Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Cell ; 184(4): 1110-1121.e16, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33606980

ABSTRACT

Electron cryotomography (cryoET), an electron cryomicroscopy (cryoEM) modality, has changed our understanding of biological function by revealing the native molecular details of membranes, viruses, and cells. However, identification of individual molecules within tomograms from cryoET is challenging because of sample crowding and low signal-to-noise ratios. Here, we present a tagging strategy for cryoET that precisely identifies individual protein complexes in tomograms without relying on metal clusters. Our method makes use of DNA origami to produce "molecular signposts" that target molecules of interest, here via fluorescent fusion proteins, providing a platform generally applicable to biological surfaces. We demonstrate the specificity of signpost origami tags (SPOTs) in vitro as well as their suitability for cryoET of membrane vesicles, enveloped viruses, and the exterior of intact mammalian cells.


Subject(s)
Cell Membrane/ultrastructure , Cryoelectron Microscopy , DNA/ultrastructure , Electron Microscope Tomography , Animals , Aptamers, Nucleotide/chemistry , Biophysical Phenomena , Cell Line , Female , Fluorescence , Humans , Nanoparticles/ultrastructure
2.
J Neurosci ; 33(29): 11839-51, 2013 Jul 17.
Article in English | MEDLINE | ID: mdl-23864674

ABSTRACT

Little is known about chromosomal loopings involving proximal promoter and distal enhancer elements regulating GABAergic gene expression, including changes in schizophrenia and other psychiatric conditions linked to altered inhibition. Here, we map in human chromosome 2q31 the 3D configuration of 200 kb of linear sequence encompassing the GAD1 GABA synthesis enzyme gene locus, and we describe a loop formation involving the GAD1 transcription start site and intergenic noncoding DNA elements facilitating reporter gene expression. The GAD1-TSS(-50kbLoop) was enriched with nucleosomes epigenetically decorated with the transcriptional mark, histone H3 trimethylated at lysine 4, and was weak or absent in skin fibroblasts and pluripotent stem cells compared with neuronal cultures differentiated from them. In the prefrontal cortex of subjects with schizophrenia, GAD1-TSS(-50kbLoop) was decreased compared with controls, in conjunction with downregulated GAD1 expression. We generated transgenic mice expressing Gad2 promoter-driven green fluorescent protein-conjugated histone H2B and confirmed that Gad1-TSS(-55kbLoop), the murine homolog to GAD1-TSS(-50kbLoop), is a chromosomal conformation specific for GABAergic neurons. In primary neuronal culture, Gad1-TSS(-55kbLoop) and Gad1 expression became upregulated when neuronal activity was increased. We conclude that 3D genome architectures, including chromosomal loopings for promoter-enhancer interactions involved in the regulation of GABAergic gene expression, are conserved between the rodent and primate brain, and subject to developmental and activity-dependent regulation, and disordered in some cases with schizophrenia. More broadly, the findings presented here draw a connection between noncoding DNA, spatial genome architecture, and neuronal plasticity in development and disease.


Subject(s)
Glutamate Decarboxylase/genetics , Prefrontal Cortex/metabolism , Schizophrenia/genetics , Animals , Antipsychotic Agents/pharmacology , Cells, Cultured , Chromosomes, Human, Pair 2 , Clozapine/pharmacology , DNA Methylation , Down-Regulation , Fibroblasts/metabolism , Gene Expression Regulation , Glutamate Decarboxylase/metabolism , Haloperidol/pharmacology , Hippocampus/drug effects , Hippocampus/metabolism , Histones/genetics , Histones/metabolism , Humans , Mice , Mice, Transgenic , Neurons/drug effects , Neurons/metabolism , Schizophrenia/metabolism
3.
J Neurosci ; 27(42): 11254-62, 2007 Oct 17.
Article in English | MEDLINE | ID: mdl-17942719

ABSTRACT

Alterations in GABAergic mRNA expression play a key role for prefrontal dysfunction in schizophrenia and other neurodevelopmental disease. Here, we show that histone H3-lysine 4 methylation, a chromatin mark associated with the transcriptional process, progressively increased at GAD1 and other GABAergic gene promoters (GAD2, NPY, SST) in human prefrontal cortex (PFC) from prenatal to peripubertal ages and throughout adulthood. Alterations in schizophrenia included decreased GAD1 expression and H3K4-trimethylation, predominantly in females and in conjunction with a risk haplotype at the 5' end of GAD1. Heterozygosity for a truncated, lacZ knock-in allele of mixed-lineage leukemia 1 (Mll1), a histone methyltransferase expressed in GABAergic and other cortical neurons, resulted in decreased H3K4 methylation at GABAergic gene promoters. In contrast, Gad1 H3K4 (tri)methylation and Mll1 occupancy was increased in cerebral cortex of mice after treatment with the atypical antipsychotic, clozapine. These effects were not mimicked by haloperidol or genetic ablation of dopamine D2 and D3 receptors, suggesting that blockade of D2-like signaling is not sufficient for clozapine-induced histone methylation. Therefore, chromatin remodeling mechanisms at GABAergic gene promoters, including MLL1-mediated histone methylation, operate throughout an extended period of normal human PFC development and play a role in the neurobiology of schizophrenia.


Subject(s)
DNA Methylation , Histones/metabolism , Myeloid-Lymphoid Leukemia Protein/physiology , Prefrontal Cortex/metabolism , Promoter Regions, Genetic/physiology , Schizophrenia/metabolism , gamma-Aminobutyric Acid/physiology , Adult , Animals , Cells, Cultured , Child , Female , Glutamate Decarboxylase/biosynthesis , Glutamate Decarboxylase/genetics , Histone-Lysine N-Methyltransferase , Histones/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Myeloid-Lymphoid Leukemia Protein/genetics , Prefrontal Cortex/enzymology , Prefrontal Cortex/pathology , Rats , Schizophrenia/enzymology , Schizophrenia/genetics , gamma-Aminobutyric Acid/genetics
4.
Biol Psychiatry ; 75(12): 961-9, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-23958183

ABSTRACT

Less than 1.5% of the human genome encodes protein. However, vast portions of the human genome are subject to transcriptional and epigenetic regulation, and many noncoding regulatory DNA elements are thought to regulate the spatial organization of interphase chromosomes. For example, chromosomal "loopings" are pivotal for the orderly process of gene expression, by enabling distal regulatory enhancer or silencer elements to directly interact with proximal promoter and transcription start sites, potentially bypassing hundreds of kilobases of interspersed sequence on the linear genome. To date, however, epigenetic studies in the human brain are mostly limited to the exploration of DNA methylation and posttranslational modifications of the nucleosome core histones. In contrast, very little is known about the regulation of supranucleosomal structures. Here, we show that chromosome conformation capture, a widely used approach to study higher-order chromatin, is applicable to tissue collected postmortem, thereby informing about genome organization in the human brain. We introduce chromosome conformation capture protocols for brain and compare higher-order chromatin structures at the chromosome 6p22.2-22.1 schizophrenia and bipolar disorder susceptibility locus, and additional neurodevelopmental risk genes, (DPP10, MCPH1) in adult prefrontal cortex and various cell culture systems, including neurons derived from reprogrammed skin cells. We predict that the exploration of three-dimensional genome architectures and function will open up new frontiers in human brain research and psychiatric genetics and provide novel insights into the epigenetic risk architectures of regulatory noncoding DNA.


Subject(s)
Bipolar Disorder/genetics , Brain/metabolism , Chromosome Positioning , Genome, Human/genetics , Schizophrenia/genetics , Bipolar Disorder/pathology , Brain/pathology , Cell Culture Techniques , Chromatin/genetics , Chromatin/metabolism , Chromosomes, Human, Pair 6/genetics , Chromosomes, Human, Pair 6/metabolism , Epigenesis, Genetic , Gene Expression Regulation , Humans , Models, Neurological , Schizophrenia/pathology
5.
Neuron ; 84(5): 997-1008, 2014 Dec 03.
Article in English | MEDLINE | ID: mdl-25467983

ABSTRACT

Three-dimensional chromosomal conformations regulate transcription by moving enhancers and regulatory elements into spatial proximity with target genes. Here we describe activity-regulated long-range loopings bypassing up to 0.5 Mb of linear genome to modulate NMDA glutamate receptor GRIN2B expression in human and mouse prefrontal cortex. Distal intronic and 3' intergenic loop formations competed with repressor elements to access promoter-proximal sequences, and facilitated expression via a "cargo" of AP-1 and NRF-1 transcription factors and TALE-based transcriptional activators. Neuronal deletion or overexpression of Kmt2a/Mll1 H3K4- and Kmt1e/Setdb1 H3K9-methyltransferase was associated with higher-order chromatin changes at distal regulatory Grin2b sequences and impairments in working memory. Genetic polymorphisms and isogenic deletions of loop-bound sequences conferred liability for cognitive performance and decreased GRIN2B expression. Dynamic regulation of chromosomal conformations emerges as a novel layer for transcriptional mechanisms impacting neuronal signaling and cognition.


Subject(s)
Chromatin/metabolism , Cognition/physiology , Gene Expression Regulation/physiology , Receptors, N-Methyl-D-Aspartate/metabolism , Aged , Aged, 80 and over , Animals , Animals, Newborn , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , Cells, Cultured , Cerebral Cortex/cytology , Cerebral Cortex/ultrastructure , Chromatin/drug effects , Cognition/drug effects , Female , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Middle Aged , Neurons/metabolism , Neurons/ultrastructure , Polymorphism, Single Nucleotide/genetics , Receptors, N-Methyl-D-Aspartate/chemistry , Receptors, N-Methyl-D-Aspartate/genetics , Schizophrenia/drug therapy , Schizophrenia/genetics , Schizophrenia/pathology , Signal Transduction/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
6.
Arch Gen Psychiatry ; 69(3): 314-24, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22065254

ABSTRACT

CONTEXT: Neuronal dysfunction in cerebral cortex and other brain regions could contribute to the cognitive and behavioral defects in autism. OBJECTIVE: To characterize epigenetic signatures of autism in prefrontal cortex neurons. DESIGN: We performed fluorescence-activated sorting and separation of neuronal and nonneuronal nuclei from postmortem prefrontal cortex, digested the chromatin with micrococcal nuclease, and deeply sequenced the DNA from the mononucleosomes with trimethylated H3K4 (H3K4me3), a histone mark associated with transcriptional regulation. Approximately 15 billion base pairs of H3K4me3-enriched sequences were collected from 32 brains. SETTING: Academic medical center. PARTICIPANTS: A total of 16 subjects diagnosed as having autism and 16 control subjects ranging in age from 0.5 to 70 years. MAIN OUTCOME MEASURES: Identification of genomic loci showing autism-associated H3K4me3 changes in prefrontal cortex neurons. RESULTS: Subjects with autism showed no evidence for generalized disruption of the developmentally regulated remodeling of the H3K4me3 landscape that defines normal prefrontal cortex neurons in early infancy. However, excess spreading of H3K4me3 from the transcription start sites into downstream gene bodies and upstream promoters was observed specifically in neuronal chromatin from 4 of 16 autism cases but not in controls. Variable subsets of autism cases exhibit altered H3K4me3 peaks at numerous genes regulating neuronal connectivity, social behaviors, and cognition, often in conjunction with altered expression of the corresponding transcripts. Autism-associated H3K4me3 peaks were significantly enriched in genes and loci implicated in neurodevelopmental diseases. CONCLUSIONS: Prefrontal cortex neurons from subjects with autism show changes in chromatin structures at hundreds of loci genome-wide, revealing considerable overlap between genetic and epigenetic risk maps of developmental brain disorders.


Subject(s)
Autistic Disorder/genetics , DNA Methylation/genetics , Epigenesis, Genetic/genetics , Histones/metabolism , Prefrontal Cortex/metabolism , Adolescent , Adult , Aged , Autistic Disorder/etiology , Autistic Disorder/metabolism , Case-Control Studies , Child , Child, Preschool , Chromatin/genetics , Chromatin/metabolism , DNA Fingerprinting , Female , Flow Cytometry , Histones/genetics , Humans , Male , Middle Aged , Models, Genetic , Neurons/metabolism , Prefrontal Cortex/cytology , Risk Factors , Young Adult
7.
PLoS One ; 5(12): e15878, 2010 Dec 31.
Article in English | MEDLINE | ID: mdl-21209826

ABSTRACT

TAR DNA binding protein 43 KD (TDP-43) is an essential gene that regulates gene transcription, mRNA splicing and stability. In amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), two fatal neurodegenerative diseases, TDP-43 is fragmented, generating multiple fragments that include the C-terminal fragment of ∼25 KD. The role of these fragments in the pathogenesis of ALS and FTD is not clear. Here we investigated the aggregation propensity in various polypeptide regions of TDP-43 in mammalian cells and the effect of these fragments on cultured neurons. By expressing the full length and various TDP-43 fragments in motor neuron-derived NSC-34 cells and primary neurons, we found that both N- and C-terminal fragments of TDP-43 are prone to aggregate and the C-terminal end of RRM2 region is required, though not sufficient, for aggregation. The aggregation of the TDP-43 fragments can drive co-aggregation with the full-length TDP-43, consequently reducing the nuclear TDP-43. In addition, the TDP-43 fragments can impair neurite growth during neuronal differentiation. Importantly, overexpression of the full-length TDP-43 rescues the neurite growth phenotype whereas knockdown of the endogenous TDP-43 reproduces this phenotype. These results suggest that TDP-43 fragments, particularly the pathologically relevant C-terminal fragments, can impair neuronal differentiation by dominant-negatively interfering with the function of the full length TDP-43, thus playing a role in pathogenesis in ALS and FTD.


Subject(s)
DNA-Binding Proteins/chemistry , Genes, Dominant , Neurons/metabolism , Animals , Cell Differentiation , Cell Line, Tumor , Cloning, Molecular , Exons , Genetic Vectors , Green Fluorescent Proteins/chemistry , Humans , Protein Structure, Tertiary , RNA Splicing , RNA, Messenger/metabolism , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL