Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Epidemiol ; 34(4): 180-186, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-37331796

ABSTRACT

BACKGROUND: This study aimed to examine the association between risk of brain tumors and radiofrequency (RF) exposure from mobile phones among young people in Korea and Japan. METHODS: This case-control study of brain tumors in young people was conducted in Korea and Japan under the framework of the international MOBI-Kids study. We included 118 patients diagnosed with brain tumors between 2011 and 2015 and 236 matched appendicitis controls aged 10-24 years. Information on mobile phone use was collected through face-to-face interviews. A detailed RF exposure algorithm, based on the MOBI-Kids algorithm and modified to account for the specificities of Japanese and Korean phones and networks, was used to calculate the odds ratios (ORs) for total cumulative specific energy using conditional logistic regression. RESULTS: The adjusted ORs in the highest tertile of cumulative call time at 1 year before the reference date were 1.61 (95% confidence interval [CI], 0.72-3.60) for all brain tumors and 0.70 (95% CI, 0.16-3.03) for gliomas, with no indication of a trend with exposure. The ORs for glioma specifically, were below 1 in the lowest exposure category. CONCLUSION: This study provided no evidence of a causal association between mobile phone use and risk of brain tumors as a whole or of glioma specifically. Further research will be required to evaluate the impact of newer technologies of communication in the future.


Subject(s)
Brain Neoplasms , Cell Phone , Glioma , Humans , Adolescent , Case-Control Studies , Japan/epidemiology , Brain Neoplasms/epidemiology , Brain Neoplasms/etiology , Glioma/etiology , Glioma/complications , Surveys and Questionnaires , Republic of Korea/epidemiology
2.
Environ Res ; 231(Pt 1): 116011, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37127107

ABSTRACT

INTRODUCTION: The real-life short-term implications of electromagnetic fields (RF-EMF) on cognitive performance and health-related quality of life have not been well studied. The SPUTNIC study (Study Panel on Upcoming Technologies to study Non-Ionizing radiation and Cognition) aimed to investigate possible correlations between mobile phone radiation and human health, including cognition, health-related quality of life and sleep. METHODS: Adult participants tracked various daily markers of RF-EMF exposures (cordless calls, mobile calls, and mobile screen time 4 h prior to each assessment) as well as three health outcomes over ten study days: 1) cognitive performance, 2) health-related quality of life (HRQoL), and 3) sleep duration and quality. Cognitive performance was measured through six "game-like" tests, assessing verbal and visuo-spatial performance repeatedly. HRQoL was assessed as fatigue, mood and stress on a Likert-scale (1-10). Sleep duration and efficiency was measured using activity trackers. We fitted mixed models with random intercepts per participant on cognitive, HRQoL and sleep scores. Possible time-varying confounders were assessed at daily intervals by questionnaire and used for model adjustment. RESULTS: A total of 121 participants ultimately took part in the SPUTNIC study, including 63 from Besancon and 58 from Basel. Self-reported wireless phone use and screen time were sporadically associated with visuo-spatial and verbal cognitive performance, compatible with chance findings. We found a small but robust significant increase in stress 0.03 (0.00-0.06; on a 1-10 Likert-scale) in relation to a 10-min increase in mobile phone screen time. Sleep duration and quality were not associated with either cordless or mobile phone calls, or with screen time. DISCUSSION: The study did not find associations between short-term RF-EMF markers and cognitive performance, HRQoL, or sleep duration and quality. The most consistent finding was increased stress in relation to more screen time, but no association with cordless or mobile phone call time.


Subject(s)
Environmental Exposure , Quality of Life , Adult , Humans , Telephone , Cognition , Sleep
3.
Sensors (Basel) ; 23(7)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37050643

ABSTRACT

With the increasing use of wireless communication systems, assessment of exposure to radio-frequency electromagnetic field (RF-EMF) has now become very important due to the rise of public risk perception. Since people spend more than 70% of their daily time in indoor environments, including home, office, and car, the efforts devoted to indoor RF-EMF exposure assessment has also increased. However, assessment of indoor exposure to RF-EMF using a deterministic approach is challenging and time consuming task as it is affected by uncertainties due to the complexity of the indoor environment and furniture structure, existence of multiple reflection, refraction, diffraction and scattering, temporal variability of exposure, and existence of many obstructions with unknown dielectric properties. Moreover, it is also affected by the existence of uncontrolled factors that can influence the indoor RF-EMF exposure such as the constant movement of people and random movement of furniture and doors as people are working in the building. In this study, a statistical approach is utilized to characterize and model the total indoor RF-EMF down-link (DL) exposure from all cellular bands on each floor over the length of a wing since the significance of distance is very low between any two points on each floor in a wing and the variation of RF-EMF DL exposure is mainly influenced by the local indoor environment. Measurements were conducted in three buildings that are located within a few hundred meters vicinity of two base station sites supporting several cellular technologies (2G, 3G, 4G, and 5G). We apply the one-sample Kolmogorov-Smirnov test on the measurement data, and we prove that the indoor RF-EMF DL exposure on each floor over the length of a wing is a random process governed by a Gaussian distribution. We validate this proposition using leave-one-out cross validation technique. Consequently, we conclude that the indoor RF-EMF DL exposure on each floor over the length of a wing can be modeled by a Gaussian distribution and, therefore, can be characterized by the mean and the standard deviation parameters.


Subject(s)
Cell Phone , Electromagnetic Fields , Humans , Environmental Exposure , Radio Waves
4.
Environ Res ; 204(Pt C): 112291, 2022 03.
Article in English | MEDLINE | ID: mdl-34757029

ABSTRACT

OBJECTIVE: To investigate the association of estimated all-day and evening whole-brain radiofrequency electromagnetic field (RF-EMF) doses with sleep disturbances and objective sleep measures in preadolescents. METHODS: We included preadolescents aged 9-12 years from two population-based birth cohorts, the Dutch Generation R Study (n = 974) and the Spanish INfancia y Medio Ambiente Project (n = 868). All-day and evening overall whole-brain RF-EMF doses (mJ/kg/day) were estimated for several RF-EMF sources including mobile and Digital Enhanced Cordless Telecommunications (DECT) phone calls (named phone calls), other mobile phone uses, tablet use, laptop use (named screen activities), and far-field sources. We also estimated all-day and evening whole-brain RF-EMF doses in these three groups separately (i.e. phone calls, screen activities, and far-field). The Sleep Disturbance Scale for Children was completed by mothers to assess sleep disturbances. Wrist accelerometers together with sleep diaries were used to measure sleep characteristics objectively for 7 consecutive days. RESULTS: All-day whole-brain RF-EMF doses were not associated with self-reported sleep disturbances and objective sleep measures. Regarding evening doses, preadolescents with high evening whole-brain RF-EMF dose from phone calls had a shorter total sleep time compared to preadolescents with zero evening whole-brain RF-EMF dose from phone calls [-11.9 min (95%CI -21.2; -2.5)]. CONCLUSIONS: Our findings suggest the evening as a potentially relevant window of RF-EMF exposure for sleep. However, we cannot exclude that observed associations are due to the activities or reasons motivating the phone calls rather than the RF-EMF exposure itself or due to chance finding.


Subject(s)
Cell Phone , Electromagnetic Fields , Brain , Child , Electromagnetic Fields/adverse effects , Environmental Exposure , Humans , Radio Waves/adverse effects , Sleep
5.
Bioelectromagnetics ; 43(3): 182-192, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35094404

ABSTRACT

Workers inside transmission pylons with FM antenna arrays are likely to be exposed to near-field radiation exceeding reference levels for occupational exposure. In this study, the near-field behavior of 64 FM pylons was studied using a new methodology. Near-field characterization was done using field metrics without taking into account field sources' size or distance from field source. The specific absorption rate (SAR) was assessed in five hundred different near-field cases using a human phantom. Estimation formulas for both local and whole-body SAR are provided and validated numerically. Local and whole-body SAR are linked to electric field strength. © 2022 Bioelectromagnetics Society.


Subject(s)
Electromagnetic Fields , Occupational Exposure , Electromagnetic Fields/adverse effects , Humans , Occupational Exposure/adverse effects , Phantoms, Imaging , Radiation Dosage
6.
Sensors (Basel) ; 22(24)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36560011

ABSTRACT

With the ongoing fifth-generation cellular network (5G) deployment, electromagnetic field exposure has become a critical concern. However, measurements are scarce, and accurate electromagnetic field reconstruction in a geographic region remains challenging. This work proposes a conditional generative adversarial network to address this issue. The main objective is to reconstruct the electromagnetic field exposure map accurately according to the environment's topology from a few sensors located in an outdoor urban environment. The model is trained to learn and estimate the propagation characteristics of the electromagnetic field according to the topology of a given environment. In addition, the conditional generative adversarial network-based electromagnetic field mapping is compared with simple kriging. Results show that the proposed method produces accurate estimates and is a promising solution for exposure map reconstruction.


Subject(s)
Electromagnetic Fields
7.
Environ Res ; 193: 110505, 2021 02.
Article in English | MEDLINE | ID: mdl-33245886

ABSTRACT

BACKGROUND: Little is known about radiofrequency electromagnetic fields (RF) from mobile technology and resulting dose in young people. We describe modeled integrated RF dose in European children and adolescents combining own mobile device use and surrounding sources. METHODS: Using an integrated RF model, we estimated the daily RF dose in the brain (whole-brain, cerebellum, frontal lobe, midbrain, occipital lobe, parietal lobe, temporal lobes) and the whole-body in 8358 children (ages 8-12) and adolescents (ages 14-18) from the Netherlands, Spain, and Switzerland during 2012-2016. The integrated model estimated RF dose from near-field sources (digital enhanced communication technology (DECT) phone, mobile phone, tablet, and laptop) and far-field sources (mobile phone base stations via 3D-radiowave modeling or RF measurements). RESULTS: Adolescents were more frequent mobile phone users and experienced higher modeled RF doses in the whole-brain (median 330.4 mJ/kg/day) compared to children (median 81.8 mJ/kg/day). Children spent more time using tablets or laptops compared to adolescents, resulting in higher RF doses in the whole-body (median whole-body dose of 81.8 mJ/kg/day) compared to adolescents (41.9 mJ/kg/day). Among brain regions, temporal lobes received the highest RF dose (medians of 274.9 and 1786.5 mJ/kg/day in children and adolescents, respectively) followed by the frontal lobe. In most children and adolescents, calling on 2G networks was the main contributor to RF dose in the whole-brain (medians of 31.1 and 273.7 mJ/kg/day, respectively). CONCLUSION: This first large study of RF dose to the brain and body of children and adolescents shows that mobile phone calls on 2G networks are the main determinants of brain dose, especially in temporal and frontal lobes, whereas whole-body doses were mostly determined by tablet and laptop use. The modeling of RF doses provides valuable input to epidemiological research and to potential risk management regarding RF exposure in young people.


Subject(s)
Cell Phone , Electromagnetic Fields , Adolescent , Brain , Child , Communication , Environmental Exposure , Humans , Netherlands , Radio Waves , Spain , Switzerland
8.
Environ Res ; 161: 136-143, 2018 02.
Article in English | MEDLINE | ID: mdl-29145005

ABSTRACT

As both the environment and telecommunications networks are inherently dynamic, our exposure to environmental radiofrequency (RF) electromagnetic fields (EMF) at an arbitrary location is not at all constant in time. In this study, more than a year's worth of measurement data collected in a fixed low-cost exposimeter network distributed over an urban environment was analysed and used to build, for the first time, a full spatio-temporal surrogate model of outdoor exposure to downlink Global System for Mobile Communications (GSM) and Universal Mobile Telecommunications System (UMTS) signals. Though no global trend was discovered over the measuring period, the difference in measured exposure between two instances could reach up to 42dB (a factor 12,000 in power density). Furthermore, it was found that, taking into account the hour and day of the measurement, the accuracy of the surrogate model in the area under study was improved by up to 50% compared to models that neglect the daily temporal variability of the RF signals. However, further study is required to assess the extent to which the results obtained in the considered environment can be extrapolated to other geographic locations.


Subject(s)
Cell Phone , Electromagnetic Fields , Environmental Exposure , Environmental Monitoring , Communication , Costs and Cost Analysis , Humans , Radio Waves
9.
Environ Res ; 165: 150-157, 2018 08.
Article in English | MEDLINE | ID: mdl-29704776

ABSTRACT

OBJECTIVE: To study recall of mobile phone usage, including laterality and hands-free use, in young people. METHODS: Actual mobile phone use was recorded among volunteers aged between 10 and 24 years from 12 countries by the software application XMobiSense and was compared with self-reported mobile phone use at 6 and 18 months after using the application. The application recorded number and duration of voice calls, number of text messages, amount of data transfer, laterality (% of call time the phone was near the right or left side of the head, or neither), and hands-free usage. After data cleaning, 466 participants were available for the main analyses (recorded vs. self-reported phone use after 6 months). RESULTS: Participants were on average 18.6 years old (IQR 15.2-21.8 years). The Spearman correlation coefficients between recorded and self-reported (after 6 months) number and duration of voice calls were 0.68 and 0.65, respectively. Number of calls was on average underestimated by the participants (adjusted geometric mean ratio (GMR) self-report/recorded = 0.52, 95% CI = 0.47-0.58), while duration of calls was overestimated (GMR=1.32, 95%, CI = 1.15-1.52). The ratios significantly differed by country, age, maternal educational level, and level of reported phone use, but not by time of the interview (6 vs. 18 months). Individuals who reported low mobile phone use underestimated their use, while individuals who reported the highest level of phone use were more likely to overestimate their use. Individuals who reported using the phone mainly on the right side of the head used it more on the right (71.1%) than the left (28.9%) side. Self-reported left side users, however, used the phone only slightly more on the left (53.3%) than the right (46.7%) side. Recorded percentage hands-free use (headset, speaker mode, Bluetooth) increased with increasing self-reported frequency of hands-free device usage. Frequent (≥50% of call time) reported headset or speaker mode use corresponded with 17.1% and 17.2% of total call time, respectively, that was recorded as hands-free use. DISCUSSION: These results indicate that young people can recall phone use moderately well, with recall depending on the amount of phone use and participants' characteristics. The obtained information can be used to calibrate self-reported mobile use to improve estimation of radiofrequency exposure from mobile phones.


Subject(s)
Cell Phone , Mental Recall , Adolescent , Adult , Cell Phone/statistics & numerical data , Humans , Radio Waves , Self Report , Surveys and Questionnaires , Young Adult
10.
Bioelectromagnetics ; 37(8): 557-562, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27706824

ABSTRACT

The spatial structure of the vertical component of the electric field emitted by base stations in the Brussels region (Belgium) is measured, and studied using the variogram. A relationship between the variogram shape and base station antenna density in each measurement area is found; the variogram range and sill level are shown to depend on cellular base stations' antenna density, following exponential laws. Bioelectromagnetics. 37:557-562, 2016. © 2016 Wiley Periodicals, Inc.

11.
Bioelectromagnetics ; 37(6): 382-90, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27385053

ABSTRACT

This article is the first thorough study of average population exposure to third generation network (3G)-induced electromagnetic fields (EMFs), from both uplink and downlink radio emissions in different countries, geographical areas, and for different wireless device usages. Indeed, previous publications in the framework of exposure to EMFs generally focused on individual exposure coming from either personal devices or base stations. Results, derived from device usage statistics collected in France and Serbia, show a strong heterogeneity of exposure, both in time, that is, the traffic distribution over 24 h was found highly variable, and space, that is, the exposure to 3G networks in France was found to be roughly two times higher than in Serbia. Such heterogeneity is further explained based on real data and network architecture. Among those results, authors show that, contrary to popular belief, exposure to 3G EMFs is dominated by uplink radio emissions, resulting from voice and data traffic, and average population EMF exposure differs from one geographical area to another, as well as from one country to another, due to the different cellular network architectures and variability of mobile usage. Bioelectromagnetics. 37:382-390, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
Computer Communication Networks , Environmental Exposure/statistics & numerical data , Cell Phone , Cities/statistics & numerical data , France , Humans , Radio Waves , Rural Population/statistics & numerical data , Serbia
12.
Occup Environ Med ; 72(11): 812-8, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26311820

ABSTRACT

OBJECTIVE: Interpretation of epidemiological studies on health effects from mobile phone use is hindered by uncertainties in the exposure assessment. We used a newly developed smartphone application (app) to validate self-reported mobile phone use and behaviour among adults. METHODS: 107 participants (mean age 41.4 years) in the Netherlands either downloaded the software app on their smartphone or were provided with a study smartphone for 4 weeks. The app recorded the number and duration of calls, text messages, data transfer, laterality and hands-free use. Self-reported mobile phone use was collected before using the app and after 6 months through an interviewer-administered questionnaire. RESULTS: The geometric mean ratios (GMR, 95% CI) and Spearman correlations (r) of self-reported (after 6 months) versus recorded number and duration of calls were: GMR=0.65 (0.53 to 0.80), r=0.53; and GMR=1.11 (0.86 to 1.42), r=0.57 respectively. Participants held the phone on average for 86% of the total call time near the head. Self-reported right side users held the phone for 70.7% of the total call time on the right side of the head, and left side users for 66.2% on the left side of the head. The percentage of total call time that the use of hands-free devices (headset, speaker mode, Bluetooth) was recorded increased with increasing frequency of reported hands-free device usage. DISCUSSION: The observed recall errors and precision of reported laterality and hands-free use can be used to quantify and improve radiofrequency exposure models based on self-reported mobile phone use.


Subject(s)
Cell Phone/statistics & numerical data , Environmental Exposure/analysis , Mobile Applications/standards , Radio Waves , Self Report , Adult , Aged , Female , Hand , Head , Humans , Male , Middle Aged , Models, Theoretical , Netherlands , Smartphone , Text Messaging
13.
Bioelectromagnetics ; 36(8): 597-602, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26511787

ABSTRACT

For the first time, the contribution of radio-frequent radiation originating from other people's devices to total own whole-body absorption is assessed in a simulation study. Absorption in a train environment due to base station's downlink is compared with absorption due to uplink (UL) of the user's own mobile device and absorption due to the UL of 0, 1, 5, or 15 other nearby active users. In a Global System for Mobile Communications (GSM) macro cell connection scenario, UL of 15 other users can cause up to 19% of total absorption when calling yourself and up to 100% when not calling yourself. In a Universal Mobile Telecommunications System (UMTS) femtocell connection scenario, UL of 15 other users contributes to total absorption of a non-calling user for no more than 1.5%. For five other users in the train besides the considered person, median total whole-body Specific Absorption Rate is reduced by a factor of about 400000 when deploying a UMTS femtocell base station instead of relying on the GSM macrocell.


Subject(s)
Absorption, Radiation , Radiation Monitoring , Radio Waves , Transportation , Cell Phone , Humans
14.
Bioelectromagnetics ; 36(6): 451-63, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26113174

ABSTRACT

This paper presents a new metric to evaluate electromagnetic exposure induced by wireless cellular networks. This metric takes into account the exposure induced by base station antennas as well as exposure induced by wireless devices to evaluate average global exposure of the population in a specific geographical area. The paper first explains the concept and gives the formulation of the Exposure Index (EI). Then, the EI computation is illustrated through simple phone call scenarios (indoor office, in train) and a complete macro urban data long-term evolution scenario showing how, based on simulations, radio-planning predictions, realistic population statistics, user traffic data, and specific absorption rate calculations can be combined to assess the index. Bioelectromagnetics. 36:451-463, 2015. © 2015 Wiley Periodicals, Inc.


Subject(s)
Cell Phone/instrumentation , Computer Communication Networks/instrumentation , Environmental Exposure/analysis , Radiation Monitoring/methods , Wireless Technology/instrumentation , Adult , Aged , Child , Electromagnetic Fields/adverse effects , Female , Humans , Male
15.
Bioelectromagnetics ; 36(1): 10-26, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25328088

ABSTRACT

Realistic anatomical modeling is essential in analyzing human exposure to electromagnetic fields. Infants have significant physical and anatomical differences compared with other age groups. However, few realistic infant models are available. In this work, we developed one 12-month-old male whole body model and one 17-month-old male head model from magnetic resonance images. The whole body and head models contained 28 and 30 tissues, respectively, at spatial resolution of 1 mm × 1 mm × 1 mm. Fewer identified tissues in the whole body model were a result of the low original image quality induced by the fast imaging sequence. The anatomical and physical parameters of the models were validated against findings in published literature (e.g., a maximum deviation as 18% in tissue mass was observed compared with the data from International Commission on Radiological Protection). Several typical exposure scenarios were realized for numerical simulation. Dosimetric comparison with various adult and child anatomical models was conducted. Significant differences in the physical and anatomical features between adult and child models demonstrated the importance of creating realistic infant models. Current safety guidelines for infant exposure to radiofrequency electromagnetic fields may not be conservative.


Subject(s)
Electromagnetic Fields , Models, Anatomic , Adult , Computer Simulation , Head/anatomy & histology , Head/physiology , Humans , Infant , Magnetic Resonance Imaging , Male , Microcomputers , Radiometry/instrumentation
16.
Bioelectromagnetics ; 36(7): 538-43, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26223661

ABSTRACT

A newly developed smartphone application was piloted to characterize and validate mobile phone use in young people. Twenty-six volunteers (mean age 17.3 years) from France, Spain, and the Netherlands used a software-modified smartphone for 4 weeks; the application installed on the phone recorded number and duration of calls, data use, laterality, hands-free device usage, and communication system used for both voice calls and data transfer. Upon returning the phone, participants estimated their mobile phone use during those 4 weeks via an interviewer-administered questionnaire. Results indicated that participants on average underestimated the number of calls they made, while they overestimated total call duration. Participants held the phone for about 90% of total call time near the head, mainly on the side of the head they reported as dominant. Some limitations were encountered when comparing reported and recorded data use and speaker use. When applied in a larger sample, information recorded by the smartphone application will be very useful to improve radiofrequency (RF) exposure modeling from mobile phones to be used in epidemiological research.


Subject(s)
Communication , Mobile Applications , Self Report , Smartphone/statistics & numerical data , Adolescent , Child , Female , France , Functional Laterality , Humans , Male , Netherlands , Pilot Projects , Spain , Time Factors , Young Adult
17.
Bioelectromagnetics ; 35(8): 568-79, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25263784

ABSTRACT

Exposure to mobile phone radio frequency (RF) electromagnetic fields depends on many different parameters. For epidemiological studies investigating the risk of brain cancer linked to RF exposure from mobile phones, it is of great interest to characterize brain tissue exposure and to know which parameters this exposure is sensitive to. One such parameter is the position of the phone during communication. In this article, we analyze the influence of the phone position on the brain exposure by comparing the specific absorption rate (SAR) induced in the head by two different mobile phone models operating in Global System for Mobile Communications (GSM) frequency bands. To achieve this objective, 80 different phone positions were chosen using an experiment based on the Latin hypercube sampling (LHS) to select a representative set of positions. The averaged SAR over 10 g (SAR10 g) in the head, the averaged SAR over 1 g (SAR1 g ) in the brain, and the averaged SAR in different anatomical brain structures were estimated at 900 and 1800 MHz for the 80 positions. The results illustrate that SAR distributions inside the brain area are sensitive to the position of the mobile phone relative to the head. The results also show that for 5-10% of the studied positions the SAR10 g in the head and the SAR1 g in the brain can be 20% higher than the SAR estimated for the standard cheek position and that the Specific Anthropomorphic Mannequin (SAM) model is conservative for 95% of all the studied positions.


Subject(s)
Brain/radiation effects , Cell Phone , Hand , Radio Waves/adverse effects , Absorption, Radiation , Adult , Brain/anatomy & histology , Head , Humans , Male , Models, Anatomic
18.
Bioelectromagnetics ; 35(3): 210-21, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24203762

ABSTRACT

Although radio frequency (RF) electromagnetic fields emitted by mobile phones have received much attention, relatively little is known about the extremely low frequency (ELF) magnetic fields emitted by phones. This paper summarises ELF magnetic flux density measurements on global system for mobile communications (GSM) mobile phones, conducted as part of the MOBI-KIDS epidemiological study. The main challenge is to identify a small number of generic phone models that can be used to classify the ELF exposure for the different phones reported in the study. Two-dimensional magnetic flux density measurements were performed on 47 GSM mobile phones at a distance of 25 mm. Maximum resultant magnetic flux density values at 217 Hz had a geometric mean of 221 (+198/-104) nT. Taking into account harmonic data, measurements suggest that mobile phones could make a substantial contribution to ELF exposure in the general population. The maximum values and easily available variables were poorly correlated. However, three groups could be defined on the basis of field pattern indicating that manufacturers and shapes of mobile phones may be the important parameters linked to the spatial characteristics of the magnetic field, and the categorization of ELF magnetic field exposure for GSM phones in the MOBI-KIDS study may be achievable on the basis of a small number of representative phones. Such categorization would result in a twofold exposure gradient between high and low exposure based on type of phone used, although there was overlap in the grouping.


Subject(s)
Cell Phone/instrumentation , Magnetic Fields , Algorithms , Electric Power Supplies , Europe
19.
Environ Int ; 172: 107737, 2023 02.
Article in English | MEDLINE | ID: mdl-36709672

ABSTRACT

INTRODUCTION: Radiofrequency electromagnetic fields originate from a variety of wireless communication sources operating near and far from the body, making it challenging to quantify daily absorbed dose. In the framework of the prospective cohort SCAMP (Study of Cognition, Adolescents and Mobile Phones), we aimed to characterize RF-EMF dose over a 2-year period. METHODS: The SCAMP cohort included 6605 children from greater London, UK at baseline (age 12.1 years; 2014-2016) and 5194 at follow-up (age 14.2; 2016-2018). We estimated the daily dose of RF-EMF to eight tissues including the whole body and whole brain, using dosimetric algorithms for the specific absorption rate transfer into the body. We considered RF-EMF dose from 12 common usage scenarios such as mobile phone calls or data transmission. We evaluated the association between sociodemographic factors (gender, ethnicity, phone ownership and socio-economic status), and the dose change between baseline and follow-up. RESULTS: Whole body dose was estimated at an average of 170 mJ/kg/day at baseline and 178 mJ/kg/day at follow-up. Among the eight tissues considered, the right temporal lobe received the highest daily dose (baseline 1150 mJ/kg/day, follow-up 1520 mJ/kg/day). Estimated daily dose [mJ/kg/day] increased between baseline and follow-up for head and brain related tissues, but remained stable for the whole body and heart. Doses estimated at baseline and follow-up showed low correlation among the 3384 children who completed both assessments. Asian ethnicity (compared to white) and owning a bar phone or no phone (as opposed to a smartphone) were associated with lower estimated whole-body and whole-brain RF-EMF dose, while black ethnicity, a moderate/low socio-economic status (compared to high), and increasing age (at baseline) were associated with higher estimated RF-EMF dose. CONCLUSION: This study describes the first longitudinal exposure assessment for children in a critical period of development. Dose estimations will be used in further epidemiological analyses for the SCAMP study.


Subject(s)
Cell Phone , Electromagnetic Fields , Child , Humans , Adolescent , Electromagnetic Fields/adverse effects , Prospective Studies , Radio Waves , Brain , Environmental Exposure
20.
Bioelectromagnetics ; 33(4): 288-97, 2012 May.
Article in English | MEDLINE | ID: mdl-21960463

ABSTRACT

In this article, the general public daily exposure to broadcast signals and Global System for Mobile Communications (GSM) or Universal Mobile Telecommunications System (UMTS) mobile telephone signals in indoor areas is investigated. Temporal variations and traffic distributions during a day at different indoor sites in urban and rural zones are presented. The goal is to analyze the real exposure compared to the maximum assessment imposed by radio protection standards and to characterize the ratio between daily and maximum theoretical values. Hence, a realistic maximum is proposed based on the statistical analysis performed using measurements. Broadcast signals remain constant over the day so they are best fitted with a Normal distribution while the mobile telephone signals depend on the traffic demand during the day so they fit a three-Gaussian distribution model. A general mask is also constructed for underlining the maximum equivalent active traffic for different periods in the day. Also, relations between the mean values over 24 h, the realistic maximal values (at 99%) and the maximal theoretical values are presented. The realistic maximum is also presented with a sliding time average of 6 min applied to the measurements in accordance with international standards. An extrapolation factor is given for the different systems to easily assess the maximum values starting from an instantaneous measurement. The extrapolation factor is also given for a broadband measurement to estimate the maximum potential exposure during the day.


Subject(s)
Environment , Radiation Exposure/analysis , Wireless Technology/instrumentation , Cell Phone/instrumentation , Cities , Humans , Radio Waves , Rural Population , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL