ABSTRACT
Capillary zone electrophoresis ultraviolet (CZE-UV) has become increasingly popular for the charge heterogeneity determination of mAbs and vaccines. The ε-aminocaproic acid (eACA) CZE-UV method has been used as a rapid platform method. However, in the last years, several issues have been observed, for example, loss in electrophoretic resolution or baseline drifts. Evaluating the role of eACA on the reported issues, various laboratories were requested to provide their routinely used eACA CZE-UV methods, and background electrolyte compositions. Although every laboratory claimed to use the He et al. eACA CZE-UV method, most methods actually deviate from He's. Subsequently, a detailed interlaboratory study was designed wherein two commercially available mAbs (Waters' Mass Check Standard mAb [pI 7] and NISTmAb [pI 9]) were provided to each laboratory, along with two detailed eACA CZE-UV protocols for a short-end, high-speed, and a long-end, high-resolution method. Ten laboratories participated each using their own instruments, and commodities, showing excellence method performance (relative standard deviations [RSDs] of percent time-corrected main peak areas from 0.2% to 1.9%, and RSDs of migration times from 0.7% to 1.8% [n = 50 per laboratory], analysis times in some cases as short as 2.5 min). This study clarified that eACA is not the main reason for the abovementioned variations.
Subject(s)
Aminocaproic Acid , Antibodies, Monoclonal , Antibodies, Monoclonal/analysis , Electrophoresis, Capillary/methods , ElectrolytesABSTRACT
One of the most widely used epitope tags is the myc-tag, recognized by the anti-c-Myc hybridoma antibody Myc1-9E10. Combining error-prone PCR, DNA shuffling and phage display, we generated an anti-c-Myc antibody variant (Hyper-Myc) with monovalent affinity improved to 18 nM and thermal stability increased by 37%. Quantification of capillary immunoblots and by flow cytometry demonstrated improved antigen detection by Hyper-Myc. Further, three different species variants of this antibody were generated to allow the use of either anti-human, anti-mouse or anti-rabbit Fc secondary antibodies for detection. We characterized the specificity of both antibodies in depth: individual amino acid exchange mapping demonstrated that the recognized epitope was not changed by the in vitro evolution process. A laser printed array of 29,127 different epitopes representing all human linear B-cell epitopes of the Immune Epitope Database allowing to chart unwanted reactivities with mimotopes showed these to be very low for both antibodies and not increased for Hyper-Myc despite its improved affinity. The very low background reactivity of Hyper-Myc was confirmed by staining of myc-tag transgenic zebrafish whole mounts. Hyper-Myc retains the very high specificity of Myc1-9E10 while allowing myc-tag detection at lower concentrations and with either anti-mouse, anti-rabbit or anti human secondary antibodies.
Subject(s)
Antibodies, Monoclonal , Zebrafish , Animals , Antibodies, Monoclonal/chemistry , Epitope Mapping , Epitopes , Mice , Proto-Oncogene Proteins c-myc/genetics , RabbitsABSTRACT
SDS gel electrophoresis is a commonly used approach for monitoring purity and apparent molecular mass (Mr) of proteins, especially in the field of quality control of biopharmaceutical proteins. The technological installation of CE-SDS as the replacement of the slab gel technique (SDS-PAGE) is still in progress, leading to a continuous improvement of CE-SDS instruments. Various CE-SDS instruments, namely Maurice (CE-SDS/CE-SDS PLUS) and Wes by ProteinSimple as well as the microchip gel electrophoresis system LabChip® GXII Touch™ HT by PerkinElmer were tested for precision and repeatability compared to SDS-PAGE (Bio-Rad). For assessing these quality control parameters, standard model proteins with minor post-translational modifications were used. Overall, it can be concluded that the CE-SDS-based methods are similar to SDS-PAGE with respect to these parameters. Quality characteristics of test systems gain more significance by testing proteins that do not behave like model proteins. Therefore, glycosylated proteins were analyzed to comparatively investigate the influence of glycosylation on Mr determination in the different instruments. In some cases, high deviations were found both among the methods and with regard to reference values. This article provides possible explanations for these findings.
Subject(s)
Electrophoresis, Capillary , Electrophoresis, Polyacrylamide Gel , Electrophoresis, Microchip , Glycosylation , Molecular Weight , ProteinsABSTRACT
The development of capillary electrophoresis, especially CE-SDS devices, has led CE-SDS to become an established tool in a wide range of applications in the analysis of biopharmaceuticals and is increasingly replacing its method of origin, SDS-PAGE. The goal of this study was to evaluate the comparability of molecular weight (MW) determination especially by CE-SDS and SDS-PAGE. For ensuring comparability, model proteins that have little or no posttranslational modifications and an IgG antibody were used. Only a minor influence of sample preparation conditions, including sample buffer, temperature conditions, and different reducing agents on the MW determination were found. In contrast, the selection of the MW marker plays a decisive role in determining the accurate apparent MW of a protein. When using different MW markers, the deviation in MW determination can exceed 10%. Interestingly, CE-SDS and 10% SDS-PAGE hardly differ in their trueness of MW determination. The trueness in relation to the reference MW for each protein was calculated. Although the trueness values for the model proteins considered range between 1.00 and 1.11 using CE-SDS, they range between 0.93 and 1.03 on SDS-PAGE, depending on the experimental conditions chosen.
Subject(s)
Blotting, Western/methods , Electrophoresis, Capillary/methods , Electrophoresis, Polyacrylamide Gel/methods , Proteins/analysis , Proteins/chemistry , Animals , Humans , Immunoglobulin G/analysis , Immunoglobulin G/chemistry , Linear Models , Molecular Weight , Protein Processing, Post-TranslationalABSTRACT
Charge heterogeneity is an important critical quality attribute for the analysis of monoclonal antibodies (mAbs). For this, (imaged) capillary isoelectric focusing ((i)cIEF), ion exchange chromatography (IEC) and, recently, capillary zone electrophoresis (CZE) are the predominantly used techniques. In order to investigate which one is most suitable to answer a specific analytical question, here, the four aforementioned separation techniques were systematically evaluated using NISTmAb and Infliximab as test molecules. The performance parameters (precision, separation efficiency, linearity and sensitivity) were determined under comparable conditions. Moreover, important aspects for daily routine such as speed and ease of use were considered. Each technique has its own pros and cons. The (i)cIEF methodology is distinguished by its excellent separation efficiency. In addition, the native fluorescence mode in icIEF is a good tool to analyze small sample amounts (LOQ: 2.8â¯mg/l for Infliximab). Nevertheless, high performance liquid chromatography (HPLC) still has superior precision. CZE, and also micellar electrokinetic chromatography (MEKC), have emerged as further interesting alternatives. For all techniques, variations connected to the sample preparation strongly influence precision. Looking at the relative standard deviation (RSD) values of the relative peak areas, all techniques provide acceptable performance (RSD: 0.6-1.6%).
Subject(s)
Antibodies, Monoclonal/analysis , Chromatography, Ion Exchange/methods , Electrophoresis, Capillary/methods , Infliximab/analysis , Isoelectric Focusing/methods , Cations , Linear Models , Micelles , Reproducibility of Results , Sensitivity and SpecificityABSTRACT
The human pathogen Campylobacter jejuni is one of more than 40 naturally competent bacterial species able to import macromolecular DNA from the environment and incorporate it into their genomes. However, in C. jejuni little is known about the genes involved in this process. We used random transposon mutagenesis to identify genes that are required for the transformation of this organism. We isolated mutants with insertions in 11 different genes; most of the mutants are affected in the DNA uptake stage of transformation, whereas two mutants are affected in steps subsequent to DNA uptake, such as recombination into the chromosome or in DNA transport across the inner membrane. Several of these genes encode proteins homologous to those involved in type II secretion systems, biogenesis of type IV pili, and competence for natural transformation in gram-positive and gram-negative species. Other genes identified in our screen encode proteins unique to C. jejuni or are homologous to proteins that have not been shown to play a role in the transformation in other bacteria.