Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Diabetologia ; 66(12): 2292-2306, 2023 12.
Article in English | MEDLINE | ID: mdl-37792013

ABSTRACT

AIMS/HYPOTHESIS: Colony stimulating factor 1 (CSF1) promotes the proliferation, differentiation and survival of macrophages, which have been implicated in both beneficial and detrimental effects on glucose metabolism. However, the physiological role of CSF1 signalling in glucose homeostasis and the potential therapeutic implications of modulating this pathway are not known. We aimed to study the composition of tissue macrophages (and other immune cells) following CSF1 receptor (CSF1R) inhibition and elucidate the metabolic consequences of CSF1R inhibition. METHODS: We assessed immune cell populations in various organs by flow cytometry, and tissue-specific metabolic effects by hyperinsulinaemic-euglycaemic clamps and insulin secretion assays in mice fed a chow diet containing PLX5622 (a CSF1R inhibitor) or a control diet. RESULTS: CSF1R inhibition depleted macrophages in multiple tissues while simultaneously increasing eosinophils and group 2 innate lymphoid cells. These immunological changes were consistent across different organs and were sex independent and reversible after cessation of the PLX5622. CSF1R inhibition improved hepatic insulin sensitivity but concomitantly impaired insulin secretion. In healthy islets, we found a high frequency of IL-1ß+ islet macrophages. Their depletion by CSF1R inhibition led to downregulation of macrophage-related pathways and mediators of cytokine activity, including Nlrp3, suggesting IL-1ß as a candidate insulin secretagogue. Partial restoration of physiological insulin secretion was achieved by injecting recombinant IL-1ß prior to glucose stimulation in mice lacking macrophages. CONCLUSIONS/INTERPRETATION: Macrophages and macrophage-derived factors, such as IL-1ß, play an important role in physiological insulin secretion. A better understanding of the tissue-specific effects of CSF1R inhibition on immune cells and glucose homeostasis is crucial for the development of targeted immune-modulatory treatments in metabolic disease. DATA AVAILABILITY: The RNA-Seq dataset is available in the Gene Expression Omnibus (GEO) under the accession number GSE189434 ( http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE189434 ).


Subject(s)
Immunity, Innate , Lymphocytes , Mice , Animals , Macrophages/metabolism , Glucose/metabolism
2.
Circulation ; 145(24): 1764-1779, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35389756

ABSTRACT

BACKGROUND: Cardiac troponin (cTn) T and cTnI are considered cardiac specific and equivalent in the diagnosis of acute myocardial infarction. Previous studies suggested rare skeletal myopathies as a noncardiac source of cTnT. We aimed to confirm the reliability/cardiac specificity of cTnT in patients with various skeletal muscle disorders (SMDs). METHODS: We prospectively enrolled patients presenting with muscular complaints (≥2 weeks) for elective evaluation in 4 hospitals in 2 countries. After a cardiac workup, patients were adjudicated into 3 predefined cardiac disease categories. Concentrations of cTnT/I and resulting cTnT/I mismatches were assessed with high-sensitivity (hs-) cTnT (hs-cTnT-Elecsys) and 3 hs-cTnI assays (hs-cTnI-Architect, hs-cTnI-Access, hs-cTnI-Vista) and compared with those of control subjects without SMD presenting with adjudicated noncardiac chest pain to the emergency department (n=3508; mean age, 55 years; 37% female). In patients with available skeletal muscle biopsies, TNNT/I1-3 mRNA differential gene expression was compared with biopsies obtained in control subjects without SMD. RESULTS: Among 211 patients (mean age, 57 years; 42% female), 108 (51%) were adjudicated to having no cardiac disease, 44 (21%) to having mild disease, and 59 (28%) to having severe cardiac disease. hs-cTnT/I concentrations significantly increased from patients with no to those with mild and severe cardiac disease for all assays (all P<0.001). hs-cTnT-Elecsys concentrations were significantly higher in patients with SMD versus control subjects (median, 16 ng/L [interquartile range (IQR), 7-32.5 ng/L] versus 5 ng/L [IQR, 3-9 ng/L]; P<0.001), whereas hs-cTnI concentrations were mostly similar (hs-cTnI-Architect, 2.5 ng/L [IQR, 1.2-6.2 ng/L] versus 2.9 ng/L [IQR, 1.8-5.0 ng/L]; hs-cTnI-Access, 3.3 ng/L [IQR, 2.4-6.1 ng/L] versus 2.7 ng/L [IQR, 1.6-5.0 ng/L]; and hs-cTnI-Vista, 7.4 ng/L [IQR, 5.2-13.4 ng/L] versus 7.5 ng/L [IQR, 6-10 ng/L]). hs-cTnT-Elecsys concentrations were above the upper limit of normal in 55% of patients with SMD versus 13% of control subjects (P<0.01). mRNA analyses in skeletal muscle biopsies (n=33), mostly (n=24) from individuals with noninflammatory myopathy and myositis, showed 8-fold upregulation of TNNT2, encoding cTnT (but none for TNNI3, encoding cTnI) versus control subjects (n=16, PWald<0.001); the expression correlated with pathological disease activity (R=0.59, Pt-statistic<0.001) and circulating hs-cTnT concentrations (R=0.26, Pt-statistic=0.031). CONCLUSIONS: In patients with active chronic SMD, elevations in cTnT concentrations are common and not attributable to cardiac disease in the majority. This was not observed for cTnI and may be explained in part by re-expression of cTnT in skeletal muscle. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: NCT03660969.


Subject(s)
Heart Diseases/metabolism , Muscular Diseases/metabolism , Troponin I/metabolism , Troponin T/metabolism , Biomarkers , Case-Control Studies , Female , Heart Diseases/diagnosis , Humans , Male , Middle Aged , Muscular Diseases/diagnosis , Prospective Studies , RNA, Messenger/analysis , Reproducibility of Results , Troponin I/genetics , Troponin T/genetics
3.
Appetite ; 155: 104792, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32707265

ABSTRACT

The initial release of insulin in response to food stimuli acting on receptors in the head and oropharynx is called the cephalic phase of insulin secretion. Insulin has been shown to act centrally to regulate food intake and glucose metabolism and the cephalic phase of insulin secretion may contribute to these functions. Though well documented in laboratory animals, the existence of cephalic phase insulin release in humans has recently come into question. We therefore performed a systematic review and meta-analysis of studies of cephalic phase insulin release in humans. Efficacy outcomes included any change in circulating insulin levels in healthy human volunteers post any food stimulus as compared to baseline or control in a time period of no longer than 10 min. Primary outcome: The overall pooled effect size estimate for cephalic phase insulin release was 0.47 [0.36, 0.58] p-value <0.0001. Secondary outcomes: A random effects meta-analysis with an added moderator for type of stimulus presentation (one, two, four or five sensory qualities) and type of stimulus offered (liquid, solid formulation) also significantly influenced results p = 0.0116 and p = 0.0024 respectively, while sex had no significant effect. Sensitivity Analysis: More restrictive analyses only including studies that used non-ingestive stimuli (p = 0.0001), or studies that reported insulin values within 5 min post stimulus presentation (p < 0.0001) still showed significant positive overall effect size estimates. In summary, our analysis shows that there is evidence for the presence of cephalic phase insulin secretion in humans. Secondary analyses suggest that the type and presentation of stimulus may significantly influence cephalic phase insulin secretion, while sex had no significant effect on cephalic phase insulin secretion.


Subject(s)
Blood Glucose , Insulin , Animals , Food , Humans , Insulin/metabolism , Insulin Secretion
4.
Cell Metab ; 34(7): 991-1003.e6, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35750050

ABSTRACT

The initial cephalic phase of insulin secretion is mediated through the vagus nerve and is not due to glycemic stimulation of pancreatic ß cells. Recently, IL-1ß was shown to stimulate postprandial insulin secretion. Here, we describe that this incretin-like effect of IL-1ß involves neuronal transmission. Furthermore, we found that cephalic phase insulin release was mediated by IL-1ß originating from microglia. Moreover, IL-1ß activated the vagus nerve to induce insulin secretion and regulated the activity of the hypothalamus in response to cephalic stimulation. Notably, cephalic phase insulin release was impaired in obesity, in both mice and humans, and in mice, this was due to dysregulated IL-1ß signaling. Our findings attribute a regulatory role to IL-1ß in the integration of nutrient-derived sensory information, subsequent neuronally mediated insulin secretion, and the dysregulation of autonomic cephalic phase responses in obesity.


Subject(s)
Insulin-Secreting Cells , Insulin , Interleukin-1beta , Animals , Blood Glucose/metabolism , Insulin/metabolism , Insulin Secretion , Insulin-Secreting Cells/metabolism , Interleukin-1beta/metabolism , Mice , Obesity/metabolism
5.
Nat Commun ; 13(1): 4761, 2022 08 13.
Article in English | MEDLINE | ID: mdl-35963866

ABSTRACT

Defective insulin processing is associated with obesity and diabetes. Prohormone convertase 1/3 (PC1/3) is an endopeptidase required for the processing of neurotransmitters and hormones. PC1/3 deficiency and genome-wide association studies relate PC1/3 with early onset obesity. Here, we find that deletion of PC1/3 in obesity-related neuronal cells expressing proopiomelanocortin mildly and transiently change body weight and fail to produce a phenotype when targeted to Agouti-related peptide- or nestin-expressing tissues. In contrast, pancreatic ß cell-specific PC1/3 ablation induces hyperphagia with consecutive obesity despite uncontrolled diabetes with glucosuria. Obesity develops not due to impaired pro-islet amyloid polypeptide processing but due to impaired insulin maturation. Proinsulin crosses the blood-brain-barrier but does not induce central satiety. Accordingly, insulin therapy prevents hyperphagia. Further, islet PC1/3 expression levels negatively correlate with body mass index in humans. In this work, we show that impaired PC1/3-mediated proinsulin processing, as observed in human prediabetes, promotes hyperphagic obesity.


Subject(s)
Diabetes Mellitus , Proinsulin , Genome-Wide Association Study , Humans , Hyperphagia/genetics , Insulin/metabolism , Obesity/complications , Obesity/genetics , Obesity/metabolism , Proinsulin/genetics , Proinsulin/metabolism , Proprotein Convertase 1/genetics
6.
Commun Biol ; 5(1): 370, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35440795

ABSTRACT

The obesity epidemic continues to worsen worldwide. However, the mechanisms initiating glucose dysregulation in obesity remain poorly understood. We assessed the role that colonic macrophage subpopulations play in glucose homeostasis in mice fed a high-fat diet (HFD). Concurrent with glucose intolerance, pro-inflammatory/monocyte-derived colonic macrophages increased in mice fed a HFD. A link between macrophage numbers and glycemia was established by pharmacological dose-dependent ablation of macrophages. In particular, colon-specific macrophage depletion by intrarectal clodronate liposomes improved glucose tolerance, insulin sensitivity, and insulin secretion capacity. Colonic macrophage activation upon HFD was characterized by an interferon response and a change in mitochondrial metabolism, which converged in mTOR as a common regulator. Colon-specific mTOR inhibition reduced pro-inflammatory macrophages and ameliorated insulin secretion capacity, similar to colon-specific macrophage depletion, but did not affect insulin sensitivity. Thus, pharmacological targeting of colonic macrophages could become a potential therapy in obesity to improve glycemic control.


Subject(s)
Diet, High-Fat , Insulin Resistance , Animals , Blood Glucose/metabolism , Colon/metabolism , Diet, High-Fat/adverse effects , Glycemic Control , Macrophages/metabolism , Mice , Obesity/etiology , Obesity/metabolism , TOR Serine-Threonine Kinases/metabolism
7.
iScience ; 24(11): 103250, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34746709

ABSTRACT

Aging is the prime risk factor for the development of type 2 diabetes. We investigated the role of the interleukin-1 (IL-1) system on insulin secretion in aged mice. During aging, expression of the protective IL-1 receptor antagonist decreased in islets, whereas IL-1beta gene expression increased specifically in the CD45 + islet immune cell fraction. One-year-old mice with a whole-body knockout of IL-1beta had higher insulin secretion in vivo and in isolated islets, along with enhanced proliferation marker Ki67 and elevated size and number of islets. Myeloid cell-specific IL-1beta knockout preserved glucose-stimulated insulin secretion during aging, whereas it declined in control mice. Isolated islets from aged myeloIL-1beta ko mice secreted more insulin along with increased expression of Ins2, Kir6.2, and of the cell-cycle gene E2f1. IL-1beta treatment of isolated islets reduced E2f1, Ins2, and Kir6.2 expression in beta cells. We conclude that IL-1beta contributes the age-associated decline of beta cell function.

8.
Cell Rep ; 30(5): 1627-1643.e7, 2020 02 04.
Article in English | MEDLINE | ID: mdl-32023474

ABSTRACT

The innate immune system safeguards the organism from both pathogenic and environmental stressors. Also, physiologic levels of nutrients affect organismal and intra-cellular metabolism and challenge the immune system. In the long term, over-nutrition leads to low-grade systemic inflammation. Here, we investigate tissue-resident components of the innate immune system (macrophages) and their response to short- and long-term nutritional challenges. We analyze the transcriptomes of six tissue-resident macrophage populations upon acute feeding and identify adipose tissue macrophages and the IL-1 pathway as early sensors of metabolic changes. Furthermore, by comparing functional responses between macrophage subtypes, we propose a regulatory, anti-inflammatory role of heat shock proteins of the HSP70 family in response to long- and short-term metabolic challenges. Our data provide a resource for assessing the impact of nutrition and over-nutrition on the spectrum of macrophages across tissues with a potential for identification of systemic responses.


Subject(s)
Macrophages/metabolism , Transcription, Genetic , Adipose Tissue/cytology , Animals , Diabetes Mellitus, Experimental/pathology , Diet, High-Fat , Fatty Acids/metabolism , Heat-Shock Proteins/metabolism , Interleukin-1/metabolism , Male , Mice, Inbred C57BL , Microglia/metabolism , Rats , Signal Transduction , Streptozocin , Time Factors
9.
Cell Metab ; 31(4): 699-709.e5, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32197070

ABSTRACT

Postprandial hypoglycemia is a disabling complication of the treatment of obesity by gastric bypass surgery. So far, no therapy exists, and the underlying mechanisms remain unclear. Here, we hypothesized that glucose-induced IL-1ß leads to an exaggerated insulin response in this condition. Therefore, we conducted a placebo-controlled, randomized, double-blind, crossover study with the SGLT2-inhibitor empagliflozin and the IL-1 receptor antagonist anakinra (clinicaltrials.govNCT03200782; n = 12). Both drugs reduced postprandial insulin release and prevented hypoglycemia (symptomatic events requiring rescue glucose: placebo = 7/12, empagliflozin = 2/12, and anakinra = 2/12, pvallikelihood ratio test (LRT) = 0.013; nadir blood glucose for placebo = 2.4 mmol/L, 95% CI 2.18-2.62, empagliflozin = 2.69 mmol/L, 95% CI 2.31-3.08, and anakinra = 2.99 mmol/L, 95% CI 2.43-3.55, pvalLRT = 0.048). Moreover, analysis of monocytes ex vivo revealed a hyper-reactive inflammatory state that has features of an exaggerated response to a meal. Our study proposes a role for glucose-induced IL-1ß in postprandial hypoglycemia after gastric bypass surgery and suggests that SGLT2-inhibitors and IL-1 antagonism may improve this condition.


Subject(s)
Benzhydryl Compounds/pharmacology , Gastric Bypass/adverse effects , Glucosides/pharmacology , Hypoglycemia/drug therapy , Interleukin 1 Receptor Antagonist Protein/pharmacology , Interleukin-1beta/physiology , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Adult , Cross-Over Studies , Double-Blind Method , Female , Glucose/metabolism , Humans , Hypoglycemia/etiology , Male , Middle Aged , Postprandial Period , Proof of Concept Study
10.
Sci Rep ; 10(1): 3035, 2020 02 20.
Article in English | MEDLINE | ID: mdl-32080229

ABSTRACT

Gestational diabetes mellitus (GDM) is one of the most common diseases associated with pregnancy, however, the underlying mechanisms remain unclear. Based on the well documented role of inflammation in type 2 diabetes, the aim was to investigate the role of inflammation in GDM. We established a mouse model for GDM on the basis of its two major risk factors, obesity and aging. In these GDM mice, we observed increased Interleukin-1ß (IL-1ß) expression in the uterus and the placenta along with elevated circulating IL-1ß concentrations compared to normoglycemic pregnant mice. Treatment with an anti-IL-1ß antibody improved glucose-tolerance of GDM mice without apparent deleterious effects for the fetus. Finally, IL-1ß antagonism showed a tendency for reduced plasma corticosterone concentrations, possibly explaining the metabolic improvement. We conclude that IL-1ß is a causal driver of impaired glucose tolerance in GDM.


Subject(s)
Diabetes, Gestational/metabolism , Hyperglycemia/complications , Hyperglycemia/metabolism , Interleukin-1beta/antagonists & inhibitors , Animals , Diabetes, Gestational/blood , Disease Models, Animal , Female , Hormones/blood , Hyperglycemia/blood , Interleukin-1beta/metabolism , Mice, Inbred C57BL , Pregnancy , Steroids/blood
11.
Endocr Connect ; 8(9): 1282-1287, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31434055

ABSTRACT

Osmotic stimulus or stress results in vasopressin release. Animal and human in vitro studies have shown that inflammatory parameters, such as interleukin-8 (IL-8) and tumor necrosis factor-α (TNF-α), increase in parallel in the central nervous system and bronchial, corneal or intestinal epithelial cell lines in response to osmotic stimulus. Whether osmotic stimulus directly causes a systemic inflammatory response in humans is unknown. We therefore investigated the influence of osmotic stimulus on circulatory markers of systemic inflammation in healthy volunteers. In this prospective cohort study, 44 healthy volunteers underwent a standardized test protocol with an osmotic stimulus leading into the hyperosmotic/hypernatremic range (serum sodium ≥150 mmol/L) by hypertonic saline infusion. Copeptin - a marker indicating vasopressin activity - serum sodium and osmolality, plasma IL-8 and TNF-α were measured at baseline and directly after osmotic stimulus. Median (range) serum sodium increased from 141 mmol/L (136, 147) to 151 mmol/L (145, 154) (P < 0.01), serum osmolality increased from 295 mmol/L (281, 306) to 315 mmol/L (304, 325) (P < 0.01). Median (range) copeptin increased from 4.3 pg/L (1.1, 21.4) to 28.8 pg/L (19.9, 43.4) (P < 0.01). Median (range) IL-8 levels showed a trend to decrease from 0.79 pg/mL (0.37, 1.6) to 0.7 pg/mL (0.4, 1.9) (P < 0.09) and TNF-α levels decreased from 0.53 pg/mL (0.11, 1.1) to 0.45 pg/mL (0.12, 0.97) (P < 0.036). Contrary to data obtained in vitro, circulating proinflammatory cytokines tend to or decrease in human plasma after osmotic stimulus. In this study, osmotic stimulus does not increase circulating markers of systemic inflammation.

12.
Colloids Surf B Biointerfaces ; 184: 110547, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31606699

ABSTRACT

For the development of gene therapeutics for systemic administration several hurdles have to be overcome. In this article we screen the branched fatty acid lysine conjugate T14diLys, a newly designed cationic lipid for lipofection, regarding this problem. The structure and particle size of lipoplexes, prepared with lipid formulations which are based on these lipid as nucleic acid complexing agent, are investigated in absence and presence of serum. Nuclease digestion assays were performed to evaluate the protective characteristics of the lipid formulation for the complexed nucleic acid. Furthermore, the lipid formulation is investigated regarding the interaction with different serum proteins to get first insights into the protein corona formation. Another focus is set on the hemocompatibility using in vitro assays for hemolysis and complement activation and the irritation test at the chorion allantois membrane of the chicken embryo as in vivo model. Finally, preliminary transfection efficiency studies with cell culture models for cells which are assessable via systemic administration are performed to evaluate possibilities for future therapeutic applications of the new lipid formulations. Summarizing, T14diLys with the co-lipid DOPE can be used to prepare a lipoplex formulation which can be applied systemically and can be used to develop gene therapeutics for targeting endothelial cells, macrophages, or leucocytes.


Subject(s)
DNA/chemistry , Fatty Acids/chemistry , Lipids/chemistry , Lysine/chemistry , Animals , Cell Survival , Cells, Cultured , Humans , Jurkat Cells , Liposomes/chemical synthesis , Liposomes/chemistry , Mice , Molecular Structure , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL