MVP]). RESULTS: We recruited 18 patients. Mean left ventricular ejection fraction was 44.3 ± 9%. Mean intrinsic PR interval was 266 ± 42 ms and QRS duration was 123 ± 29 ms. RVP lengthened QRS duration (+54 ms, 95% CI 42-67 ms, p < .0001) while HBP delivered a shorter QRS duration than RVP (-56 ms, 95% CI -67 to -46 ms, p < .0001). HBP did not increase QRS duration (-2 ms, 95% CI -8 to 13 ms, p = .6). HBP improved acute systolic blood pressure by mean of 5.0 mmHg (95% CI 2.8-7.1 mmHg, p < .0001) compared to RVP and by 3.5 mmHg (95% CI 1.9-5.0 mmHg, p = .0002) compared to the pacing avoidance algorithm. There was no significant difference in hemodynamics between RVP and ventricular pacing avoidance (p = .055). CONCLUSIONS: HBP provides better acute cardiac function than pacing avoidance algorithms and RVP, in patients with prolonged PR intervals. HBP allows normalization of prolonged AV delays (unlike pacing avoidance) and does not cause ventricular dyssynchrony (unlike RVP). Clinical trials may be justified to assess whether these acute improvements translate into longer term clinical benefits in patients with bradycardia indications for pacing.


Subject(s)
Bundle of His , Cardiac Pacing, Artificial , Algorithms , Hemodynamics , Humans , Stroke Volume , Treatment Outcome , Ventricular Function, Left
16.
J Cardiovasc Electrophysiol ; 30(10): 1984-1993, 2019 10.
Article in English | MEDLINE | ID: mdl-31310403

ABSTRACT

BACKGROUND: His-bundle pacing (HBP) provides physiological ventricular activation. Observational studies have demonstrated the techniques' feasibility; however, data have come from a limited number of centers. OBJECTIVES: We set out to explore the contemporary global practice in HBP focusing on the learning curve, procedural characteristics, and outcomes. METHODS: This is a retrospective, multicenter observational study of patients undergoing attempted HBP at seven centers. Pacing indication, fluoroscopy time, HBP thresholds, and lead reintervention and deactivation rates were recorded. Where centers had systematically recorded implant success rates from the outset, these were collated. RESULTS: A total of 529 patients underwent attempted HBP during the study period (2014-19) with a mean follow-up of 217 ± 303 days. Most implants were for bradycardia indications. In the three centers with the systematic collation of all attempts, the overall implant success rate was 81%, which improved to 87% after completion of 40 cases. All seven centers reported data on successful implants. The mean fluoroscopy time was 11.7 ± 12.0 minutes, the His-bundle capture threshold at implant was 1.4 ± 0.9 V at 0.8 ± 0.3 ms, and it was 1.3 ± 1.2 V at 0.9 ± 0.2 ms at last device check. HBP lead reintervention or deactivation (for lead displacement or rise in threshold) occurred in 7.5% of successful implants. There was evidence of a learning curve: fluoroscopy time and HBP capture threshold reduced with greater experience, plateauing after approximately 30-50 cases. CONCLUSION: We found that it is feasible to establish a successful HBP program, using the currently available implantation tools. For physicians who are experienced at pacemaker implantation, the steepest part of the learning curve appears to be over the first 30-50 cases.


Subject(s)
Arrhythmias, Cardiac/therapy , Bundle of His/physiopathology , Cardiac Pacing, Artificial , Learning Curve , Action Potentials , Aged , Aged, 80 and over , Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/physiopathology , Cardiac Pacing, Artificial/adverse effects , Clinical Competence , Europe , Feasibility Studies , Female , Heart Rate , Humans , Male , Middle Aged , Patient Safety , Randomized Controlled Trials as Topic , Registries , Retrospective Studies , Risk Assessment , Risk Factors , Time Factors , Treatment Outcome , United States
17.
Europace ; 21(9): 1422-1431, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-30820561

ABSTRACT

AIMS: Abnormal rate adaptation of the action potential is proarrhythmic but is difficult to measure with current electro-anatomical mapping techniques. We developed a method to rapidly quantify spatial discordance in whole heart activation in response to rate cycle length changes. We test the hypothesis that patients with underlying channelopathies or history of aborted sudden cardiac death (SCD) have a reduced capacity to maintain uniform activation following exercise. METHODS AND RESULTS: Electrocardiographical imaging (ECGI) reconstructs >1200 electrograms (EGMs) over the ventricles from a single beat, providing epicardial whole heart activation maps. Thirty-one individuals [11 SCD survivors; 10 Brugada syndrome (BrS) without SCD; and 10 controls] with structurally normal hearts underwent ECGI vest recordings following exercise treadmill. For each patient, we calculated the relative change in EGM local activation times (LATs) between a baseline and post-exertion phase using custom written software. A ventricular conduction stability (V-CoS) score calculated to indicate the percentage of ventricle that showed no significant change in relative LAT (<10 ms). A lower score reflected greater conduction heterogeneity. Mean variability (standard deviation) of V-CoS score over 10 consecutive beats was small (0.9 ± 0.5%), with good inter-operator reproducibility of V-CoS scores. Sudden cardiac death survivors, compared to BrS and controls, had the lowest V-CoS scores post-exertion (P = 0.011) but were no different at baseline (P = 0.50). CONCLUSION: We present a method to rapidly quantify changes in global activation which provides a measure of conduction heterogeneity and proof of concept by demonstrating SCD survivors have a reduced capacity to maintain uniform activation following exercise.


Subject(s)
Body Surface Potential Mapping/methods , Brugada Syndrome/physiopathology , Death, Sudden, Cardiac , Heart Conduction System/physiopathology , Heart Ventricles/physiopathology , Heart/physiopathology , Stress, Physiological/physiology , Ventricular Fibrillation/physiopathology , Action Potentials/physiology , Adult , Brugada Syndrome/diagnostic imaging , Case-Control Studies , Electrocardiography/methods , Exercise Test , Female , Heart/diagnostic imaging , Heart Conduction System/diagnostic imaging , Heart Ventricles/diagnostic imaging , Humans , Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Male , Middle Aged , Signal Processing, Computer-Assisted , Survivors , Tilt-Table Test , Tomography, X-Ray Computed , Ventricular Fibrillation/diagnostic imaging , Wearable Electronic Devices
18.
Pacing Clin Electrophysiol ; 42(2): 257-264, 2019 02.
Article in English | MEDLINE | ID: mdl-30569504

ABSTRACT

INTRODUCTION: A spontaneous type I electrocardiogram (ECG) pattern and/or unheralded syncope are conventionally used as risk markers for primary prevention of sudden cardiac arrest/death (SCA/SCD) in Brugada syndrome (BrS). In this study, we determine the prevalence of conventional and newer markers of risk in those with and without previous aborted SCA events. METHODS: All patients with BrS were identified at our institute. History of symptoms was obtained from medical tests or from interviews. Other markers of risk were also obtained, such as presence of (1) spontaneous type I pattern, (2) fractionated QRS (fQRS), (3) early repolarization (ER) pattern, (4) late potentials on signal-averaged ECG (SAECG), and (5) response to programmed electrical stimulation. RESULTS: In 133 patients with Bars, 10 (7%) patients (mean age = 39 ± 11 years; nine males) were identified with a previous ventricular fibrillation/ventricular tachycardia episode (n = 8) or requiring cardio-pulmonary resuscitation (n = 2). None of these patients had a prior history of syncope before their SCA event. Only two (20%) patients reported a history of palpitations or dizziness. None had apneic breathing and three (30%) patients had a family history of SCA. From their ECGs, a spontaneous pattern was only found in one (10%) of these patients. Further, 10% of patients had fQRS, 17% had late potentials on SAECG, 20% had deep S waves in lead I, and 10% had an ER pattern in the peripheral leads. No significant differences were observed in the non-SCA group. CONCLUSION: The majority of BrS patients with previous aborted SCA events did not have a spontaneous type I and/or prior history of syncope. Conventional and newer markers of risk appear to only have limited ability to predict SCA.


Subject(s)
Brugada Syndrome/complications , Brugada Syndrome/physiopathology , Death, Sudden, Cardiac/etiology , Electrocardiography , Syncope/etiology , Syncope/physiopathology , Adult , Death, Sudden, Cardiac/epidemiology , Death, Sudden, Cardiac/prevention & control , Female , Humans , Male , Middle Aged , Prevalence , Risk Assessment , Risk Factors , Survivors , Syncope/epidemiology
19.
J Cardiovasc Electrophysiol ; 29(1): 115-126, 2018 01.
Article in English | MEDLINE | ID: mdl-29091329

ABSTRACT

BACKGROUND: Models of cardiac arrhythmogenesis predict that nonuniformity in repolarization and/or depolarization promotes ventricular fibrillation and is modulated by autonomic tone, but this is difficult to evaluate in patients. We hypothesize that such spatial heterogeneities would be detected by noninvasive ECG imaging (ECGi) in sudden cardiac death (SCD) survivors with structurally normal hearts under physiological stress. METHODS: ECGi was applied to 11 SCD survivors, 10 low-risk Brugada syndrome patients (BrS), and 10 controls undergoing exercise treadmill testing. ECGi provides whole heart activation maps and >1,200 unipolar electrograms over the ventricular surface from which global dispersion of activation recovery interval (ARI) and regional delay in conduction were determined. These were used as surrogates for spatial heterogeneities in repolarization and depolarization. Surface ECG markers of dispersion (QT and Tpeak-end intervals) were also calculated for all patients for comparison. RESULTS: Following exertion, the SCD group demonstrated the largest increase in ARI dispersion compared to BrS and control groups (13 ± 8 ms vs. 4 ± 7 ms vs. 4 ± 5 ms; P = 0.009), with baseline dispersion being similar in all groups. In comparison, surface ECG markers of dispersion of repolarization were unable to discriminate between the groups at baseline or following exertion. Spatial heterogeneities in conduction were also present following exercise but were not significantly different between SCD survivors and the other groups. CONCLUSION: Increased dispersion of repolarization is apparent during physiological stress in SCD survivors and is detectable with ECGi but not with standard ECG parameters. The electrophysiological substrate revealed by ECGi could be the basis of alternative risk-stratification techniques.


Subject(s)
Action Potentials , Body Surface Potential Mapping , Death, Sudden, Cardiac/etiology , Exercise Test , Exercise , Heart Conduction System/physiopathology , Stress, Physiological , Ventricular Fibrillation/diagnosis , Adult , Aged , Death, Sudden, Cardiac/prevention & control , Electrophysiologic Techniques, Cardiac , Female , Heart Rate , Humans , Male , Middle Aged , Predictive Value of Tests , Risk Assessment , Risk Factors , Time Factors , Ventricular Fibrillation/complications , Ventricular Fibrillation/mortality , Ventricular Fibrillation/physiopathology
20.
Article in English | MEDLINE | ID: mdl-29856077

ABSTRACT

BACKGROUND: Controversy exists regarding how atrial activation mode and heart rate affect optimal atrioventricular (AV) delay in cardiac resynchronization therapy. We studied these questions using high-reproducibility hemodynamic and echocardiographic measurements. METHODS: Twenty patients were hemodynamically optimized using noninvasive beat-to-beat blood pressure at rest (62 ± 11 beats/min), during exercise (80 ± 6 beats/min), and at three atrially paced rates: 5, 25, and 45 beats/min above rest, denoted as Apaced,r+5 , Apaced,r+25 , and Apaced,r+45 , respectively. Left atrial myocardial motion and transmitral flow were timed echocardiographically. RESULTS: During atrial sensing, raising heart rate shortened optimal AV delay by 25 ± 6 ms (P < 0.001). During atrial pacing, raising heart rate from Apaced,r+5 to Apaced,r+25 shortened it by 16 ± 6 ms; Apaced,r+45 shortened it 17 ± 6 ms further (P < 0.001). In comparison to atrial-sensed activation, atrial pacing lengthened optimal AV delay by 76 ± 6 ms (P < 0.0001) at rest, and at ∼20 beats/min faster, by 85 ± 7 ms (P < 0.0001), 9 ± 4 ms more (P  =  0.017). Mechanically, atrial pacing delayed left atrial contraction by 63 ± 5 ms at rest and by 73 ± 5 ms (i.e., by 10 ± 5 ms more, P < 0.05) at ∼20 beats/min faster. Raising atrial rate by exercise advanced left atrial contraction by 7 ± 2 ms (P  =  0.001). Raising it by atrial pacing did not (P  =  0.2). CONCLUSIONS: Hemodynamic optimal AV delay shortens with elevation of heart rate. It lengthens on switching from atrial-sensed to atrial-paced at the same rate, and echocardiography shows this sensed-paced difference in optima results from a sensed-paced difference in atrial electromechanical delay. The reason for the widening of the sensed-paced difference in AV optimum may be physiological stimuli (e.g., adrenergic drive) advancing left atrial contraction during exercise but not with fast atrial pacing.

SELECTION OF CITATIONS
SEARCH DETAIL