Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 129
Filter
Add more filters

Publication year range
1.
J Biol Chem ; 300(1): 105545, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38072056

ABSTRACT

Neurodegenerative tauopathies such as Alzheimer's disease (AD) are caused by brain accumulation of tau assemblies. Evidence suggests tau functions as a prion, and cells and animals can efficiently propagate unique, transmissible tau pathologies. This suggests a dedicated cellular replication machinery, potentially reflecting a normal physiologic function for tau seeds. Consequently, we hypothesized that healthy control brains would contain seeding activity. We have recently developed a novel monoclonal antibody (MD3.1) specific for tau seeds. We used this antibody to immunopurify tau from the parietal and cerebellar cortices of 19 healthy subjects without any neuropathology, ranging 19 to 65 years. We detected seeding in lysates from the parietal cortex, but not in the cerebellum. We also detected no seeding in brain homogenates from wildtype or human tau knockin mice, suggesting that cellular/genetic context dictates development of seed-competent tau. Seeding did not correlate with subject age or brain tau levels. We confirmed our essential findings using an orthogonal assay, real-time quaking-induced conversion, which amplifies tau seeds in vitro. Dot blot analyses revealed no AT8 immunoreactivity above background levels in parietal and cerebellar extracts and ∼1/100 of that present in AD. Based on binding to a panel of antibodies, the conformational characteristics of control seeds differed from AD, suggesting a unique underlying assembly, or structural ensemble. Tau's ability to adopt self-replicating conformations under nonpathogenic conditions may reflect a normal function that goes awry in disease states.


Subject(s)
Alzheimer Disease , Tauopathies , Animals , Humans , Mice , Alzheimer Disease/metabolism , Brain/metabolism , Cerebellum/metabolism , tau Proteins/genetics , tau Proteins/metabolism , Tauopathies/metabolism , Male , Female , Young Adult , Adult , Middle Aged , Aged
2.
J Biol Chem ; 299(11): 105252, 2023 11.
Article in English | MEDLINE | ID: mdl-37714465

ABSTRACT

Neurodegenerative tauopathies are caused by the transition of tau protein from a monomer to a toxic aggregate. They include Alzheimer disease (AD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and Pick disease (PiD). We have previously proposed that tau monomer exists in two conformational ensembles: an inert form (Mi), which does not self-assemble, and seed-competent form (Ms), which self-assembles and templates ordered assembly growth. We proposed that cis/trans isomerization of tau at P301, the site of dominant disease-associated S/L missense mutations, might underlie the transition of wild-type tau to a seed-competent state. Consequently, we created monoclonal antibodies using non-natural antigens consisting of fluorinated proline (P∗) at the analogous P270 in repeat 1 (R1), biased toward the trans-configuration at either the R1/R2 (TENLKHQP∗GGGKVQIINKK) or the R1/R3 (TENLKHQP∗GGGKVQIVYK) interfaces. Two antibodies, MD2.2 and MD3.1, efficiently immunoprecipitated soluble seeds from AD and PSP but not CBD or PiD brain samples. The antibodies efficiently stained brain samples of AD, PSP, and PiD, but not CBD. They did not immunoprecipitate or immunostain tau from the control brain. Creation of potent anti-seed antibodies based on the trans-proline epitope implicates local unfolding around P301 in pathogenesis. MD2.2 and MD3.1 may also be useful for therapy and diagnosis.


Subject(s)
Tauopathies , Humans , Alzheimer Disease/metabolism , Antibodies, Monoclonal/metabolism , Brain/metabolism , Epitopes/metabolism , Pick Disease of the Brain/metabolism , Pick Disease of the Brain/pathology , Proline/metabolism , tau Proteins/metabolism , Tauopathies/metabolism
3.
Acta Neuropathol ; 147(1): 58, 2024 03 23.
Article in English | MEDLINE | ID: mdl-38520489

ABSTRACT

Neurodegenerative pathologies such as Alzheimer disease neuropathologic change (ADNC), Lewy body disease (LBD), limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC), and cerebrovascular disease (CVD) frequently coexist, but little is known about the exact contribution of each pathology to cognitive decline and dementia in subjects with mixed pathologies. We explored the relative cognitive impact of concurrent common and rare neurodegenerative pathologies employing multivariate logistic regression analysis adjusted for age, gender, and level of education. We analyzed a cohort of 6,262 subjects from the National Alzheimer's Coordinating Center database, ranging from 0 to 6 comorbid neuropathologic findings per individual, where 95.7% of individuals had at least 1 neurodegenerative finding at autopsy and 75.5% had at least 2 neurodegenerative findings. We identified which neuropathologic entities correlate most frequently with one another and demonstrated that the total number of pathologies per individual was directly correlated with cognitive performance as assessed by Clinical Dementia Rating (CDR®) and Mini-Mental State Examination (MMSE). We show that ADNC, LBD, LATE-NC, CVD, hippocampal sclerosis, Pick disease, and FTLD-TDP significantly impact overall cognition as independent variables. More specifically, ADNC significantly affected all assessed cognitive domains, LBD affected attention, processing speed, and language, LATE-NC primarily affected tests related to logical memory and language, while CVD and other less common pathologies (including Pick disease, progressive supranuclear palsy, and corticobasal degeneration) had more variable neurocognitive effects. Additionally, ADNC, LBD, and higher numbers of comorbid neuropathologies were associated with the presence of at least one APOE ε4 allele, and ADNC and higher numbers of neuropathologies were inversely correlated with APOE ε2 alleles. Understanding the mechanisms by which individual and concomitant neuropathologies affect cognition and the degree to which each contributes is an imperative step in the development of biomarkers and disease-modifying therapeutics, particularly as these medical interventions become more targeted and personalized.


Subject(s)
Alzheimer Disease , Cardiovascular Diseases , Dementia , Frontotemporal Dementia , Lewy Body Disease , Pick Disease of the Brain , TDP-43 Proteinopathies , Humans , Pick Disease of the Brain/pathology , Brain/pathology , Alzheimer Disease/pathology , Lewy Body Disease/complications , Lewy Body Disease/pathology , Frontotemporal Dementia/pathology , Cognition
4.
Alzheimers Dement ; 20(2): 783-797, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37777848

ABSTRACT

INTRODUCTION: Alzheimer's disease (AD) and primary age-related tauopathy (PART) both harbor 3R/4R hyperphosphorylated-tau (p-tau)-positive neurofibrillary tangles (NFTs) but differ in the spatial p-tau development in the hippocampus. METHODS: Using Nanostring GeoMx Digital Spatial Profiling, we compared protein expression within hippocampal subregions in NFT-bearing and non-NFT-bearing neurons in AD (n = 7) and PART (n = 7) subjects. RESULTS: Proteomic measures of synaptic health were inversely correlated with the subregional p-tau burden in AD and PART, and there were numerous differences in proteins involved in proteostasis, amyloid beta (Aß) processing, inflammation, microglia, oxidative stress, and neuronal/synaptic health between AD and PART and between definite PART and possible PART. DISCUSSION: These results suggest subfield-specific proteome differences that may explain some of the differences in Aß and p-tau distribution and apparent pathogenicity. In addition, hippocampal neurons in possible PART may have more in common with AD than with definite PART, highlighting the importance of Aß in the pathologic process. HIGHLIGHTS: Synaptic health is inversely correlated with local p-tau burden. The proteome of NFT- and non-NFT-bearing neurons is influenced by the presence of Aß in the hippocampus. Neurons in possible PART cases share more proteomic similarities with neurons in ADNC than they do with neurons in definite PART cases.


Subject(s)
Alzheimer Disease , Tauopathies , Humans , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Proteomics , Proteome , tau Proteins/metabolism , Tauopathies/pathology , Neurofibrillary Tangles/pathology , Hippocampus/pathology
5.
J Biol Chem ; 298(8): 102163, 2022 08.
Article in English | MEDLINE | ID: mdl-35750209

ABSTRACT

Tau aggregation into ordered assemblies causes neurodegenerative tauopathies. We previously reported that tau monomer exists in either inert (Mi) or seed-competent (Ms) conformational ensembles and that Ms encodes strains, that is, unique, self-replicating, biologically active assemblies. It is unknown if disease begins with Ms formation followed by fibril assembly or if Ms derives from fibrils and is therefore an epiphenomenon. Here, we studied a tauopathy mouse model (PS19) that expresses full-length mutant human (1N4R) tau (P301S). Insoluble tau seeding activity appeared at 2 months of age and insoluble tau protein assemblies by immunoblot at 3 months. Tau monomer from mice aged 1 to 6 weeks, purified using size-exclusion chromatography, contained soluble seeding activity at 4 weeks, before insoluble material or larger assemblies were observed, with assemblies ranging from n = 1 to 3 tau units. By 5 to 6 weeks, large soluble assemblies had formed. This indicated that the first detectable pathological forms of tau were in fact Ms. We next examined posttranslational modifications of tau monomer from 1 to 6 weeks. We detected no phosphorylation unique to Ms in PS19 or human Alzheimer's disease brains. We conclude that tauopathy begins with formation of the Ms monomer, whose activity is phosphorylation independent. Ms then self assembles to form oligomers before it forms insoluble fibrils. The conversion of tau monomer from Mi to Ms thus constitutes the first detectable step in the initiation of tauopathy in this mouse model, with obvious implications for the origins of tauopathy in humans.


Subject(s)
Alzheimer Disease , Tauopathies , Alzheimer Disease/metabolism , Animals , Brain/metabolism , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Tauopathies/metabolism , tau Proteins/metabolism
6.
J Biol Chem ; 298(6): 102014, 2022 06.
Article in English | MEDLINE | ID: mdl-35525272

ABSTRACT

Tau assembly movement from the extracellular to intracellular space may underlie transcellular propagation of neurodegenerative tauopathies. This begins with tau binding to cell surface heparan sulfate proteoglycans, which triggers macropinocytosis. Pathological tau assemblies are proposed then to exit the vesicular compartment as "seeds" for replication in the cytoplasm. Tau uptake is highly efficient, but only ∼1 to 10% of cells that endocytose aggregates exhibit seeding. Consequently, we studied fluorescently tagged full-length (FL) tau fibrils added to native U2OS cells or "biosensor" cells expressing FL tau or repeat domain. FL tau fibrils bound tubulin. Seeds triggered its aggregation in multiple locations simultaneously in the cytoplasm, generally independent of visible exogenous aggregates. Most exogenous tau trafficked to the lysosome, but fluorescence imaging revealed a small percentage that steadily accumulated in the cytosol. Intracellular expression of Gal3-mRuby, which binds intravesicular galactosides and forms puncta upon vesicle rupture, revealed no evidence of vesicle damage following tau exposure, and most seeded cells had no evidence of endolysosome rupture. However, live-cell imaging indicated that cells with pre-existing Gal3-positive puncta were seeded at a slightly higher rate than the general population, suggesting a potential predisposing role for vesicle instability. Clearance of tau seeds occurred rapidly in both vesicular and cytosolic fractions. The lysosome/autophagy inhibitor bafilomycin inhibited vesicular clearance, whereas the proteasome inhibitor MG132 inhibited cytosolic clearance. Tau seeds that enter the cell thus have at least two fates: lysosomal clearance that degrades most tau, and entry into the cytosol, where seeds amplify, and are cleared by the proteasome.


Subject(s)
Cytosol , Lysosomes , Tauopathies , tau Proteins , Alzheimer Disease/physiopathology , Cytosol/metabolism , Heparan Sulfate Proteoglycans/metabolism , Humans , Lysosomes/metabolism , Tauopathies/metabolism , Tauopathies/physiopathology , tau Proteins/metabolism
7.
J Biol Chem ; 298(8): 102132, 2022 08.
Article in English | MEDLINE | ID: mdl-35700826

ABSTRACT

Tau aggregation underlies neurodegenerative tauopathies, and transcellular propagation of tau assemblies of unique structure, i.e., strains, may underlie the diversity of these disorders. Polyanions have been reported to induce tau aggregation in vitro, but the precise trigger to convert tau from an inert to a seed-competent form in disease states is unknown. RNA triggers tau fibril formation in vitro and has been observed to associate with neurofibrillary tangles in human brain. Here, we have tested whether RNA exerts sequence-specific effects on tau assembly and strain formation. We found that three RNA homopolymers, polyA, polyU, and polyC, all bound tau, but only polyA RNA triggered seed and fibril formation. In addition, polyA:tau seeds and fibrils were sensitive to RNase. We also observed that the origin of the RNA influenced the ability of tau to adopt a structure that would form stable strains. Human RNA potently induced tau seed formation and created tau conformations that preferentially formed stable strains in a HEK293T cell model, whereas RNA from other sources, or heparin, produced strains that were not stably maintained in cultured cells. Finally, we found that soluble, but not insoluble seeds from Alzheimer's disease brain were also sensitive to RNase. We conclude that human RNA specifically induces formation of stable tau strains and may trigger the formation of dominant pathological assemblies that propagate in Alzheimer's disease and possibly other tauopathies.


Subject(s)
Alzheimer Disease , RNA , Tauopathies , tau Proteins , Alzheimer Disease/metabolism , Brain/metabolism , HEK293 Cells , Humans , RNA/metabolism , Ribonucleases/metabolism , Tauopathies/metabolism , tau Proteins/metabolism
8.
Acta Neuropathol ; 146(6): 785-802, 2023 12.
Article in English | MEDLINE | ID: mdl-37815677

ABSTRACT

Understanding age acceleration, the discordance between biological and chronological age, in the brain can reveal mechanistic insights into normal physiology as well as elucidate pathological determinants of age-related functional decline and identify early disease changes in the context of Alzheimer's and other disorders. Histopathological whole slide images provide a wealth of pathologic data on the cellular level that can be leveraged to build deep learning models to assess age acceleration. Here, we used a collection of digitized human post-mortem hippocampal sections to develop a histological brain age estimation model. Our model predicted brain age within a mean absolute error of 5.45 ± 0.22 years, with attention weights corresponding to neuroanatomical regions vulnerable to age-related changes. We found that histopathologic brain age acceleration had significant associations with clinical and pathologic outcomes that were not found with epigenetic based measures. Our results indicate that histopathologic brain age is a powerful, independent metric for understanding factors that contribute to brain aging.


Subject(s)
Aging , Brain , Humans , Child, Preschool , Aging/pathology , Brain/pathology , Epigenomics , Acceleration , Autopsy , Epigenesis, Genetic , DNA Methylation
9.
Acta Neuropathol ; 145(2): 159-173, 2023 02.
Article in English | MEDLINE | ID: mdl-36512061

ABSTRACT

An international consensus report in 2019 recommended a classification system for limbic-predominant age-related TDP-43 encephalopathy neuropathologic changes (LATE-NC). The suggested neuropathologic staging system and nomenclature have proven useful for autopsy practice and dementia research. However, some issues remain unresolved, such as cases with unusual features that do not fit with current diagnostic categories. The goal of this report is to update the neuropathologic criteria for the diagnosis and staging of LATE-NC, based primarily on published data. We provide practical suggestions about how to integrate available genetic information and comorbid pathologies [e.g., Alzheimer's disease neuropathologic changes (ADNC) and Lewy body disease]. We also describe recent research findings that have enabled more precise guidance on how to differentiate LATE-NC from other subtypes of TDP-43 pathology [e.g., frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS)], and how to render diagnoses in unusual situations in which TDP-43 pathology does not follow the staging scheme proposed in 2019. Specific recommendations are also made on when not to apply this diagnostic term based on current knowledge. Neuroanatomical regions of interest in LATE-NC are described in detail and the implications for TDP-43 immunohistochemical results are specified more precisely. We also highlight questions that remain unresolved and areas needing additional study. In summary, the current work lays out a number of recommendations to improve the precision of LATE-NC staging based on published reports and diagnostic experience.


Subject(s)
Alzheimer Disease , Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Humans , Alzheimer Disease/pathology , Frontotemporal Dementia/pathology , Amyotrophic Lateral Sclerosis/pathology , DNA-Binding Proteins/genetics
10.
Alzheimers Dement ; 19(7): 3158-3170, 2023 07.
Article in English | MEDLINE | ID: mdl-36738450

ABSTRACT

INTRODUCTION: Neurofibrillary degeneration in Alzheimer's disease (AD) typically involves the entorhinal cortex and CA1 subregion of the hippocampus early in the disease process, whereas in primary age-related tauopathy (PART), there is an early selective vulnerability of the CA2 subregion. METHODS: Image analysis-based quantitative pixel assessments were used to objectively evaluate amyloid beta (Aß) burden in the medial temporal lobe in relation to the distribution of hyperphosphorylated-tau (p-tau) in 142 cases of PART and AD. RESULTS: Entorhinal, CA1, CA3, and CA4 p-tau deposition levels are significantly correlated with Aß burden, while CA2 p-tau is not. Furthermore, the CA2/CA1 p-tau ratio is inversely correlated with Aß burden and distribution. In addition, cognitive impairment is correlated with overall p-tau burden. DISCUSSION: These data indicate that the presence and extent of medial temporal lobe Aß may determine the distribution and spread of neurofibrillary degeneration. The resulting p-tau distribution patterns may discriminate between PART and AD. HIGHLIGHTS: Subregional hyperphosphorylated-tau (p-tau) distribution is influenced by hippocampal amyloid beta burden. Higher CA2/CA1 p-tau ratio is predictive of primary age-related tauopathy-like neuropathology. Cognitive function is correlated with the overall hippocampal p-tau burden.


Subject(s)
Alzheimer Disease , Tauopathies , Humans , Amyloid beta-Peptides/metabolism , tau Proteins/metabolism , Alzheimer Disease/pathology , Hippocampus/pathology , Tauopathies/pathology
11.
Acta Neuropathol ; 144(4): 603-614, 2022 10.
Article in English | MEDLINE | ID: mdl-35947184

ABSTRACT

Neuropathologic criteria for progressive supranuclear palsy (PSP) proposed by a National Institute of Neurological Disorders and Stroke (NINDS) working group were published in 1994 and based on the presence of neurofibrillary tangles in basal ganglia and brainstem. These criteria did not stipulate detection methods or incorporate glial tau pathology. In this study, a group of 14 expert neuropathologists scored digital slides from 10 brain regions stained with hematoxylin and eosin (H&E) and phosphorylated tau (AT8) immunohistochemistry. The cases included 15 typical and atypical PSP cases and 10 other tauopathies. Blinded to clinical and neuropathological information, raters provided a categorical diagnosis (PSP or not-PSP) based upon provisional criteria that required neurofibrillary tangles or pretangles in two of three regions (substantia nigra, subthalamic nucleus, globus pallidus) and tufted astrocytes in one of two regions (peri-Rolandic cortices, putamen). The criteria showed high sensitivity (0.97) and specificity (0.91), as well as almost perfect inter-rater reliability for diagnosing PSP and differentiating it from other tauopathies (Fleiss kappa 0.826). Most cases (17/25) had 100% agreement across all 14 raters. The Rainwater Charitable Foundation criteria for the neuropathologic diagnosis of PSP feature a simplified diagnostic algorithm based on phosphorylated tau immunohistochemistry and incorporate tufted astrocytes as an essential diagnostic feature.


Subject(s)
Supranuclear Palsy, Progressive , Tauopathies , Humans , Neurofibrillary Tangles/pathology , Neuropathology , Reproducibility of Results , Supranuclear Palsy, Progressive/diagnosis , Supranuclear Palsy, Progressive/pathology , Tauopathies/diagnosis , Tauopathies/pathology , tau Proteins
12.
Acta Neuropathol ; 144(3): 589-601, 2022 09.
Article in English | MEDLINE | ID: mdl-35838824

ABSTRACT

We describe in vivo follow-up PET imaging and postmortem findings from an autosomal dominant Alzheimer's disease (ADAD) PSEN1 E280A carrier who was also homozygous for the APOE3 Christchurch (APOE3ch) variant and was protected against Alzheimer's symptoms for almost three decades beyond the expected age of onset. We identified a distinct anatomical pattern of tau pathology with atypical accumulation in vivo and unusual postmortem regional distribution characterized by sparing in the frontal cortex and severe pathology in the occipital cortex. The frontal cortex and the hippocampus, less affected than the occipital cortex by tau pathology, contained Related Orphan Receptor B (RORB) positive neurons, homeostatic astrocytes and higher APOE expression. The occipital cortex, the only cortical region showing cerebral amyloid angiopathy (CAA), exhibited a distinctive chronic inflammatory microglial profile and lower APOE expression. Thus, the Christchurch variant may impact the distribution of tau pathology, modulate age at onset, severity, progression, and clinical presentation of ADAD, suggesting possible therapeutic strategies.


Subject(s)
Alzheimer Disease , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Apolipoprotein E3/genetics , Apolipoprotein E3/metabolism , Brain/pathology , Homozygote , Humans , Positron-Emission Tomography , tau Proteins/genetics , tau Proteins/metabolism
13.
J Neurol Neurosurg Psychiatry ; 91(6): 586-592, 2020 06.
Article in English | MEDLINE | ID: mdl-32332103

ABSTRACT

OBJECTIVE: To determine whether subjects with chronic traumatic encephalopathy (CTE) and dementia have distinct clinical features compared to subjects with pathologically confirmed Alzheimer's disease (AD). METHODS: Among 339 subjects assessed for CTE in the National Alzheimer's Coordinating Center dataset, 6 subjects with CTE and 25 subjects with AD neuropathologic change matched for age (±5 years) and sex were identified. All subjects had a clinical diagnosis of dementia. Neurological examination, neuropsychological testing and emotional/behavioural data were compared between CTE and AD subjects at the time of dementia diagnosis and last clinical visit near death. RESULTS: A history of traumatic brain injury with loss of consciousness (LOC) was reported in one CTE and one AD subject; information about injuries without LOC or multiple injuries was unavailable. CTE and AD subjects did not differ significantly at the time of diagnosis or last visit on the Unified Parkinson's Disease Rating Scale-Motor Exam, global measures of cognitive functioning (Mini-Mental State Exam and Clinical Dementia Rating Scale), emotional/behaviour symptoms as assessed with the Neuropsychiatric Inventory questionnaire or across neuropsychological measures. All CTE participants had co-occurring neuropathologic processes, including AD and most had TAR DNA-binding protein 43 (TDP-43) neuropathology. CONCLUSIONS: CTE pathology was rare in a large multicentre national dataset, and when present, was accompanied by AD and TDP-43 pathologies. CTE was not associated with a different clinical presentation from AD or with greater cognitive impairment or neurobehavioral symptoms. These findings suggest that CTE may not have a distinct clinical profile when other neuropathologic processes are coexistent with CTE pathology.


Subject(s)
Chronic Traumatic Encephalopathy/psychology , Cognition/physiology , Dementia/psychology , Memory/physiology , Aged , Aged, 80 and over , Brain/pathology , Chronic Traumatic Encephalopathy/diagnosis , Chronic Traumatic Encephalopathy/pathology , Dementia/diagnosis , Dementia/pathology , Disability Evaluation , Female , Humans , Male , Middle Aged , Neuropsychological Tests , Severity of Illness Index
14.
Brain ; 142(6): 1503-1527, 2019 06 01.
Article in English | MEDLINE | ID: mdl-31039256

ABSTRACT

We describe a recently recognized disease entity, limbic-predominant age-related TDP-43 encephalopathy (LATE). LATE neuropathological change (LATE-NC) is defined by a stereotypical TDP-43 proteinopathy in older adults, with or without coexisting hippocampal sclerosis pathology. LATE-NC is a common TDP-43 proteinopathy, associated with an amnestic dementia syndrome that mimicked Alzheimer's-type dementia in retrospective autopsy studies. LATE is distinguished from frontotemporal lobar degeneration with TDP-43 pathology based on its epidemiology (LATE generally affects older subjects), and relatively restricted neuroanatomical distribution of TDP-43 proteinopathy. In community-based autopsy cohorts, ∼25% of brains had sufficient burden of LATE-NC to be associated with discernible cognitive impairment. Many subjects with LATE-NC have comorbid brain pathologies, often including amyloid-ß plaques and tauopathy. Given that the 'oldest-old' are at greatest risk for LATE-NC, and subjects of advanced age constitute a rapidly growing demographic group in many countries, LATE has an expanding but under-recognized impact on public health. For these reasons, a working group was convened to develop diagnostic criteria for LATE, aiming both to stimulate research and to promote awareness of this pathway to dementia. We report consensus-based recommendations including guidelines for diagnosis and staging of LATE-NC. For routine autopsy workup of LATE-NC, an anatomically-based preliminary staging scheme is proposed with TDP-43 immunohistochemistry on tissue from three brain areas, reflecting a hierarchical pattern of brain involvement: amygdala, hippocampus, and middle frontal gyrus. LATE-NC appears to affect the medial temporal lobe structures preferentially, but other areas also are impacted. Neuroimaging studies demonstrated that subjects with LATE-NC also had atrophy in the medial temporal lobes, frontal cortex, and other brain regions. Genetic studies have thus far indicated five genes with risk alleles for LATE-NC: GRN, TMEM106B, ABCC9, KCNMB2, and APOE. The discovery of these genetic risk variants indicate that LATE shares pathogenetic mechanisms with both frontotemporal lobar degeneration and Alzheimer's disease, but also suggests disease-specific underlying mechanisms. Large gaps remain in our understanding of LATE. For advances in prevention, diagnosis, and treatment, there is an urgent need for research focused on LATE, including in vitro and animal models. An obstacle to clinical progress is lack of diagnostic tools, such as biofluid or neuroimaging biomarkers, for ante-mortem detection of LATE. Development of a disease biomarker would augment observational studies seeking to further define the risk factors, natural history, and clinical features of LATE, as well as eventual subject recruitment for targeted therapies in clinical trials.


Subject(s)
Alzheimer Disease/pathology , Brain/pathology , Frontotemporal Lobar Degeneration/pathology , TDP-43 Proteinopathies/pathology , Aged , Aged, 80 and over , Brain Diseases/pathology , Female , Frontotemporal Dementia/pathology , Humans , Male , Middle Aged , Neuroimaging/methods , Retrospective Studies
15.
Alzheimers Dement ; 16(3): 524-530, 2020 03.
Article in English | MEDLINE | ID: mdl-32043803

ABSTRACT

INTRODUCTION: Clinical Alzheimer's disease (AD) and dementia with Lewy bodies often have mixed AD and Lewy pathology, making it difficult to delineate risk factors. METHODS: Six risk factors for earlier dementia onset due to autopsy-confirmed AD (n = 647), mixed AD and Lewy body disease (AD + LBD; n = 221), and LBD (n = 63) were entered into multiple linear regressions using data from the National Alzheimer's Coordinating Center. RESULTS: In AD and AD + LBD, male sex and apolipoprotein E (APOE) ɛ4 alleles each predicted a 2- to 3-year-earlier onset and depression predicted a 3-year-earlier onset. In LBD, higher education predicted earlier onset and depression predicted a 5.5-year-earlier onset. DISCUSSION: Male sex and APOE ɛ4 alleles increase risk for earlier dementia onset in AD but not LBD. Depression increases risk for earlier dementia onset in AD, LBD, and AD + LBD, but evaluating the course, treatment, and severity is needed in future studies.


Subject(s)
Alzheimer Disease , Autopsy , Educational Status , Lewy Body Disease/pathology , Aged , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Brain/pathology , Depression , Female , Humans , Male , Risk Factors , Sex Factors
16.
Lab Invest ; 99(7): 1019-1029, 2019 07.
Article in English | MEDLINE | ID: mdl-30770886

ABSTRACT

Accumulation of abnormal tau in neurofibrillary tangles (NFT) occurs in Alzheimer disease (AD) and a spectrum of tauopathies. These tauopathies have diverse and overlapping morphological phenotypes that obscure classification and quantitative assessments. Recently, powerful machine learning-based approaches have emerged, allowing the recognition and quantification of pathological changes from digital images. Here, we applied deep learning to the neuropathological assessment of NFT in postmortem human brain tissue to develop a classifier capable of recognizing and quantifying tau burden. The histopathological material was derived from 22 autopsy brains from patients with tauopathies. We used a custom web-based informatics platform integrated with an in-house information management system to manage whole slide images (WSI) and human expert annotations as ground truth. We utilized fully annotated regions to train a deep learning fully convolutional neural network (FCN) implemented in PyTorch against the human expert annotations. We found that the deep learning framework is capable of identifying and quantifying NFT with a range of staining intensities and diverse morphologies. With our FCN model, we achieved high precision and recall in naive WSI semantic segmentation, correctly identifying tangle objects using a SegNet model trained for 200 epochs. Our FCN is efficient and well suited for the practical application of WSIs with average processing times of 45 min per WSI per GPU, enabling reliable and reproducible large-scale detection of tangles. We measured performance on test data of 50 pre-annotated regions on eight naive WSI across various tauopathies, resulting in the recall, precision, and an F1 score of 0.92, 0.72, and 0.81, respectively. Machine learning is a useful tool for complex pathological assessment of AD and other tauopathies. Using deep learning classifiers, we have the potential to integrate cell- and region-specific annotations with clinical, genetic, and molecular data, providing unbiased data for clinicopathological correlations that will enhance our knowledge of the neurodegeneration.


Subject(s)
Brain/pathology , Deep Learning , Neuropathology/methods , Tauopathies/pathology , Aged , Aged, 80 and over , Female , Humans , Male
17.
Acta Neuropathol ; 138(5): 795-811, 2019 11.
Article in English | MEDLINE | ID: mdl-31327044

ABSTRACT

Microsatellite repeat expansion disease loci can exhibit pleiotropic clinical and biological effects depending on repeat length. Large expansions in C9orf72 (100s-1000s of units) are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD). However, whether intermediate expansions also contribute to neurodegenerative disease is not well understood. Several studies have identified intermediate repeats in Parkinson's disease patients, but the association was not found in autopsy-confirmed cases. We hypothesized that intermediate C9orf72 repeats are a genetic risk factor for corticobasal degeneration (CBD), a neurodegenerative disease that can be clinically similar to Parkinson's but has distinct tau protein pathology. Indeed, intermediate C9orf72 repeats were significantly enriched in autopsy-proven CBD (n = 354 cases, odds ratio = 3.59, p = 0.00024). While large C9orf72 repeat expansions are known to decrease C9orf72 expression, intermediate C9orf72 repeats result in increased C9orf72 expression in human brain tissue and CRISPR/cas9 knockin iPSC-derived neural progenitor cells. In contrast to cases of FTD/ALS with large C9orf72 expansions, CBD with intermediate C9orf72 repeats was not associated with pathologic RNA foci or dipeptide repeat protein aggregates. Knock-in cells with intermediate repeats exhibit numerous changes in gene expression pathways relating to vesicle trafficking and autophagy. Additionally, overexpression of C9orf72 without the repeat expansion leads to defects in autophagy under nutrient starvation conditions. These results raise the possibility that therapeutic strategies to reduce C9orf72 expression may be beneficial for the treatment of CBD.


Subject(s)
Autophagy/genetics , Brain/pathology , C9orf72 Protein/genetics , Neurodegenerative Diseases/genetics , Alzheimer Disease/genetics , Amyotrophic Lateral Sclerosis/pathology , Basal Ganglia Diseases/genetics , Frontotemporal Dementia/genetics , Humans , Parkinson Disease/genetics , Parkinsonian Disorders/genetics
18.
Acta Neuropathol ; 133(1): 91-100, 2017 01.
Article in English | MEDLINE | ID: mdl-27878366

ABSTRACT

Transcellular propagation of tau aggregates may underlie the progression of pathology in Alzheimer's disease (AD) and other tauopathies. Braak staging (B1, B2, B3) is based on phospho-tau accumulation within connected brain regions: entorhinal cortex (B1); hippocampus/limbic system (B2); and frontal and parietal lobes (B3). We previously developed a specific and sensitive assay that uses flow cytometry to quantify tissue seeding activity based on fluorescence resonance energy transfer (FRET) in cells that stably express tau reporter proteins. In a tauopathy mouse model, we have detected seeding activity far in advance of histopathological changes. It remains unknown whether individuals with AD also develop seeding activity prior to accumulation of phospho-tau. We measured tau seeding activity across four brain regions (hippocampus, frontal lobe, parietal lobe, and cerebellum) in 104 fresh-frozen human AD brain samples from all Braak stages. We observed widespread seeding activity, notably in regions predicted to be free of phospho-tau deposition, and in detergent-insoluble fractions that lacked tau detectable by ELISA. Seeding activity correlated positively with Braak stage and negatively with MMSE. Our results are consistent with early transcellular propagation of tau seeds that triggers subsequent development of neuropathology. The FRET-based seeding assay may also complement standard neuropathological classification of tauopathies.


Subject(s)
Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Brain/metabolism , Brain/pathology , tau Proteins/metabolism , Alzheimer Disease/diagnosis , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , HEK293 Cells , Humans , Immunohistochemistry , Mental Status Schedule , Microscopy, Confocal , Severity of Illness Index
19.
Acta Neuropathol ; 130(1): 93-105, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25962793

ABSTRACT

Multiple system atrophy (MSA) is a sporadic neurodegenerative disease clinically characterized by cerebellar signs, parkinsonism, and autonomic dysfunction. Pathologically, MSA is an α-synucleinopathy affecting striatonigral and olivopontocerebellar systems, while neocortical and limbic involvement is usually minimal. In this study, we describe four patients with atypical MSA with clinical features consistent with frontotemporal dementia (FTD), including two with corticobasal syndrome, one with progressive non-fluent aphasia, and one with behavioral variant FTD. None had autonomic dysfunction. All had frontotemporal atrophy and severe limbic α-synuclein neuronal pathology. The neuronal inclusions were heterogeneous, but included Pick body-like inclusions. The latter were strongly associated with neuronal loss in the hippocampus and amygdala. Unlike typical Pick bodies, the neuronal inclusions were positive on Gallyas silver stain and negative on tau immunohistochemistry. In comparison to 34 typical MSA cases, atypical MSA had significantly more neuronal inclusions in anteromedial temporal lobe and limbic structures. While uncommon, our findings suggest that MSA may present clinically and pathologically as a frontotemporal lobar degeneration (FTLD). We suggest that this may represent a novel subtype of FTLD associated with α-synuclein (FTLD-synuclein).


Subject(s)
Brain/pathology , Frontotemporal Lobar Degeneration/pathology , Multiple System Atrophy/pathology , alpha-Synuclein/metabolism , Aged , Aged, 80 and over , Brain/metabolism , Female , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/physiopathology , Humans , Multiple System Atrophy/genetics , Multiple System Atrophy/physiopathology , alpha-Synuclein/genetics , tau Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL