Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
BMC Biol ; 20(1): 46, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35164747

ABSTRACT

BACKGROUND: Resistance in malaria vectors to pyrethroids, the most widely used class of insecticides for malaria vector control, threatens the continued efficacy of vector control tools. Target-site resistance is an important genetic resistance mechanism caused by mutations in the voltage-gated sodium channel (Vgsc) gene that encodes the pyrethroid target-site. Understanding the geographic distribution of target-site resistance, and temporal trends across different vector species, can inform strategic deployment of vector control tools. RESULTS: We develop a Bayesian statistical spatiotemporal model to interpret species-specific trends in the frequency of the most common resistance mutations, Vgsc-995S and Vgsc-995F, in three major malaria vector species Anopheles gambiae, An. coluzzii, and An. arabiensis over the period 2005-2017. The models are informed by 2418 observations of the frequency of each mutation in field sampled mosquitoes collected from 27 countries spanning western and eastern regions of Africa. For nine selected countries, we develop annual predictive maps which reveal geographically structured patterns of spread of each mutation at regional and continental scales. The results show associations, as well as stark differences, in spread dynamics of the two mutations across the three vector species. The coverage of ITNs was an influential predictor of Vgsc allele frequencies, with modelled relationships between ITN coverage and allele frequencies varying across species and geographic regions. We found that our mapped Vgsc allele frequencies are a significant partial predictor of phenotypic resistance to the pyrethroid deltamethrin in An. gambiae complex populations. CONCLUSIONS: Our predictive maps show how spatiotemporal trends in insecticide target-site resistance mechanisms in African An. gambiae vary across individual vector species and geographic regions. Molecular surveillance of resistance mechanisms will help to predict resistance phenotypes and track their spread.


Subject(s)
Anopheles , Insecticides , Malaria , Animals , Anopheles/genetics , Bayes Theorem , Insecticide Resistance/genetics , Insecticides/pharmacology , Malaria/prevention & control , Mosquito Vectors/genetics , Mutation
2.
Proc Natl Acad Sci U S A ; 115(23): 5938-5943, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29784773

ABSTRACT

The development of insecticide resistance in African malaria vectors threatens the continued efficacy of important vector control methods that rely on a limited set of insecticides. To understand the operational significance of resistance we require quantitative information about levels of resistance in field populations to the suite of vector control insecticides. Estimation of resistance is complicated by the sparsity of observations in field populations, variation in resistance over time and space at local and regional scales, and cross-resistance between different insecticide types. Using observations of the prevalence of resistance in mosquito species from the Anopheles gambiae complex sampled from 1,183 locations throughout Africa, we applied Bayesian geostatistical models to quantify patterns of covariation in resistance phenotypes across different insecticides. For resistance to the three pyrethroids tested, deltamethrin, permethrin, and λ-cyhalothrin, we found consistent forms of covariation across sub-Saharan Africa and covariation between resistance to these pyrethroids and resistance to DDT. We found no evidence of resistance interactions between carbamate and organophosphate insecticides or between these insecticides and those from other classes. For pyrethroids and DDT we found significant associations between predicted mean resistance and the observed frequency of kdr mutations in the Vgsc gene in field mosquito samples, with DDT showing the strongest association. These results improve our capacity to understand and predict resistance patterns throughout Africa and can guide the development of monitoring strategies.


Subject(s)
Culicidae/drug effects , Genes, Insect/genetics , Insecticide Resistance/genetics , Insecticides/pharmacology , Malaria , Mosquito Vectors/drug effects , Animals , DDT/pharmacology , Malaria/prevention & control , Malaria/transmission , Models, Statistical , Nitriles/pharmacology , Permethrin/pharmacology , Pyrethrins/pharmacology
3.
Malar J ; 16(1): 86, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28222727

ABSTRACT

BACKGROUND: Significant reductions in malaria transmission have been achieved over the last 15 years with elimination occurring in a small number of countries, however, increasing drug and insecticide resistance threatens these gains. Insecticide resistance has decreased the observed mortality to the most commonly used insecticide class, the pyrethroids, and the number of alternative classes approved for use in public health is limited. Disease prevention and elimination relies on operational control of Anopheles malaria vectors, which requires the deployment of effective insecticides. Resistance is a rapidly evolving phenomena and the resources and human capacity to continuously monitor vast numbers of mosquito populations in numerous locations simultaneously are not available. METHODS: Resistance data are obtained from published articles, by contacting authors and custodians of unpublished data sets. Where possible data is disaggregated to single sites and collection periods to give a fine spatial resolution. RESULTS: Currently the data set includes data from 1955 to October 2016 from 71 malaria endemic countries and 74 anopheline species. This includes data for all four classes of insecticides and associated resistance mechanisms. CONCLUSIONS: Resistance is a rapidly evolving phenomena and the resources and human capacity to continuously monitor vast numbers of mosquito populations in numerous locations simultaneously are not available. The Malaria Atlas Project-Insecticide Resistance (MAP-IR) venture has been established to develop tools that will use available data to provide best estimates of the spatial distribution of insecticide resistance and help guide control programmes on this serious issue.


Subject(s)
Anopheles/drug effects , Insecticide Resistance , Phylogeography , Animals , Mosquito Control/methods
4.
Malar J ; 16(1): 85, 2017 02 20.
Article in English | MEDLINE | ID: mdl-28219387

ABSTRACT

BACKGROUND: Many of the mosquito species responsible for malaria transmission belong to a sibling complex; a taxonomic group of morphologically identical, closely related species. Sibling species often differ in several important factors that have the potential to impact malaria control, including their geographical distribution, resistance to insecticides, biting and resting locations, and host preference. The aim of this study was to define the geographical distributions of dominant malaria vector sibling species in Africa so these distributions can be coupled with data on key factors such as insecticide resistance to aid more focussed, species-selective vector control. RESULTS: Within the Anopheles gambiae species complex and the Anopheles funestus subgroup, predicted geographical distributions for Anopheles coluzzii, An. gambiae (as now defined) and An. funestus (distinct from the subgroup) have been produced for the first time. Improved predicted geographical distributions for Anopheles arabiensis, Anopheles melas and Anopheles merus have been generated based on records that were confirmed using molecular identification methods and a model that addresses issues of sampling bias and past changes to the environment. The data available for insecticide resistance has been evaluated and differences between sibling species are apparent although further analysis is required to elucidate trends in resistance. CONCLUSIONS: Sibling species display important variability in their geographical distributions and the most important malaria vector sibling species in Africa have been mapped here for the first time. This will allow geographical occurrence data to be coupled with species-specific data on important factors for vector control including insecticide resistance. Species-specific data on insecticide resistance is available for the most important malaria vectors in Africa, namely An. arabiensis, An. coluzzii, An. gambiae and An. funestus. Future work to combine these data with the geographical distributions mapped here will allow more focussed and resource-efficient vector control and provide information to greatly improve and inform existing malaria transmission models.


Subject(s)
Anopheles/drug effects , Insecticide Resistance , Mosquito Vectors/drug effects , Mosquito Vectors/growth & development , Phylogeography , Africa , Animals , Anopheles/classification , Anopheles/growth & development , Mosquito Vectors/classification
5.
Malar J ; 15: 142, 2016 Mar 05.
Article in English | MEDLINE | ID: mdl-26945997

ABSTRACT

BACKGROUND: Malaria remains a heavy burden across sub-Saharan Africa where transmission is maintained by some of the world's most efficient vectors. Indoor insecticide-based control measures have significantly reduced transmission, yet elimination remains a distant target. Knowing the relative abundance of the primary vector species can provide transmission models with much needed information to guide targeted control measures. Moreover, understanding how existing interventions are impacting on these relative abundances highlights where alternative control (e.g., larval source management) is needed. METHODS: Using the habitat suitability probabilities generated by predictive species distribution models combined with data collated from the literature, a multinomial generalized additive model was applied to produce relative abundance estimates for Anopheles arabiensis, Anopheles funestus and Anopheles gambiae/Anopheles coluzzii. Using pre- and post-intervention abundance data, estimates of the effect of indoor insecticide-based interventions on these relative abundances were made and are illustrated in post-intervention maps. RESULTS: Conditional effect plots and relative abundance maps illustrate the individual species' predicted habitat suitability and how they interact when in sympatry. Anopheles arabiensis and An. funestus show an affinity in habitat preference at the expense of An. gambiae/An. coluzzii, whereas increasing habitat suitability for An. gambiae/An. coluzzii is conversely less suitable for An. arabiensis but has little effect on An. funestus. Indoor insecticide-based interventions had a negative impact on the relative abundance of An. funestus, and a lesser effect on An. arabiensis. Indoor residual spraying had the greatest impact on the relative abundance of An. funestus, and a lesser effect on An. gambiae/An. coluzzii. Insecticide-treated bed nets reduced the relative abundance of both species equally. These results do not indicate changes in the absolute abundance of these species, which may be reduced for all species overall. CONCLUSIONS: The maps presented here highlight the interactions between the primary vector species in sub-Saharan Africa and demonstrate that An. funestus is more susceptible to certain indoor-based insecticide interventions than An. gambiae/An. coluzzii, which in turn, is more susceptible than An. arabiensis. This may provide An. arabiensis with a competitive advantage where it is found in sympatry with other more endophilic vectors, and potentially increase the need for outdoor-based vector interventions to deal with any residual transmission barring the way to malaria elimination.


Subject(s)
Anopheles/drug effects , Insect Vectors/drug effects , Insecticides/pharmacology , Malaria/prevention & control , Malaria/transmission , Models, Biological , Mosquito Control/statistics & numerical data , Africa , Animals , Humans , Insecticide-Treated Bednets , Insecticides/therapeutic use
6.
Sci Data ; 6(1): 121, 2019 07 15.
Article in English | MEDLINE | ID: mdl-31308378

ABSTRACT

The impact of insecticide resistance in malaria vectors is poorly understood and quantified. Here a series of geospatial datasets for insecticide resistance in malaria vectors are provided, so that trends in resistance in time and space can be quantified, and the impact of resistance found in wild populations on malaria transmission in Africa can be assessed. Specifically, data have been collated and geopositioned for the prevalence of insecticide resistance, as measured by standard bioassays, in representative samples of individual species or species complexes. Data are provided for the Anopheles gambiae species complex, the Anopheles funestus subgroup, and for nine individual vector species. Data are also given for common genetic markers of resistance to support analyses of whether these markers can improve the ability to monitor resistance in low resource settings. Allele frequencies for known resistance-associated markers in the Voltage-gated sodium channel (Vgsc) are provided. In total, eight analysis-ready, standardised, geopositioned datasets encompassing over 20,000 African mosquito collections between 1957 and 2017 are released.


Subject(s)
Anopheles/genetics , Insecticide Resistance/genetics , Mosquito Vectors/genetics , Africa , Animals , Genetic Markers , Genotype , Geography , Insecticides , Malaria , Phenotype
7.
Sci Data ; 3: 160014, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26927852

ABSTRACT

Anopheles mosquitoes were first recognised as the transmitters of human malaria in the late 19th Century and have been subject to a huge amount of research ever since. Yet there is still much that is unknown regarding the ecology, behaviour (collectively 'bionomics') and sometimes even the identity of many of the world's most prominent disease vectors, much less the within-species variation in their bionomics. Whilst malaria elimination remains an ambitious goal, it is becoming increasingly clear that knowledge of vector behaviour is needed to effectively target control measures. A database of bionomics data for the dominant vector species of malaria worldwide has been compiled from published peer-reviewed literature. The data identification and collation processes are described, together with the geo-positioning and quality control methods. This is the only such dataset in existence and provides a valuable resource to researchers and policy makers in this field.


Subject(s)
Anopheles , Databases, Factual , Insect Vectors , Malaria/transmission , Animals , Anopheles/physiology , Humans , Malaria/epidemiology
8.
Parasit Vectors ; 9: 242, 2016 Apr 28.
Article in English | MEDLINE | ID: mdl-27125995

ABSTRACT

BACKGROUND: Plasmodium knowlesi is a zoonotic pathogen, transmitted among macaques and to humans by anopheline mosquitoes. Information on P. knowlesi malaria is lacking in most regions so the first step to understand the geographical distribution of disease risk is to define the distributions of the reservoir and vector species. METHODS: We used macaque and mosquito species presence data, background data that captured sampling bias in the presence data, a boosted regression tree model and environmental datasets, including annual data for land classes, to predict the distributions of each vector and host species. We then compared the predicted distribution of each species with cover of each land class. RESULTS: Fine-scale distribution maps were generated for three macaque host species (Macaca fascicularis, M. nemestrina and M. leonina) and two mosquito vector complexes (the Dirus Complex and the Leucosphyrus Complex). The Leucosphyrus Complex was predicted to occur in areas with disturbed, but not intact, forest cover (> 60% tree cover) whereas the Dirus Complex was predicted to occur in areas with 10-100% tree cover as well as vegetation mosaics and cropland. Of the macaque species, M. nemestrina was mainly predicted to occur in forested areas whereas M. fascicularis was predicted to occur in vegetation mosaics, cropland, wetland and urban areas in addition to forested areas. CONCLUSIONS: The predicted M. fascicularis distribution encompassed a wide range of habitats where humans are found. This is of most significance in the northern part of its range where members of the Dirus Complex are the main P. knowlesi vectors because these mosquitoes were also predicted to occur in a wider range of habitats. Our results support the hypothesis that conversion of intact forest into disturbed forest (for example plantations or timber concessions), or the creation of vegetation mosaics, will increase the probability that members of the Leucosphyrus Complex occur at these locations, as well as bringing humans into these areas. An explicit analysis of disease risk itself using infection data is required to explore this further. The species distributions generated here can now be included in future analyses of P. knowlesi infection risk.


Subject(s)
Culicidae/physiology , Macaca , Malaria/parasitology , Monkey Diseases/parasitology , Plasmodium knowlesi/isolation & purification , Animals , Asia, Southeastern/epidemiology , Culicidae/parasitology , Forests , Malaria/epidemiology , Monkey Diseases/epidemiology
9.
PLoS Negl Trop Dis ; 10(8): e0004915, 2016 08.
Article in English | MEDLINE | ID: mdl-27494405

ABSTRACT

BACKGROUND: Infection by the simian malaria parasite, Plasmodium knowlesi, can lead to severe and fatal disease in humans, and is the most common cause of malaria in parts of Malaysia. Despite being a serious public health concern, the geographical distribution of P. knowlesi malaria risk is poorly understood because the parasite is often misidentified as one of the human malarias. Human cases have been confirmed in at least nine Southeast Asian countries, many of which are making progress towards eliminating the human malarias. Understanding the geographical distribution of P. knowlesi is important for identifying areas where malaria transmission will continue after the human malarias have been eliminated. METHODOLOGY/PRINCIPAL FINDINGS: A total of 439 records of P. knowlesi infections in humans, macaque reservoir and vector species were collated. To predict spatial variation in disease risk, a model was fitted using records from countries where the infection data coverage is high. Predictions were then made throughout Southeast Asia, including regions where infection data are sparse. The resulting map predicts areas of high risk for P. knowlesi infection in a number of countries that are forecast to be malaria-free by 2025 (Malaysia, Cambodia, Thailand and Vietnam) as well as countries projected to be eliminating malaria (Myanmar, Laos, Indonesia and the Philippines). CONCLUSIONS/SIGNIFICANCE: We have produced the first map of P. knowlesi malaria risk, at a fine-scale resolution, to identify priority areas for surveillance based on regions with sparse data and high estimated risk. Our map provides an initial evidence base to better understand the spatial distribution of this disease and its potential wider contribution to malaria incidence. Considering malaria elimination goals, areas for prioritised surveillance are identified.


Subject(s)
Disease Eradication , Macaca/parasitology , Malaria/epidemiology , Malaria/transmission , Plasmodium knowlesi/physiology , Zoonoses/epidemiology , Animals , Asia, Southeastern/epidemiology , Cambodia/epidemiology , Disease Reservoirs , Epidemiological Monitoring , Geography , Humans , Incidence , Indonesia/epidemiology , Laos/epidemiology , Malaria/diagnosis , Malaria/parasitology , Malaysia/epidemiology , Myanmar/epidemiology , Philippines/epidemiology , Risk Factors , Thailand/epidemiology , Vietnam/epidemiology , Zoonoses/parasitology , Zoonoses/prevention & control
10.
PLoS Negl Trop Dis ; 9(6): e0003756, 2015.
Article in English | MEDLINE | ID: mdl-26061527

ABSTRACT

BACKGROUND: Increasing volumes of data and computational capacity afford unprecedented opportunities to scale up infectious disease (ID) mapping for public health uses. Whilst a large number of IDs show global spatial variation, comprehensive knowledge of these geographic patterns is poor. Here we use an objective method to prioritise mapping efforts to begin to address the large deficit in global disease maps currently available. METHODOLOGY/PRINCIPAL FINDINGS: Automation of ID mapping requires bespoke methodological adjustments tailored to the epidemiological characteristics of different types of diseases. Diseases were therefore grouped into 33 clusters based upon taxonomic divisions and shared epidemiological characteristics. Disability-adjusted life years, derived from the Global Burden of Disease 2013 study, were used as a globally consistent metric of disease burden. A review of global health stakeholders, existing literature and national health priorities was undertaken to assess relative interest in the diseases. The clusters were ranked by combining both metrics, which identified 44 diseases of main concern within 15 principle clusters. Whilst malaria, HIV and tuberculosis were the highest priority due to their considerable burden, the high priority clusters were dominated by neglected tropical diseases and vector-borne parasites. CONCLUSIONS/SIGNIFICANCE: A quantitative, easily-updated and flexible framework for prioritising diseases is presented here. The study identifies a possible future strategy for those diseases where significant knowledge gaps remain, as well as recognising those where global mapping programs have already made significant progress. For many conditions, potential shared epidemiological information has yet to be exploited.


Subject(s)
Communicable Diseases/epidemiology , Geographic Mapping , Global Health , Biosurveillance , Humans , Public Health , Quality-Adjusted Life Years
SELECTION OF CITATIONS
SEARCH DETAIL