Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Nature ; 591(7850): 451-457, 2021 03.
Article in English | MEDLINE | ID: mdl-33561864

ABSTRACT

All coronaviruses known to have recently emerged as human pathogens probably originated in bats1. Here we use a single experimental platform based on immunodeficient mice implanted with human lung tissue (hereafter, human lung-only mice (LoM)) to demonstrate the efficient in vivo replication of severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirusĀ 2 (SARS-CoV-2), as well as two endogenous SARS-like bat coronaviruses that show potential for emergence as human pathogens. Virus replication in this model occurs in bona fide human lung tissue and does not require any type of adaptation of the virus or the host. Our results indicate that bats contain endogenous coronaviruses that are capable of direct transmission to humans. Our detailed analysis of in vivo infection with SARS-CoV-2 in human lung tissue from LoM showed a predominant infection of human lung epithelial cells, including type-2 pneumocytes that are present in alveoli and ciliated airway cells. Acute infection with SARS-CoV-2 was highly cytopathic and induced a robust and sustained type-I interferon and inflammatory cytokine and chemokine response. Finally, we evaluated a therapeutic and pre-exposure prophylaxis strategy for SARS-CoV-2 infection. Our results show that therapeutic and prophylactic administration of EIDD-2801-an oral broad-spectrum antiviral agent that is currently in phaseĀ II/III clinical trials-markedly inhibited SARS-CoV-2 replication in vivo, and thus has considerable potential for the prevention and treatment of COVID-19.


Subject(s)
COVID-19 Drug Treatment , COVID-19/prevention & control , Cytidine/analogs & derivatives , Hydroxylamines/administration & dosage , Hydroxylamines/therapeutic use , Administration, Oral , Alveolar Epithelial Cells/immunology , Alveolar Epithelial Cells/pathology , Alveolar Epithelial Cells/virology , Animals , COVID-19/immunology , Chemoprevention , Chiroptera/virology , Clinical Trials, Phase II as Topic , Clinical Trials, Phase III as Topic , Cytidine/administration & dosage , Cytidine/therapeutic use , Cytokines/immunology , Epithelial Cells/virology , Female , Heterografts , Humans , Immunity, Innate , Interferon Type I/immunology , Lung/immunology , Lung/pathology , Lung/virology , Lung Transplantation , Male , Mice , Post-Exposure Prophylaxis , Pre-Exposure Prophylaxis , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Virus Replication
2.
J Biol Chem ; 295(41): 14189-14202, 2020 10 09.
Article in English | MEDLINE | ID: mdl-32788210

ABSTRACT

Autophagy is a conserved process that recycles cellular contents to promote survival. Although nitrogen limitation is the canonical inducer of autophagy, recent studies have revealed several other nutrients important to this process. In this study, we used a quantitative, high-throughput assay to identify potassium starvation as a new and potent inducer of autophagy in the yeast Saccharomyces cerevisiae We found that potassium-dependent autophagy requires the core pathway kinases Atg1, Atg5, and Vps34, and other components of the phosphatidylinositol 3-kinase complex. Transmission EM revealed abundant autophagosome formation in response to both stimuli. RNA-Seq indicated distinct transcriptional responses: nitrogen affects transport of ions such as copper, whereas potassium targets the organization of other cellular components. Thus, nitrogen and potassium share the ability to influence molecular supply and demand but do so in different ways. Both inputs promote catabolism through bulk autophagy, but result in distinct mechanisms of cellular remodeling and synthesis.


Subject(s)
Autophagy , Potassium/metabolism , Saccharomyces cerevisiae/metabolism , Autophagy-Related Protein 5/genetics , Autophagy-Related Protein 5/metabolism , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Class III Phosphatidylinositol 3-Kinases/genetics , Class III Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinases/genetics , Protein Kinases/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
3.
J Cell Biol ; 223(4)2024 04 01.
Article in English | MEDLINE | ID: mdl-38334983

ABSTRACT

The E4 variant of APOE strongly predisposes individuals to late-onset Alzheimer's disease. We demonstrate that in response to lipogenesis, apolipoprotein E (APOE) in astrocytes can avoid translocation into the endoplasmic reticulum (ER) lumen and traffic to lipid droplets (LDs) via membrane bridges at ER-LD contacts. APOE knockdown promotes fewer, larger LDs after a fatty acid pulse, which contain more unsaturated triglyceride after fatty acid pulse-chase. This LD size phenotype was rescued by chimeric APOE that targets only LDs. Like APOE depletion, APOE4-expressing astrocytes form a small number of large LDs enriched in unsaturated triglyceride. Additionally, the LDs in APOE4 cells exhibit impaired turnover and increased sensitivity to lipid peroxidation. Our data indicate that APOE plays a previously unrecognized role as an LD surface protein that regulates LD size and composition. APOE4 causes aberrant LD composition and morphology. Our study contributes to accumulating evidence that APOE4 astrocytes with large, unsaturated LDs are sensitized to lipid peroxidation, which could contribute to Alzheimer's disease risk.


Subject(s)
Alzheimer Disease , Apolipoproteins E , Astrocytes , Lipid Droplets , Triglycerides , Humans , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Astrocytes/metabolism , Fatty Acids/metabolism , Lipid Droplets/metabolism , Triglycerides/metabolism
4.
bioRxiv ; 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38260395

ABSTRACT

Amyotrophic lateral sclerosis is the most common fatal motor neuron disease. Approximately 90% of ALS patients exhibit pathology of the master RNA regulator, Transactive Response DNA Binding protein (TDP-43). Despite the prevalence TDP-43 pathology in ALS motor neurons, recent findings suggest immune dysfunction is a determinant of disease progression in patients. Whether TDP-43 pathology elicits disease-modifying immune responses in ALS remains underexplored. In this study, we demonstrate that TDP-43 pathology is internalized by antigen presenting cells, causes vesicle rupture, and leads to innate and adaptive immune cell activation. Using a multiplex imaging platform, we observed interactions between innate and adaptive immune cells near TDP-43 pathological lesions in ALS brain. We used a mass cytometry-based whole-blood stimulation assay to provide evidence that ALS patient peripheral immune cells exhibit responses to TDP-43 aggregates. Taken together, this study provides a novel link between TDP-43 pathology and ALS immune dysfunction, and further highlights the translational and diagnostic implications of monitoring and manipulating the ALS immune response.

5.
bioRxiv ; 2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37162939

ABSTRACT

The E4 variant of APOE strongly predisposes individuals to late-onset Alzheimer's disease. We demonstrate that in response to neutral lipid synthesis, apolipoprotein E (APOE) in astrocytes can avoid translocation into the ER lumen and traffic to lipid droplets (LDs) via membrane bridges at ER-LD contacts. APOE knockdown promotes fewer, larger LDs containing more unsaturated triglyceride. This LD size distribution phenotype was rescued by chimeric APOE that targets only LDs. APOE4 - expressing astrocytes also form a small number of large LDs enriched in unsaturated triglyceride. Additionally, the larger LDs in APOE4 cells exhibit impaired turnover and increased sensitivity to lipid peroxidation. Our data indicate that APOE plays a previously unrecognized role as an LD surface protein that regulates LD size and composition. APOE4 is a toxic gain of function variant that causes aberrant LD composition and morphology. We propose that APOE4 astrocytes with large, unsaturated LDs are sensitized to lipid peroxidation or lipotoxicity, which could contribute to Alzheimer's disease risk. Summary: Windham et al . discover that APOE in astrocytes can traffic to lipid droplets (LDs), where it modulates LD composition and size. Astrocytes expressing the Alzheimer's risk variant APOE4 form large LDs with impaired turnover and increased peroxidation sensitivity.

6.
Sci Adv ; 8(13): eabm9718, 2022 04.
Article in English | MEDLINE | ID: mdl-35363522

ABSTRACT

Cystic fibrosis (CF) is characterized by abnormal transepithelial ion transport. However, a description of CF lung disease pathophysiology unifying superficial epithelial and submucosal gland (SMG) dysfunctions has remained elusive. We hypothesized that biophysical abnormalities associated with CF mucus hyperconcentration provide a unifying mechanism. Studies of the anion secretion-inhibited pig airway model of CF revealed elevated SMG mucus concentrations, osmotic pressures, and SMG mucus accumulation. Human airway studies revealed hyperconcentrated CF SMG mucus with raised osmotic pressures and cohesive forces predicted to limit SMG mucus secretion/release. Using proline-rich protein 4 (PRR4) as a biomarker of SMG secretion, CF sputum proteomics analyses revealed markedly lower PRR4 levels compared to healthy and bronchiectasis controls, consistent with a failure of CF SMGs to secrete mucus onto airway surfaces. Raised mucus osmotic/cohesive forces, reflecting mucus hyperconcentration, provide a unifying mechanism that describes disease-initiating mucus accumulation on airway surfaces and in SMGs of the CF lung.


Subject(s)
Cystic Fibrosis , Animals , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Mucus/metabolism , Respiratory System/metabolism , Sputum/metabolism , Swine
7.
Neuro Oncol ; 18(7): 962-73, 2016 07.
Article in English | MEDLINE | ID: mdl-26826202

ABSTRACT

BACKGROUND: Glioma stem cells (GSCs) from human glioblastomas (GBMs) are resistant to radiation and chemotherapy and may drive recurrence. Treatment efficacy may depend on GSCs, expression of DNA repair enzymes such as methylguanine methyltransferase (MGMT), or transcriptome subtype. METHODS: To model genetic alterations in human GBM core signaling pathways, we induced Rb knockout, Kras activation, and Pten deletion mutations in cortical murine astrocytes. Neurosphere culture, differentiation, and orthotopic transplantation assays were used to assess whether these mutations induced de-differentiation into GSCs. Genome-wide chromatin landscape alterations and expression profiles were examined by formaldehyde-assisted isolation of regulatory elements (FAIRE) seq and RNA-seq. Radiation and temozolomide efficacy were examined in vitro and in an allograft model in vivo. Effects of radiation on transcriptome subtype were examined by microarray expression profiling. RESULTS: Cultured triple mutant astrocytes gained unlimited self-renewal and multilineage differentiation capacity. These cells harbored significantly altered chromatin landscapes that were associated with downregulation of astrocyte- and upregulation of stem cell-associated genes, particularly the Hoxa locus of embryonic transcription factors. Triple-mutant astrocytes formed serially transplantable glioblastoma allografts that were sensitive to radiation but expressed MGMT and were resistant to temozolomide. Radiation induced a shift in transcriptome subtype of GBM allografts from proneural to mesenchymal. CONCLUSION: A defined set of core signaling pathway mutations induces de-differentiation of cortical murine astrocytes into GSCs with altered chromatin landscapes and transcriptomes. This non-germline genetically engineered mouse model mimics human proneural GBM on histopathological, molecular, and treatment response levels. It may be useful for dissecting the mechanisms of treatment resistance and developing more effective therapies.


Subject(s)
Astrocytes/cytology , Brain Neoplasms/pathology , Dacarbazine/analogs & derivatives , Drug Resistance, Neoplasm , Glioblastoma/genetics , Glioblastoma/pathology , Neoplastic Stem Cells/cytology , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Cell Differentiation/drug effects , Cell Differentiation/radiation effects , Cell Line, Tumor , Dacarbazine/pharmacology , Glioblastoma/drug therapy , Mice, Transgenic , Mutation/genetics , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Signal Transduction/drug effects , Temozolomide
8.
J Vis Exp ; (90): e51763, 2014 Aug 12.
Article in English | MEDLINE | ID: mdl-25146643

ABSTRACT

Current astrocytoma models are limited in their ability to define the roles of oncogenic mutations in specific brain cell types during disease pathogenesis and their utility for preclinical drug development. In order to design a better model system for these applications, phenotypically wild-type cortical astrocytes and neural stem cells (NSC) from conditional, genetically engineered mice (GEM) that harbor various combinations of floxed oncogenic alleles were harvested and grown in culture. Genetic recombination was induced in vitro using adenoviral Cre-mediated recombination, resulting in expression of mutated oncogenes and deletion of tumor suppressor genes. The phenotypic consequences of these mutations were defined by measuring proliferation, transformation, and drug response in vitro. Orthotopic allograft models, whereby transformed cells are stereotactically injected into the brains of immune-competent, syngeneic littermates, were developed to define the role of oncogenic mutations and cell type on tumorigenesis in vivo. Unlike most established human glioblastoma cell line xenografts, injection of transformed GEM-derived cortical astrocytes into the brains of immune-competent littermates produced astrocytomas, including the most aggressive subtype, glioblastoma, that recapitulated the histopathological hallmarks of human astrocytomas, including diffuse invasion of normal brain parenchyma. Bioluminescence imaging of orthotopic allografts from transformed astrocytes engineered to express luciferase was utilized to monitor in vivo tumor growth over time. Thus, astrocytoma models using astrocytes and NSC harvested from GEM with conditional oncogenic alleles provide an integrated system to study the genetics and cell biology of astrocytoma pathogenesis in vitro and in vivo and may be useful in preclinical drug development for these devastating diseases.


Subject(s)
Astrocytes/pathology , Astrocytoma/etiology , Neural Stem Cells/pathology , Alleles , Animals , Astrocytoma/genetics , Astrocytoma/pathology , Cell Line, Transformed , Genetic Engineering , Glioblastoma/etiology , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Mice , Mice, Inbred C57BL , Oncogenes
9.
Neuro Oncol ; 15(10): 1317-29, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23814263

ABSTRACT

BACKGROUND: Glioblastoma (GBM) genomes feature recurrent genetic alterations that dysregulate core intracellular signaling pathways, including the G1/S cell cycle checkpoint and the MAPK and PI3K effector arms of receptor tyrosine kinase (RTK) signaling. Elucidation of the phenotypic consequences of activated RTK effectors is required for the design of effective therapeutic and diagnostic strategies. METHODS: Genetically defined, G1/S checkpoint-defective cortical murine astrocytes with constitutively active Kras and/or Pten deletion mutations were used to systematically investigate the individual and combined roles of these 2 RTK signaling effectors in phenotypic hallmarks of glioblastoma pathogenesis, including growth, migration, and invasion in vitro. A novel syngeneic orthotopic allograft model system was used to examine in vivo tumorigenesis. RESULTS: Constitutively active Kras and/or Pten deletion mutations activated both MAPK and PI3K signaling. Their combination led to maximal growth, migration, and invasion of G1/S-defective astrocytes in vitro and produced progenitor-like transcriptomal profiles that mimic human proneural GBM. Activation of both RTK effector arms was required for in vivo tumorigenesis and produced highly invasive, proneural-like GBM. CONCLUSIONS: These results suggest that cortical astrocytes can be transformed into GBM and that combined dysregulation of MAPK and PI3K signaling revert G1/S-defective astrocytes to a primitive gene expression state. This genetically-defined, immunocompetent model of proneural GBM will be useful for preclinical development of MAPK/PI3K-targeted, subtype-specific therapies.


Subject(s)
Brain Neoplasms/pathology , Cell Transformation, Neoplastic/pathology , Glioblastoma/pathology , Mitogen-Activated Protein Kinases/metabolism , PTEN Phosphohydrolase/physiology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins p21(ras)/physiology , Animals , Apoptosis , Astrocytes/cytology , Astrocytes/metabolism , Blotting, Western , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cell Cycle , Cell Movement , Cell Proliferation , Cells, Cultured , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL