Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 134
Filter
Add more filters

Publication year range
1.
Mol Biol Evol ; 41(8)2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39101626

ABSTRACT

Retroviruses are an ancient viral family that have globally coevolved with vertebrates and impacted their evolution. In Australia, a continent that has been geographically isolated for millions of years, little is known about retroviruses in wildlife, despite the devastating impacts of a retrovirus on endangered koala populations. We therefore sought to identify and characterize Australian retroviruses through reconstruction of endogenous retroviruses from marsupial genomes, in particular the Tasmanian devil due to its high cancer incidence. We screened 19 marsupial genomes and identified over 80,000 endogenous retrovirus fragments which we classified into eight retrovirus clades. The retroviruses were similar to either Betaretrovirus (5/8) or Gammaretrovirus (3/8) retroviruses, but formed distinct phylogenetic clades compared to extant retroviruses. One of the clades (MEBrv 3) lost an envelope but retained retrotranspositional activity, subsequently amplifying throughout all Dasyuridae genomes. Overall, we provide insights into Australian retrovirus evolution and identify a highly active endogenous retrovirus within Dasyuridae genomes.


Subject(s)
Endogenous Retroviruses , Genome , Marsupialia , Phylogeny , Animals , Endogenous Retroviruses/genetics , Marsupialia/virology , Australia , Evolution, Molecular
2.
Cogn Psychol ; 149: 101643, 2024 03.
Article in English | MEDLINE | ID: mdl-38452720

ABSTRACT

There is a high-capacity store of brief time span (∼1000 ms) which information enters from perceptual processing, often called iconic memory or sensory memory. It is proposed that a main function of this store is to hold recent perceptual information in a temporally segregated representation, named the perceptual timescape. The perceptual timescape is a continually active representation of change and continuity over time that endows the perceived present with a perceived history. This is accomplished primarily by two kinds of time marking information: time distance information, which marks all items of information in the perceptual timescape according to how far in the past they occurred, and ordinal temporal information, which organises items of information in terms of their temporal order. Added to that is information about connectivity of perceptual objects over time. These kinds of information connect individual items over a brief span of time so as to represent change, persistence, and continuity over time. It is argued that there is a one-way street of information flow from perceptual processing either to the perceived present or directly into the perceptual timescape, and thence to working memory. Consistent with that, the information structure of the perceptual timescape supports postdictive reinterpretations of recent perceptual information. Temporal integration on a time scale of hundreds of milliseconds takes place in perceptual processing and does not draw on information in the perceptual timescape, which is concerned with temporal segregation, not integration.


Subject(s)
Attention , Memory, Short-Term , Humans
3.
Article in English | MEDLINE | ID: mdl-32482672

ABSTRACT

Flaviviruses such as Zika virus (ZIKV), dengue virus (DENV), and West Nile virus (WNV) are major global pathogens for which safe and effective antiviral therapies are not currently available. To identify antiviral small molecules with well-characterized safety and bioavailability profiles, we screened a library of 2,907 approved drugs and pharmacologically active compounds for inhibitors of ZIKV infection using a high-throughput cell-based immunofluorescence assay. Interestingly, estrogen receptor modulators raloxifene hydrochloride and quinestrol were among 15 compounds that significantly inhibited ZIKV infection in repeat screens. Subsequent validation studies revealed that these drugs effectively inhibit ZIKV, DENV, and WNV (Kunjin strain) infection at low micromolar concentrations with minimal cytotoxicity in Huh-7.5 hepatoma cells and HTR-8 placental trophoblast cells. Since these cells lack detectable expression of estrogen receptors-α and -ß (ER-α and ER-ß) and similar antiviral effects were observed in the context of subgenomic DENV and ZIKV replicons, these compounds appear to inhibit viral RNA replication in a manner that is independent of their known effects on estrogen receptor signaling. Taken together, quinestrol, raloxifene hydrochloride, and structurally related analogues warrant further investigation as potential therapeutics for treatment of flavivirus infections.


