Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Bioorg Med Chem Lett ; 22(23): 7087-91, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-23099092

ABSTRACT

Tyrosine ureas had been identified as potent muscarinic receptor antagonists with promising in vivo activity. Controlling the stereochemistry of the chiral quaternary ammonium center had proved to be a serious issue for this series, however. Herein we describe the preparation and SAR of tyrosine urea antagonists containing achiral quaternary ammonium centers. The most successful such moiety was the 2-methylimidazo[2,1-b][1,3]thiazol-7-ium group which yielded highly potent antagonists with long duration of action in an inhaled animal model of bronchoconstriction.


Subject(s)
Muscarinic Antagonists/chemistry , Quaternary Ammonium Compounds/chemistry , Receptors, Muscarinic/chemistry , Tyrosine/chemistry , Urea/analogs & derivatives , Animals , Bronchi/drug effects , Mice , Muscarinic Antagonists/chemical synthesis , Muscarinic Antagonists/pharmacology , Receptors, Muscarinic/metabolism , Structure-Activity Relationship , Urea/chemical synthesis , Urea/pharmacology
2.
Bioorg Med Chem Lett ; 22(9): 3366-9, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22460029

ABSTRACT

A novel series of N-substituted tropane derivatives was characterized as potent muscarinic acetylcholine receptor antagonists (mAChRs). Kinetic washout studies showed that the N-endosubstituted analog 24 displayed much slower reversibility at mAChRs than the methyl-substituted parent molecule darotropium. In addition, it was shown that this characteristic appeared to translate into enhanced which duration of action in a mouse model of bronchonstriction.


Subject(s)
Muscarinic Antagonists/chemical synthesis , Tropanes/chemical synthesis , Animals , Bronchial Diseases/drug therapy , Drug Design , Mice , Muscarinic Antagonists/pharmacology , Receptors, Muscarinic/drug effects , Structure-Activity Relationship , Tropanes/pharmacology
4.
Bioorg Med Chem Lett ; 19(16): 4560-2, 2009 Aug 15.
Article in English | MEDLINE | ID: mdl-19616944

ABSTRACT

Design and syntheses of a novel series of muscarinic antagonists are reported. These efforts have culminated in the discovery of (3-endo)-3-(2-cyano-2,2-diphenylethyl)-8,8-dimethyl-8-azoniabicyclo[3.2.1]octane bromide (4a) as a potent and pan-active muscarinic antagonist as well as a functionally active compound in a murine model of bronchoconstriction. The compound has also displayed pharmacokinetic characteristics suitable for inhaled delivery.


Subject(s)
Biphenyl Compounds/chemistry , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Muscarinic Antagonists/chemistry , Pulmonary Disease, Chronic Obstructive/drug therapy , Receptors, Muscarinic/chemistry , Administration, Inhalation , Animals , Biphenyl Compounds/chemical synthesis , Biphenyl Compounds/pharmacokinetics , Bridged Bicyclo Compounds, Heterocyclic/chemical synthesis , Bridged Bicyclo Compounds, Heterocyclic/pharmacokinetics , Drug Discovery , Humans , Mice , Muscarinic Antagonists/chemical synthesis , Muscarinic Antagonists/pharmacokinetics , Rats , Receptors, Muscarinic/metabolism , Structure-Activity Relationship
5.
Bioorg Med Chem Lett ; 19(1): 114-8, 2009 Jan 01.
Article in English | MEDLINE | ID: mdl-19014886

ABSTRACT

A series of N-arylpiperazine camphor sulfonamides was discovered as novel CXCR3 antagonists. The synthesis, structure-activity relationships, and optimization of the initial hit that resulted in the identification of potent and selective CXCR3 antagonists are described.


Subject(s)
Camphor/analogs & derivatives , Receptors, CXCR3/antagonists & inhibitors , Sulfonamides/chemical synthesis , Camphor/chemical synthesis , Camphor/pharmacology , Humans , Piperazines , Structure-Activity Relationship , Sulfonamides/pharmacology
6.
ACS Infect Dis ; 5(10): 1738-1753, 2019 10 11.
Article in English | MEDLINE | ID: mdl-31373203

ABSTRACT

Emerging resistance to current antimalarial medicines underscores the importance of identifying new drug targets and novel compounds. Malaria parasites are purine auxotrophic and import purines via the Plasmodium falciparum equilibrative nucleoside transporter type 1 (PfENT1). We previously showed that PfENT1 inhibitors block parasite proliferation in culture. Our goal was to identify additional, possibly more optimal chemical starting points for a drug discovery campaign. We performed a high throughput screen (HTS) of GlaxoSmithKline's 1.8 million compound library with a yeast-based assay to identify PfENT1 inhibitors. We used a parallel progression strategy for hit validation and expansion, with an emphasis on chemical properties in addition to potency. In one arm, the most active hits were tested for human cell toxicity; 201 had minimal toxicity. The second arm, hit expansion, used a scaffold-based substructure search with the HTS hits as templates to identify over 2000 compounds; 123 compounds had activity. Of these 324 compounds, 175 compounds inhibited proliferation of P. falciparum parasite strain 3D7 with IC50 values between 0.8 and ∼180 µM. One hundred forty-two compounds inhibited PfENT1 knockout (pfent1Δ) parasite growth, indicating they also hit secondary targets. Thirty-two hits inhibited growth of 3D7 but not pfent1Δ parasites. Thus, PfENT1 inhibition was sufficient to block parasite proliferation. Therefore, PfENT1 may be a viable target for antimalarial drug development. Six compounds with novel chemical scaffolds were extensively characterized in yeast-, parasite-, and human-erythrocyte-based assays. The inhibitors showed similar potencies against drug sensitive and resistant P. falciparum strains. They represent attractive starting points for development of novel antimalarial drugs.


Subject(s)
Antimalarials/pharmacology , Biological Transport/drug effects , Cell Proliferation/drug effects , Drug Discovery , Plasmodium falciparum/drug effects , Purines/metabolism , Antimalarials/chemistry , Erythrocytes/drug effects , Gene Knockout Techniques , Hep G2 Cells/drug effects , High-Throughput Screening Assays , Humans , Malaria/parasitology , Malaria, Falciparum/parasitology , Nucleobase, Nucleoside, Nucleotide, and Nucleic Acid Transport Proteins/drug effects , Nucleobase, Nucleoside, Nucleotide, and Nucleic Acid Transport Proteins/genetics , Plasmodium falciparum/genetics , Plasmodium falciparum/growth & development , Plasmodium falciparum/metabolism , Protozoan Proteins/drug effects , Protozoan Proteins/genetics , Transcriptome , Yeasts/drug effects
7.
ACS Infect Dis ; 4(3): 349-359, 2018 03 09.
Article in English | MEDLINE | ID: mdl-29275629

ABSTRACT

The RecA/LexA axis of the bacterial DNA damage (SOS) response is a promising, yet nontraditional, drug target. The SOS response is initiated upon genotoxic stress, when RecA, a DNA damage sensor, induces LexA, the SOS repressor, to undergo autoproteolysis, thereby derepressing downstream genes that can mediate DNA repair and accelerate mutagenesis. As genetic inhibition of the SOS response sensitizes bacteria to DNA damaging antibiotics and decreases acquired resistance, inhibitors of the RecA/LexA axis could potentiate our current antibiotic arsenal. Compounds targeting RecA, which has many mammalian homologues, have been reported; however, small-molecules targeting LexA autoproteolysis, a reaction unique to the prokaryotic SOS response, have remained elusive. Here, we describe the logistics and accomplishments of an academic-industry partnership formed to pursue inhibitors against the RecA/LexA axis. A novel fluorescence polarization assay reporting on RecA-induced self-cleavage of LexA enabled the screening of 1.8 million compounds. Follow-up studies on select leads show distinct activity patterns in orthogonal assays, including several with activity in cell-based assays reporting on SOS activation. Mechanistic assays demonstrate that we have identified first-in-class small molecules that specifically target the LexA autoproteolysis step in SOS activation. Our efforts establish a realistic example for navigating academic-industry partnerships in pursuit of anti-infective drugs and offer starting points for dedicated lead optimization of SOS inhibitors that could act as adjuvants for current antibiotics.


Subject(s)
Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacterial Proteins/metabolism , Intersectoral Collaboration , Proteolysis , SOS Response, Genetics/drug effects , Serine Endopeptidases/metabolism , Biomedical Research/organization & administration , Drug Discovery/organization & administration , High-Throughput Screening Assays , Protease Inhibitors/isolation & purification , Protease Inhibitors/pharmacology
8.
J Med Chem ; 47(6): 1319-21, 2004 Mar 11.
Article in English | MEDLINE | ID: mdl-14998320
9.
J Med Chem ; 52(8): 2493-505, 2009 Apr 23.
Article in English | MEDLINE | ID: mdl-19317446

ABSTRACT

A novel 4-hydroxyl(diphenyl)methyl substituted quinuclidine series was discovered as a very promising class of muscarinic antagonists. The structure-activity relationships of the connectivity of the diphenyl moiety to the quinuclidine core and around the ring nitrogen side chain are described. Computational docking studies using an homology model of the M(3) receptor readily explained the observed structure-activity relationship of the various compounds. Compound 14o was identified as a very potent, slowly reversible M(3) antagonist with a very long in vivo duration of bronchoprotection.


Subject(s)
Benzhydryl Compounds/chemical synthesis , Bronchodilator Agents/chemical synthesis , Quinuclidines/chemical synthesis , Receptor, Muscarinic M3/antagonists & inhibitors , Animals , Benzhydryl Compounds/chemistry , Benzhydryl Compounds/pharmacology , Biological Availability , Bronchi/drug effects , Bronchi/physiology , Bronchoconstriction/drug effects , Bronchodilator Agents/chemistry , Bronchodilator Agents/pharmacology , CHO Cells , Calcium/metabolism , Cricetinae , Cricetulus , Humans , In Vitro Techniques , Mice , Models, Molecular , Muscle Contraction , Muscle, Smooth/drug effects , Muscle, Smooth/physiology , Quinuclidines/chemistry , Quinuclidines/pharmacology , Radioligand Assay , Rats , Structure-Activity Relationship
10.
J Med Chem ; 52(16): 5241-52, 2009 Aug 27.
Article in English | MEDLINE | ID: mdl-19630384
12.
Bioorg Med Chem Lett ; 17(14): 3864-7, 2007 Jul 15.
Article in English | MEDLINE | ID: mdl-17524641

ABSTRACT

A series of 3-arylamino-2H-1,2,4-benzothiadiazin-5-ol 1,1-dioxides were prepared and shown to be novel and selective antagonists of the CXCR2 receptor. Synthesis, structure and activity relationships, selectivity, and some developability properties are described.


Subject(s)
Benzothiadiazines/pharmacology , Receptors, Interleukin-8B/antagonists & inhibitors , Benzothiadiazines/chemistry , Structure-Activity Relationship
13.
Bioorg Med Chem Lett ; 17(6): 1713-7, 2007 Mar 15.
Article in English | MEDLINE | ID: mdl-17236763

ABSTRACT

N,N'-diarylsquaramides were prepared and evaluated as antagonists of CXCR2. The compounds were found to be potent and selective antagonists of CXCR2. Significant differences in SAR was observed relative to the previously described N,N'-diarylurea series. As was the case in the N,N'-diarylurea series, placing sulfonamide substituent adjacent to the acidic phenol significantly reduced the clearance in rat pharmacokinetic studies.


Subject(s)
Cyclobutanes/chemical synthesis , Cyclobutanes/pharmacology , Cyclobutanes/pharmacokinetics , Receptors, Interleukin-8B/antagonists & inhibitors , Urea/analogs & derivatives , Urea/chemical synthesis , Urea/pharmacology , Urea/pharmacokinetics , Animals , CHO Cells , Chemical Phenomena , Chemistry, Physical , Cricetinae , Cricetulus , Indicators and Reagents , Mass Spectrometry , Phenols/chemistry , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Sulfonamides/chemistry
14.
Bioorg Med Chem Lett ; 16(21): 5513-6, 2006 Nov 01.
Article in English | MEDLINE | ID: mdl-16934456

ABSTRACT

A series of N-(2-hydroxy-3-sulfonamidobenzene)-N'-arylcyanoguanidines was prepared. In general, these compounds proved to be potent antagonists of CXCR2 while the selectivity versus CXCR1 ranged from non-selective to >200-fold.


Subject(s)
Guanidines/pharmacology , Receptors, Interleukin-8A/antagonists & inhibitors , Receptors, Interleukin-8B/antagonists & inhibitors , Guanidines/chemistry , Humans
15.
Bioorg Med Chem Lett ; 14(17): 4375-8, 2004 Sep 06.
Article in English | MEDLINE | ID: mdl-15357956

ABSTRACT

A series of 3-substituted N,N'-diarylureas was prepared and the structure-activity relationship relative to CXCR2 receptor affinity as well as their pharmacokinetic properties were examined. In vitro microsomal metabolism studies indicated that the lower clearance rates of the 3-sulfonamido-substituted compounds were most likely due to the suppression of glucuronidation.


Subject(s)
Receptors, Interleukin-8B/antagonists & inhibitors , Sulfonylurea Compounds/chemistry , Administration, Oral , Animals , Biological Availability , Humans , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Protein Binding/drug effects , Protein Binding/physiology , Rats , Rats, Sprague-Dawley , Receptors, Interleukin-8B/metabolism , Sulfonylurea Compounds/metabolism , Sulfonylurea Compounds/pharmacology
16.
J Immunol ; 169(11): 6435-44, 2002 Dec 01.
Article in English | MEDLINE | ID: mdl-12444152

ABSTRACT

Much evidence implicates IL-8 as a major mediator of inflammation and joint destruction in rheumatoid arthritis. The effects of IL-8 and its related ligands are mediated via two receptors, CXCR1 and CXCR2. In the present study, we demonstrate that a potent and selective nonpeptide antagonist of human CXCR2 potently inhibits (125)I-labeled human IL-8 binding to, and human IL-8-induced calcium mobilization mediated by, rabbit CXCR2 (IC(50) = 40.5 and 7.7 nM, respectively), but not rabbit CXCR1 (IC(50) = >1000 and 2200 nM, respectively). These data suggest that the rabbit is an appropriate species in which to examine the anti-inflammatory effects of a human CXCR2-selective antagonist. In two acute models of arthritis in the rabbit induced by knee joint injection of human IL-8 or LPS, and a chronic Ag (OVA)-induced arthritis model, administration of the antagonist at 25 mg/kg by mouth twice a day significantly reduced synovial fluid neutrophils, monocytes, and lymphocytes. In addition, in the more robust LPS- and OVA-induced arthritis models, which were characterized by increased levels of proinflammatory mediators in the synovial fluid, TNF-alpha, IL-8, PGE(2), leukotriene B(4), and leukotriene C(4) levels were significantly reduced, as was erythrocyte sedimentation rate, possibly as a result of the observed decreases in serum TNF-alpha and IL-8 levels. In vitro, the antagonist potently inhibited human IL-8-induced chemotaxis of rabbit neutrophils (IC(50) = 0.75 nM), suggesting that inhibition of leukocyte migration into the knee joint is a likely mechanism by which the CXCR2 antagonist modulates disease.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Arthritis, Experimental/immunology , Arthritis, Experimental/prevention & control , Receptors, Interleukin-8B/antagonists & inhibitors , Urea/pharmacology , Acute Disease , Animals , Arthritis, Experimental/etiology , Arthritis, Rheumatoid/etiology , Arthritis, Rheumatoid/immunology , Chemotaxis, Leukocyte/drug effects , Chronic Disease , Female , Humans , In Vitro Techniques , Interleukin-8/administration & dosage , Interleukin-8/immunology , Interleukin-8/metabolism , Lipopolysaccharides/toxicity , Neutrophils/drug effects , Neutrophils/immunology , Ovalbumin/administration & dosage , Ovalbumin/immunology , Rabbits , Receptors, Interleukin-8B/genetics , Receptors, Interleukin-8B/metabolism , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Urea/analogs & derivatives
SELECTION OF CITATIONS
SEARCH DETAIL