Subject(s)
Dengue Virus , Flavivirus Infections , Flavivirus , Zika Virus Infection , Zika Virus , Dengue Virus/genetics , Estrogen Receptor Modulators , Female , Humans , Placenta , Pregnancy
4.
Laterality ; 25(3): 292-324, 2020 May.
Article in English | MEDLINE | ID: mdl-31680619

ABSTRACT

Studies have found a tendency for heads in portraits to be oriented so that more of the left side than the right side of the face is visible, though it is stronger in female than in male portraits. Two studies are reported that set head orientation in the context of body and gaze orientation, and additionally look at effects of artistic medium (paintings, photographs, and drawings) and changes in the tendency over time. There was a strong congruency between body, head, and gaze orientation. In particular, body and head had the same orientation in more than three-quarters of the portraits in both samples. Gender differences were found only for paintings and only in Study 1. There were several strong effects of artistic medium; for example, frontal orientation of gaze was much less common in drawings than in paintings and photographs. There were also several changes over time; for example, frontal orientation of body and head tended to increase going into the twentieth century. The results show that body, head, and gaze direction need to be considered together, and hypotheses concerned only with head orientation cannot provide a complete explanation for posing orientation. Four possible approaches to explanations are briefly discussed.


Subject(s)
Functional Laterality , Paintings , Female , Fixation, Ocular , Head , Humans , Male , Orientation , Orientation, Spatial
5.
Med Res Rev ; 39(3): 860-886, 2019 05.
Article in English | MEDLINE | ID: mdl-30584800

ABSTRACT

Human noroviruses inflict a significant health burden on society and are responsible for approximately 699 million infections and over 200 000 estimated deaths worldwide each year. Yet despite significant research efforts, approved vaccines or antivirals to combat this pathogen are still lacking. Safe and effective antivirals are not available, particularly for chronically infected immunocompromised individuals, and for prophylactic applications to protect high-risk and vulnerable populations in outbreak settings. Since the discovery of human norovirus in 1972, the lack of a cell culture system has hindered biological research and antiviral studies for many years. Recent breakthroughs in culturing human norovirus have been encouraging, however, further development and optimization of these novel methodologies are required to facilitate more robust replication levels, that will enable reliable serological and replication studies, as well as advances in antiviral development. In the last few years, considerable progress has been made toward the development of norovirus antivirals, inviting an updated review. This review focuses on potential therapeutics that have been reported since 2010, which were examined across at least two model systems used for studying human norovirus or its enzymes. In addition, we have placed emphasis on antiviral compounds with a defined chemical structure. We include a comprehensive outline of direct-acting antivirals and offer a discussion of host-modulating compounds, a rapidly expanding and promising area of antiviral research.


Subject(s)
Antiviral Agents/pharmacology , Norovirus/drug effects , Animals , Antiviral Agents/chemistry , Disease Models, Animal , Drug Development , Genome, Viral , Humans , Norovirus/genetics , Virus Replication/drug effects
6.
Article in English | MEDLINE | ID: mdl-30885901

ABSTRACT

Globally, hepatitis E virus (HEV) causes significant morbidity and mortality each year. Despite this burden, there are no specific antivirals available to treat HEV patients, and the only licensed vaccine is not available outside China. Ribavirin and alpha interferon are used to treat chronic HEV infections; however, severe side effects and treatment failure are commonly reported. Therefore, this study aimed to identify potential antivirals for further development to combat HEV infection. We selected 16 compounds from the nucleoside and nonnucleoside antiviral classes that range in developmental status from late preclinical to FDA approved and evaluated them as potential antivirals for HEV infection, using genotype 1 replicon luminescence studies and replicon RNA quantification. Two potent inhibitors of HEV replication included NITD008 (half-maximal effective concentration [EC50], 0.03 µM; half-maximal cytotoxic concentration [CC50], >100 µM) and GPC-N114 (EC50, 1.07 µM, CC50, >100 µM), and both drugs reduced replicon RNA levels in cell culture (>50% reduction with either 10 µM GPC-N114 or 2.50 µM NITD008). Furthermore, GPC-N114 and NITD008 were synergistic in combinational treatment (combination index, 0.4) against HEV replication, allowing for dose reduction indices of 20.42 and 8.82 at 50% inhibition, respectively. Sofosbuvir has previously exhibited mixed results against HEV as an antiviral, both in vitro and in a few clinical applications; however, in this study it was effective against the HEV genotype 1 replicon (EC50, 1.97 µM; CC50, >100 µM) and reduced replicon RNA levels (47.2% reduction at 10 µM). Together these studies indicate drug repurposing may be a promising pathway for development of antivirals against HEV infection.


Subject(s)
Adenosine/analogs & derivatives , Antiviral Agents/pharmacology , Hepatitis E virus/drug effects , Hepatitis E/drug therapy , Nitriles/pharmacology , Nitro Compounds/pharmacology , Adenosine/pharmacology , Antiviral Agents/therapeutic use , Cell Line, Tumor , Dose-Response Relationship, Drug , Drug Synergism , Genes, Reporter , Hepatitis E/virology , Humans , RNA, Viral/analysis , Replicon/drug effects
7.
J Gen Virol ; 100(11): 1469-1470, 2019 11.
Article in English | MEDLINE | ID: mdl-31573467

ABSTRACT

The family Caliciviridae includes viruses with single-stranded, positive-sense RNA genomes of 7.4-8.3 kb. The most clinically important representatives are human noroviruses, which are a leading cause of acute gastroenteritis in humans. Virions are non-enveloped with icosahedral symmetry. Members of seven genera infect mammals (Lagovirus, Norovirus, Nebovirus, Recovirus, Sapovirus, Valovirus and Vesivirus), members of two genera infect birds (Bavovirus and Nacovirus), and members of two genera infect fish (Minovirus and Salovirus). This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Caliciviridae, which is available at ictv.global/report/caliciviridae.


Subject(s)
Caliciviridae/classification , RNA, Viral/genetics , Virion/ultrastructure , Animals , Birds , Caliciviridae/genetics , Caliciviridae/isolation & purification , Caliciviridae/ultrastructure , Caliciviridae Infections/virology , Fishes , Mammals
8.
J Gen Virol ; 100(10): 1393-1406, 2019 10.
Article in English | MEDLINE | ID: mdl-31483239

ABSTRACT

Noroviruses are genetically diverse RNA viruses associated with acute gastroenteritis in mammalian hosts. Phylogenetically, they can be segregated into different genogroups as well as P (polymerase)-groups and further into genotypes and P-types based on amino acid diversity of the complete VP1 gene and nucleotide diversity of the RNA-dependent RNA polymerase (RdRp) region of ORF1, respectively. In recent years, several new noroviruses have been reported that warrant an update of the existing classification scheme. Using previously described 2× standard deviation (sd) criteria to group sequences into separate clusters, we expanded the number of genogroups to 10 (GI-GX) and the number of genotypes to 48 (9 GI, 27 GII, 3 GIII, 2 GIV, 2 GV, 2 GVI and 1 genotype each for GVII, GVIII, GIX [formerly GII.15] and GX). Viruses for which currently only one sequence is available in public databases were classified into tentative new genogroups (GNA1 and GNA2) and genotypes (GII.NA1, GII.NA2 and GIV.NA1) with their definitive assignment awaiting additional related sequences. Based on nucleotide diversity in the RdRp region, noroviruses can be divided into 60 P-types (14 GI, 37 GII, 2 GIII, 1 GIV, 2 GV, 2 GVI, 1 GVII and 1 GX), 2 tentative P-groups and 14 tentative P-types. Future classification and nomenclature updates will be based on complete genome sequences and will be coordinated and disseminated by the international norovirus classification-working group.


Subject(s)
Caliciviridae Infections/virology , Norovirus/classification , Norovirus/genetics , Gastroenteritis/virology , Genome, Viral , Genotype , Humans , Norovirus/isolation & purification , Phylogeny
9.
J Virol ; 92(18)2018 09 15.
Article in English | MEDLINE | ID: mdl-29976673

ABSTRACT

Human noroviruses are highly infectious single-stranded RNA (ssRNA) viruses and the major cause of nonbacterial gastroenteritis worldwide. With the discovery of murine norovirus (MNV) and the introduction of an effective model for norovirus infection and replication, knowledge about infection mechanisms and their impact on the host immune response has progressed. A major player in the immune response against viral infections is the group of major histocompatibility complex (MHC) class I proteins, which present viral antigen to immune cells. We have observed that MNV interferes with the antigen presentation pathway in infected cells by reducing the surface expression of MHC class I proteins. We have shown that MNV-infected dendritic cells or macrophages have lower levels of surface expression of MHC class I proteins than uninfected and bystander cells. Transcriptional analysis revealed that this defect is not due to a decreased amount of mRNA but is reflected at the protein level. We have determined that this defect is mediated via the MNV NS3 protein. Significantly, treatment of MNV-infected cells with the endocytic recycling inhibitor dynasore completely restored the surface expression of MHC class I proteins, whereas treatment with the proteasome inhibitor MG132 partly restored such expression. These observations indicate a role for endocytic recycling and proteasome-mediated degradation of these proteins. Importantly, we show that due to the reduced surface expression of MHC class I proteins, antigen presentation is inhibited, resulting in the inability of CD8+ T cells to become activated in the presence of MNV-infected cells.IMPORTANCE Human noroviruses (HuNoVs) are the major cause of nonbacterial gastroenteritis worldwide and impose a great burden on patients and health systems every year. So far, no antiviral treatment or vaccine is available. We show that MNV evades the host immune response by reducing the amount of MHC class I proteins displayed on the cell surface. This reduction leads to a decrease in viral antigen presentation and interferes with the CD8+ T cell response. CD8+ T cells respond to foreign antigen by activating cytotoxic pathways and inducing immune memory to the infection. By evading this immune response, MNV is able to replicate efficiently in the host, and the ability of cells to respond to consecutive infections is impaired. These findings have a major impact on our understanding of the ways in which noroviruses interact with the host immune response and manipulate immune memory.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Caliciviridae Infections/immunology , Histocompatibility Antigens Class I/metabolism , Norovirus/pathogenicity , Animals , Antigen Presentation , Caliciviridae Infections/virology , Dendritic Cells/immunology , Lymphocyte Activation , Macrophages/immunology , Mice , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Viral Nonstructural Proteins/metabolism
10.
J Virol ; 92(17)2018 09 01.
Article in English | MEDLINE | ID: mdl-29899109

ABSTRACT

Cane toads are a notorious invasive species, inhabiting over 1.2 million km2 of Australia and threatening native biodiversity. The release of pathogenic cane toad viruses is one possible biocontrol strategy yet is currently hindered by the poorly described cane toad virome. Metatranscriptomic analysis of 16 cane toad livers revealed the presence of a novel and full-length picornavirus, Rhimavirus A (RhiV-A), a member of a reptile- and amphibian-specific cluster of the Picornaviridae basal to the Kobuvirus-like group. In the combined liver transcriptome, we also identified a complete genome sequence of a distinct epsilonretrovirus, Rhinella marina endogenous retrovirus (RMERV). The recently sequenced cane toad genome contains 8 complete RMERV proviruses as well as 21 additional truncated insertions. The oldest full-length RMERV provirus was estimated to have inserted 1.9 million years ago (MYA). To screen for these viral sequences in additional toads, we analyzed publicly available transcriptomes from six diverse Australian locations. RhiV-A transcripts were identified in toads sampled from three locations across 1,000 km of Australia, stretching to the current Western Australia (WA) invasion front, while RMERV transcripts were observed at all six sites. Finally, we scanned the cane toad genome for nonretroviral endogenous viral elements, finding three sequences related to small DNA viruses in the family Circoviridae This shows ancestral circoviral infection with subsequent genomic integration. The identification of these current and past viral infections enriches our knowledge of the cane toad virome, an understanding of which will facilitate future work on infection and disease in this important invasive species.IMPORTANCE Cane toads are poisonous amphibians that were introduced to Australia in 1935 for insect control. Since then, their population has increased dramatically, and they now threaten many native Australian species. One potential method to control the population is to release a cane toad virus with high mortality rates, yet few cane toad viruses have been characterized. This study samples cane toads from different Australian locations and uses an RNA sequencing and computational approach to find new viruses. We report novel complete picornavirus and retrovirus sequences that were genetically similar to viruses infecting frogs, reptiles, and fish. Using data generated in other studies, we show that these viral sequences are present in cane toads from distinct Australian locations. Three sequences related to circoviruses were also found in the toad genome. The identification of new viral sequences will aid future studies that investigate their prevalence and potential as agents for biocontrol.


Subject(s)
Bufo marinus/virology , Proviruses/classification , Proviruses/isolation & purification , Viruses/classification , Viruses/isolation & purification , Animals , Gene Expression Profiling , Metagenomics , Proviruses/genetics , Viruses/genetics , Western Australia
11.
PLoS Pathog ; 13(10): e1006705, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29077760

ABSTRACT

Human noroviruses (huNoV) are the most frequent cause of non-bacterial acute gastroenteritis worldwide, particularly genogroup II genotype 4 (GII.4) variants. The viral nonstructural (NS) proteins encoded by the ORF1 polyprotein induce vesical clusters harboring the viral replication sites. Little is known so far about the ultrastructure of these replication organelles or the contribution of individual NS proteins to their biogenesis. We compared the ultrastructural changes induced by expression of norovirus ORF1 polyproteins with those induced upon infection with murine norovirus (MNV). Characteristic membrane alterations induced by ORF1 expression resembled those found in MNV infected cells, consisting of vesicle accumulations likely built from the endoplasmic reticulum (ER) which included single membrane vesicles (SMVs), double membrane vesicles (DMVs) and multi membrane vesicles (MMVs). In-depth analysis using electron tomography suggested that MMVs originate through the enwrapping of SMVs with tubular structures similar to mechanisms reported for picornaviruses. Expression of GII.4 NS1-2, NS3 and NS4 fused to GFP revealed distinct membrane alterations when analyzed by correlative light and electron microscopy. Expression of NS1-2 induced proliferation of smooth ER membranes forming long tubular structures that were affected by mutations in the active center of the putative NS1-2 hydrolase domain. NS3 was associated with ER membranes around lipid droplets (LDs) and induced the formation of convoluted membranes, which were even more pronounced in case of NS4. Interestingly, NS4 was the only GII.4 protein capable of inducing SMV and DMV formation when expressed individually. Our work provides the first ultrastructural analysis of norovirus GII.4 induced vesicle clusters and suggests that their morphology and biogenesis is most similar to picornaviruses. We further identified NS4 as a key factor in the formation of membrane alterations of huNoV and provide models of the putative membrane topologies of NS1-2, NS3 and NS4 to guide future studies.


Subject(s)
Norovirus/physiology , RNA, Viral/metabolism , Viral Nonstructural Proteins/metabolism , Virus Replication/physiology , Animals , Cell Line , Endoplasmic Reticulum/metabolism , Humans , Norovirus/ultrastructure , Proteins/metabolism , Virus Replication/genetics
12.
Cell Microbiol ; 20(8): e12848, 2018 08.
Article in English | MEDLINE | ID: mdl-29582535

ABSTRACT

West Nile virus (WNV) is a single-stranded, positive sense RNA virus of the family Flaviviridae and is a significant pathogen of global medical importance. Flavivirus replication is known to be exclusively cytoplasmic, but we show here for the first time that access to the nucleus of the WNV strain Kunjin (WNVKUN ) RNA-dependent RNA polymerase (protein NS5) is central to WNVKUN virus production. We show that treatment of cells with the specific nuclear export inhibitor leptomycin B (LMB) results in increased NS5 nuclear accumulation in WNVKUN -infected cells and NS5-transfected cells, indicative of nucleocytoplasmic shuttling under normal conditions. We used site-directed mutagenesis to identify the nuclear localisation sequence (NLS) responsible for WNVKUN NS5 nuclear targeting, observing that mutation of this NLS resulted in exclusively cytoplasmic accumulation of NS5 even in the presence of leptomycin B. Introduction of NS5 NLS mutations into FLSDX, an infectious clone of WNVKUN , resulted in lethality, suggesting that the ability of NS5 to traffic into the nucleus in integral to WNVKUN replication. This study thus shows for the first time that NLS-dependent trafficking into the nucleus during infection of WNVKUN NS5 is critical for viral replication. Excitingly, specific inhibitors of NS5 nuclear import reduce WNVKUN virus production, proving the principle that inhibition of WNVKUN NS5 nuclear import is a viable therapeutic avenue for antiviral drug development in the future.


Subject(s)
Viral Nonstructural Proteins/metabolism , Virus Replication , West Nile virus/enzymology , West Nile virus/physiology , Animals , Chlorocebus aethiops , Enzyme Inhibitors/metabolism , Fatty Acids, Unsaturated/metabolism , Mutagenesis, Site-Directed , Nuclear Localization Signals , Protein Transport , Vero Cells , Viral Nonstructural Proteins/genetics , Viral Plaque Assay
13.
Laterality ; 24(5): 525-537, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30444182

ABSTRACT

There is evidence for a tendency for European portrait paintings to have the head oriented so that the left side of the face is visible more than the right side. This is particularly the case for female sitters. There is evidence that the left side of the face shows emotion more than the right side does, so it has been proposed that there is a tendency for artists or sitters to want to show more of the emotionality of the sitter. It is shown here that the left-side tendency varies by date. In two studies, large samples were drawn from European gallery collections (study 1) and the National Portrait Gallery in London (study 2). The studies showed a strong left side tendency before 1600, absence of the tendency in the seventeenth and eighteenth centuries, and some recurrence of it in the nineteenth and twentieth centuries, modulated by changing gender differences. These findings show that cultural, historical, or art-historical factors are likely to be involved in determining tendencies in head orientation as well as psychological ones.


Subject(s)
Head , Orientation, Spatial , Paintings/history , Portraits as Topic/history , Female , History, 15th Century , History, 16th Century , History, 17th Century , History, 18th Century , History, 19th Century , History, 20th Century , Humans , Male , Sex Factors , Time Factors
14.
Article in English | MEDLINE | ID: mdl-29530841

ABSTRACT

Norovirus infections are a significant health and economic burden globally, accounting for hundreds of millions of cases of acute gastroenteritis every year. In the absence of an approved norovirus vaccine, there is an urgent need to develop antivirals to treat chronic infections and provide prophylactic therapy to limit viral spread during epidemics and pandemics. Toll-like receptor (TLR) agonists have been explored widely for their antiviral potential, and several are progressing through clinical trials for the treatment of human immunodeficiency virus (HIV) and hepatitis B virus (HBV) and as adjuvants for norovirus viruslike particle (VLP) vaccines. However, norovirus therapies in development are largely direct-acting antivirals (DAAs) with fewer compounds that target the host. Our aim was to assess the antiviral potential of TLR7 agonist immunomodulators on norovirus infection using the murine norovirus (MNV) and human Norwalk replicon models. TLR7 agonists R-848, Gardiquimod, GS-9620, R-837, and loxoribine were screened using a plaque reduction assay, and each displayed inhibition of MNV replication (50% effective concentrations [EC50s], 23.5 nM, 134.4 nM, 0.59 µM, 1.5 µM, and 79.4 µM, respectively). RNA sequencing of TLR7-stimulated cells revealed a predominant upregulation of innate immune response genes and interferon (IFN)-stimulated genes (ISGs) that are known to drive an antiviral state. Furthermore, the combination of R-848 and the nucleoside analogue (NA) 2'C-methylcytidine elicited a synergistic antiviral effect against MNV, demonstrating that combinational therapy of host modulators and DAAs might be used to reduce drug cytotoxicity. In summary, we have identified that TLR7 agonists display potent inhibition of norovirus replication and are a therapeutic option to combat norovirus infections.


Subject(s)
Antiviral Agents/therapeutic use , Caliciviridae Infections/drug therapy , Toll-Like Receptor 7/metabolism , Aminoquinolines/therapeutic use , Animals , Cell Line , Guanosine/analogs & derivatives , Guanosine/therapeutic use , Humans , Imidazoles/therapeutic use , Imiquimod/therapeutic use , Mice , Pteridines/therapeutic use , RAW 264.7 Cells , Toll-Like Receptor 7/agonists , Virus Replication/drug effects
15.
J Virol ; 91(3)2017 Feb 01.
Article in English | MEDLINE | ID: mdl-27881660

ABSTRACT

Norovirus (NoV) infections are a significant health burden to society, yet the lack of reliable tissue culture systems has hampered the development of appropriate antiviral therapies. Here we show that the NoV NS3 protein, derived from murine NoV (MNV), is intimately associated with the MNV replication complex and the viral replication intermediate double-stranded RNA (dsRNA). We observed that when expressed individually, MNV NS3 and NS3 encoded by human Norwalk virus (NV) induced the formation of distinct vesicle-like structures that did not colocalize with any particular protein markers to cellular organelles but localized to cellular membranes, in particular those with a high cholesterol content. Both proteins also showed some degree of colocalization with the cytoskeleton marker ß-tubulin. Although the distribution of MNV and NV NS3s were similar, NV NS3 displayed a higher level of colocalization with the Golgi apparatus and the endoplasmic reticulum (ER). However, we observed that although both proteins colocalized in membranes counterstained with filipin, an indicator of cholesterol content, MNV NS3 displayed a greater association with flotillin and stomatin, proteins known to associate with sphingolipid- and cholesterol-rich microdomains. Utilizing time-lapse epifluorescence microscopy, we observed that the membrane-derived vesicular structures induced by MNV NS3 were highly motile and dynamic in nature, and their movement was dependent on intact microtubules. These results begin to interrogate the functions of NoV proteins during virus replication and highlight the conserved properties of the NoV NS3 proteins among the seven Norovirus genogroups. IMPORTANCE: Many mechanisms involved in the replication of norovirus still remain unclear, including the role for the NS3 protein, one of seven nonstructural viral proteins, which remains to be elucidated. This study reveals that murine norovirus (MNV) NS3 is intimately associated with the viral replication complex and dsRNA. We observed that the NS3 proteins of both MNV and Norwalk virus (NV) induce prominent vesicular structures and that this formation is dependent on microtubules and cellular cholesterol. Thus, this study contributes to our understanding of protein function within different Norovirus genogroups and expands a growing knowledge base on the interaction between positive-strand RNA [(+)RNA] viruses and cellular membranes that contribute to the biogenesis of virus-induced membrane organelles. This study contributes to our understanding of viral protein function and the ability of a viral protein to recruit specific cellular organelles and lipids that enable replication.


Subject(s)
Caliciviridae Infections/metabolism , Caliciviridae Infections/virology , Lipid Metabolism , Microtubules/metabolism , Norovirus/physiology , Viral Nonstructural Proteins/metabolism , Virus Replication , Amino Acid Sequence , Animals , Cell Line , Chlorocebus aethiops , Cholesterol/metabolism , Host-Pathogen Interactions , Intracellular Space , Membrane Microdomains/metabolism , Membrane Proteins/metabolism , Mice , Protein Binding , Protein Transport , RNA, Double-Stranded/metabolism , RNA, Viral/metabolism , Vero Cells , Viral Nonstructural Proteins/chemistry
16.
Conscious Cogn ; 60: 98-126, 2018 04.
Article in English | MEDLINE | ID: mdl-29549714

ABSTRACT

This paper reviews proposals that conscious perception consists, in whole or part, of successive discrete temporal frames on the sub-second time scale, each frame containing information registered as simultaneous or static. Although the idea of discrete frames in conscious perception cannot be regarded as falsified, there are many problems. Evidence does not consistently support any proposed duration or range of durations for frames. EEG waveforms provide evidence of periodicity in brain activity, but not necessarily in conscious perception. Temporal properties of perceptual processes are flexible in response to competing processing demands, which is hard to reconcile with the relative inflexibility of regular frames. There are also problems concerning the definition of frames, the need for informational connections between frames, the means by which boundaries between frames are established, and the apparent requirement for a storage buffer for information awaiting entry to the next frame.


Subject(s)
Brain Waves/physiology , Consciousness/physiology , Models, Psychological , Perception/physiology , Humans
17.
Psychol Res ; 82(4): 652-664, 2018 Jul.
Article in English | MEDLINE | ID: mdl-28337549

ABSTRACT

Many studies of perceptual impressions of causality have used a stimulus in which a moving object (the launcher) contacts a stationary object (the target) and the latter then moves off. Such stimuli give rise to an impression that the launcher makes the target move. In the present experiments, instead of a single target object, an array of four vertically aligned objects was used. The launcher contacted none of them, but stopped at a point between the two central objects. The four objects then moved with similar motion properties, exhibiting the Gestalt property of common fate. Strong impressions of causality were reported for this stimulus. It is argued that the array of four objects was perceived, by the likelihood principle, as a single object with some parts unseen, that the launcher was perceived as contacting one of the unseen parts of this object, and that the causal impression resulted from that. Supporting that argument, stimuli in which kinematic features were manipulated so as to weaken or eliminate common fate yielded weaker impressions of causality.


Subject(s)
Causality , Motion Perception , Biomechanical Phenomena , Female , Humans , Male , Photic Stimulation , Young Adult
20.
BMC Evol Biol ; 16(1): 210, 2016 10 12.
Article in English | MEDLINE | ID: mdl-27733122

ABSTRACT

BACKGROUND: Hepatitis E virus (HEV) is an enteric, single-stranded, positive sense RNA virus and a significant etiological agent of hepatitis, causing sporadic infections and outbreaks globally. Tracing the evolutionary ancestry of HEV has proved difficult since its identification in 1992, it has been reclassified several times, and confusion remains surrounding its origins and ancestry. RESULTS: To reveal close protein relatives of the Hepeviridae family, similarity searching of the GenBank database was carried out using a complete Orthohepevirus A, HEV genotype I (GI) ORF1 protein sequence and individual proteins. The closest non-Hepeviridae homologues to the HEV ORF1 encoded polyprotein were found to be those from the lepidopteran-infecting Alphatetraviridae family members. A consistent relationship to this was found using a phylogenetic approach; the Hepeviridae RdRp clustered with those of the Alphatetraviridae and Benyviridae families. This puts the Hepeviridae ORF1 region within the "Alpha-like" super-group of viruses. In marked contrast, the HEV GI capsid was found to be most closely related to the chicken astrovirus capsid, with phylogenetic trees clustering the Hepeviridae capsid together with those from the Astroviridae family, and surprisingly within the "Picorna-like" supergroup. These results indicate an ancient recombination event has occurred at the junction of the non-structural and structure encoding regions, which led to the emergence of the entire Hepeviridae family. The Astroviridae capsid is also closely related to the Tymoviridae family of monopartite, T = 3 icosahedral plant viruses, whilst its non-structural region is related to viruses of the Potyviridae; a large family of plant-infecting viruses with a flexible filamentous rod-shaped virion. Thus, we identified a separate inter-viral family recombination event, again at the non-structural/structural junction, which likely led to the creation of the Astroviridae. CONCLUSIONS: In summary, we have shown that new viral families have been created though recombination at the junction of the genome that encodes non-structural and structural proteins, and such recombination events are implicated in the genesis of important human pathogens; HEV, astrovirus and rubella virus.


Subject(s)
Hepatitis E virus/genetics , Recombination, Genetic , Viral Proteins/genetics , Amino Acid Sequence , Animals , Biological Evolution , Hepatitis E virus/classification , Humans , Phylogeny , Protein Domains , Viral Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL