Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters

Publication year range
1.
Alzheimers Dement ; 20(9): 5861-5888, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39090679

ABSTRACT

INTRODUCTION: Triggering receptor expressed on myeloid cells 2 (TREM2) agonists are being clinically evaluated as disease-modifying therapeutics for Alzheimer's disease. Clinically translatable pharmacodynamic (PD) biomarkers are needed to confirm drug activity and select the appropriate therapeutic dose in clinical trials. METHODS: We conducted multi-omic analyses on paired non-human primate brain and cerebrospinal fluid (CSF), and stimulation of human induced pluripotent stem cell-derived microglia cultures after TREM2 agonist treatment, followed by validation of candidate fluid PD biomarkers using immunoassays. We immunostained microglia to characterize proliferation and clustering. RESULTS: We report CSF soluble TREM2 (sTREM2) and CSF chitinase-3-like protein 1 (CHI3L1/YKL-40) as PD biomarkers for the TREM2 agonist hPara.09. The respective reduction of sTREM2 and elevation of CHI3L1 in brain and CSF after TREM2 agonist treatment correlated with transient microglia proliferation and clustering. DISCUSSION: CSF CHI3L1 and sTREM2 reflect microglial TREM2 agonism and can be used as clinical PD biomarkers to monitor TREM2 activity in the brain. HIGHLIGHTS: CSF soluble triggering receptor expressed on myeloid cells 2 (sTREM2) reflects brain target engagement for a novel TREM2 agonist, hPara.09. CSF chitinase-3-like protein 1 reflects microglial TREM2 agonism. Both can be used as clinical fluid biomarkers to monitor TREM2 activity in brain.


Subject(s)
Biomarkers , Brain , Chitinase-3-Like Protein 1 , Membrane Glycoproteins , Microglia , Receptors, Immunologic , Chitinase-3-Like Protein 1/cerebrospinal fluid , Receptors, Immunologic/metabolism , Animals , Humans , Brain/metabolism , Biomarkers/cerebrospinal fluid , Microglia/drug effects , Microglia/metabolism , Induced Pluripotent Stem Cells , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/drug therapy , Male
2.
Alzheimers Dement ; 18(5): 988-1007, 2022 05.
Article in English | MEDLINE | ID: mdl-34581500

ABSTRACT

Studies supporting a strong association between tau deposition and neuronal loss, neurodegeneration, and cognitive decline have heightened the allure of tau and tau-related mechanisms as therapeutic targets. In February 2020, leading tau experts from around the world convened for the first-ever Tau2020 Global Conference in Washington, DC, co-organized and cosponsored by the Rainwater Charitable Foundation, the Alzheimer's Association, and CurePSP. Representing academia, industry, government, and the philanthropic sector, presenters and attendees discussed recent advances and current directions in tau research. The meeting provided a unique opportunity to move tau research forward by fostering global partnerships among academia, industry, and other stakeholders and by providing support for new drug discovery programs, groundbreaking research, and emerging tau researchers. The meeting also provided an opportunity for experts to present critical research-advancing tools and insights that are now rapidly accelerating the pace of tau research.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Biomarkers , Drug Discovery , Humans , tau Proteins
3.
Brain ; 143(2): 650-660, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31834365

ABSTRACT

To date, there is no validated fluid biomarker for tau pathology in Alzheimer's disease, with contradictory results from studies evaluating the correlation between phosphorylated tau in CSF with tau PET imaging. Tau protein is subjected to proteolytic processing into fragments before being secreted to the CSF. A recent study suggested that tau cleavage after amino acid 368 by asparagine endopeptidase (AEP) is upregulated in Alzheimer's disease. We used immunoprecipitation followed by mass spectrometric analyses to evaluate the presence of tau368 species in CSF. A novel Simoa® assay for quantification of tau368 in CSF was developed, while total tau (t-tau) was measured by ELISA and the presence of tau368 in tangles was evaluated using immunohistochemistry. The diagnostic utility of tau368 was first evaluated in a pilot study (Alzheimer's disease = 20, control = 20), then in a second cohort where the IWG-2 biomarker criteria were applied (Alzheimer's disease = 37, control = 45), and finally in a third cohort where the correlation with 18F-GTP1 tau PET was evaluated (Alzheimer's disease = 38, control = 11). The tau368/t-tau ratio was significantly decreased in Alzheimer's disease (P < 0.001) in all cohorts. Immunohistochemical staining demonstrated that tau fragments ending at 368 are present in tangles. There was a strong negative correlation between the CSF tau368/t-tau ratio and 18F-GTP1 retention. Our data suggest that tau368 is a tangle-enriched fragment and that the CSF ratio tau368/t-tau reflects tangle pathology. This novel tau biomarker could be used to improve diagnosis of Alzheimer's disease and to facilitate the development of drug candidates targeting tau pathology. Furthermore, future longitudinal studies will increase our understanding of tau pathophysiology in Alzheimer's disease and other tauopathies.


Subject(s)
Alzheimer Disease/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid , Peptide Fragments/cerebrospinal fluid , tau Proteins/cerebrospinal fluid , Adult , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Biomarkers/cerebrospinal fluid , Cohort Studies , Female , Humans , Longitudinal Studies , Male , Middle Aged
4.
J Neurosci ; 34(24): 8336-46, 2014 Jun 11.
Article in English | MEDLINE | ID: mdl-24920637

ABSTRACT

BACE, a ß-secretase, is an attractive potential disease-modifying therapeutic strategy for Alzheimer's disease (AD) as it results directly in the decrease of amyloid precursor protein (APP) processing through the ß-secretase pathway and a lowering of CNS amyloid-ß (Aß) levels. The interaction of the ß-secretase and α-secretase pathway-mediated processing of APP in the rhesus monkey (nonhuman primate; NHP) CNS is not understood. We hypothesized that CNS inhibition of BACE would result in decreased newly generated Aß and soluble APPß (sAPPß), with increased newly generated sAPPα. A stable isotope labeling kinetics experiment in NHPs was performed with a (13)C6-leucine infusion protocol to evaluate effects of BACE inhibition on CNS APP processing by measuring the kinetics of sAPPα, sAPPß, and Aß in CSF. Each NHP received a low, medium, or high dose of MBI-5 (BACE inhibitor) or vehicle in a four-way crossover design. CSF sAPPα, sAPPß, and Aß were measured by ELISA and newly incorporated label following immunoprecipitation and liquid chromatography-mass spectrometry. Concentrations, kinetics, and amount of newly generated APP fragments were calculated. sAPPß and sAPPα kinetics were similar, but both significantly slower than Aß. BACE inhibition resulted in decreased labeled sAPPß and Aß in CSF, without observable changes in labeled CSF sAPPα. ELISA concentrations of sAPPß and Aß both decreased and sAPPα increased. sAPPα increased by ELISA, with no difference by labeled sAPPα kinetics indicating increases in product may be due to APP shunting from the ß-secretase to the α-secretase pathway. These results provide a quantitative understanding of pharmacodynamic effects of BACE inhibition on NHP CNS, which can inform about target development.


Subject(s)
Amyloid Precursor Protein Secretases/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid , Amyloid beta-Protein Precursor/cerebrospinal fluid , Central Nervous System/metabolism , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Carbon Isotopes/metabolism , Cell Line, Tumor , Central Nervous System/drug effects , Cross-Over Studies , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Humans , Immunoprecipitation , Leucine/metabolism , Macaca mulatta , Mass Spectrometry , Neuroblastoma , Peptide Fragments , Transfection
5.
Front Neuroimaging ; 3: 1355402, 2024.
Article in English | MEDLINE | ID: mdl-38606196

ABSTRACT

Purpose: We evaluated the impact of partial volume correction (PVC) methods on the quantification of longitudinal [18F]GTP1 tau positron-emission tomography (PET) in Alzheimer's disease and the suitability of describing the tau pathology burden temporal trajectories using linear mixed-effects models (LMEM). Methods: We applied van Cittert iterative deconvolution (VC), 2-compartment, and 3-compartment, and the geometric transfer matrix plus region-based voxelwise methods to data acquired in an Alzheimer's disease natural history study over 18 months at a single imaging site. We determined the optimal PVC method by comparing the standardized uptake value ratio change (%ΔSUVR) between diagnostic and tau burden-level groups and the longitudinal repeatability derived from the LMEM. The performance of LMEM analysis for calculating %ΔSUVR was evaluated in a natural history study and in a multisite clinical trial of semorinemab in prodromal to mild Alzheimer's disease by comparing results to traditional per-visit estimates. Results: The VC, 2-compartment, and 3-compartment PVC methods had similar performance, whereas region-based voxelwise overcorrected regions with a higher tau burden. The lowest within-subject variability and acceptable group separation scores were observed without PVC. The LMEM-derived %ΔSUVR values were similar to the per-visit estimates with lower variability. Conclusion: The results indicate that the tested PVC methods do not offer a clear advantage or improvement over non-PVC images for the quantification of longitudinal [18F]GTP1 PET data. LMEM offers a robust framework for the longitudinal tau PET quantification with low longitudinal test-retest variability. Clinical trial registration: NCT02640092 and NCT03289143.

6.
Drug Metab Dispos ; 41(7): 1319-28, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23584887

ABSTRACT

This study was conducted to determine the pharmacokinetics (PK) and pharmacodynamics (PD) of two novel inhibitors of ß-site amyloid precursor protein (APP)-cleaving enzyme (BACE1), GNE-629 [(4S,4a'S,10a'S)-2-amino-8'-(2-fluoropyridin-3-yl)-1-methyl-3',4',4a',10a'-tetrahydro-1'H-spiro[imidazole-4,10'-pyrano[4,3-b]chromen]-5(1H)-one] and GNE-892 [(R)-2-amino-1,3',3'-trimethyl-7'-(pyrimidin-5-yl)-3',4'-dihydro-2'H-spiro[imidazole-4,1'-naphthalen]-5(1H)-one], and to develop a PK-PD model to predict in vivo effects based solely on in vitro activity and PK. GNE-629 and GNE-892 concentrations and PD biomarkers including amyloid ß (Aß) in the plasma and cerebrospinal fluid (CSF), and secreted APPß (sAPPß) and secreted APPα (sAPPα) in the CSF were measured after a single oral administration of GNE-629 (100 mg/kg) or GNE-892 (30 or 100 mg/kg) in cynomolgus monkeys. A mechanistic PK-PD model was developed to simultaneously characterize the plasma Aß and CSF Aß, sAPPα, and sAPPß using GNE-629 in vivo data. This model was used to predict the in vivo effects of GNE-892 after adjustments based on differences in in vitro cellular activity and PK. The PK-PD model estimated GNE-629 CSF and free plasma IC50 of 0.0033 µM and 0.065 µM, respectively. These differences in CSF and free plasma IC50 suggest that different mechanisms are involved in Aß formation in these two compartments. The predicted in vivo effects for GNE-892 using the PK-PD model were consistent with the observed data. In conclusion, a PK-PD model was developed to mechanistically describe the effects of BACE1 inhibition on Aß, sAPPß, and sAPPα in the CSF, and Aß in the plasma. This model can be used to prospectively predict in vivo effects of new BACE1 inhibitors using just their in vitro activity and PK data.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid beta-Protein Precursor/metabolism , Aspartic Acid Endopeptidases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Imidazoles/pharmacology , Spiro Compounds/pharmacology , Amino Acid Sequence , Animals , Chromatography, Liquid , Dogs , HEK293 Cells , Humans , Macaca fascicularis , Models, Biological , Molecular Sequence Data , Pyrimidines/pharmacology , Tandem Mass Spectrometry , Thiazines/pharmacology
7.
Neurology ; 101(14): e1391-e1401, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37643887

ABSTRACT

BACKGROUND AND OBJECTIVES: Accumulation of tau pathology in Alzheimer disease (AD) correlates with cognitive decline. Anti-tau immunotherapies were proposed as potential interventions in AD. While antibodies targeting N-terminal tau failed to demonstrate clinical efficacy in prodromal-to-mild AD, their utility at other disease stages was not evaluated in prior studies. Lauriet is a phase 2 study of an anti-tau monoclonal antibody, semorinemab, in patients with mild-to-moderate AD. METHODS: The phase 2 Lauriet study included a randomized, placebo-controlled, double-blind period, during which participants with mild-to-moderate AD received 4,500 mg of IV semorinemab or placebo every 4 weeks for 48 or 60 weeks. Participants who chose to continue in the subsequent optional open-label extension received 4,500 mg of semorinemab every 4 weeks for up to 96 weeks. Coprimary efficacy endpoints were change from baseline to week 49 or 61 on the 11-item version of the Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog11) and the Alzheimer's Disease Cooperative Study-Activities of Daily Living (ADCS-ADL) scale. Secondary efficacy endpoints included change from baseline on the Mini-Mental State Examination (MMSE) and Clinical Dementia Rating-Sum of Boxes (CDR-SB). Safety, pharmacokinetics, and pharmacodynamic effects were also evaluated. RESULTS: Between December 3, 2018, and February 27, 2020, 624 individuals were screened, 272 participants were randomized, and 238 were included in the modified intent-to-treat population (received ≥1 dose(s) of study medication and underwent baseline and ≥1 postbaseline assessment(s)). Baseline characteristics were well balanced. At week 49, the semorinemab arm demonstrated a 42.2% reduction (-2.89 points, 95% CI -4.56 to -1.21, p = 0.0008) in decline on the ADAS-Cog11 (coprimary endpoint) relative to the placebo arm. However, no treatment effects were observed on the ADCS-ADL scale (coprimary endpoint; absolute difference between the 2 treatment arms in the ADCS-ADL score change from baseline of -0.83 points, 95% CI -3.39 to 1.72, p = 0.52) or on the MMSE or CDR-SB (secondary endpoints). Semorinemab was safe and well tolerated. DISCUSSION: Based on the results of the prespecified coprimary endpoints, this study was negative. While semorinemab had a significant effect on cognition measured by the ADAS-Cog11, this effect did not extend to improved functional or global outcomes. These results may warrant further exploration of semorinemab or other anti-tau therapies in mild-to-moderate AD. CLASSIFICATION OF EVIDENCE: This study provides Class I evidence that semorinemab does not slow functional decline in patients with mild-to-moderate AD. TRIAL REGISTRATION INFORMATION: The Lauriet study is registered on ClinicalTrials.gov, NCT03828747, and EudraCT 2018-003398-87.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/psychology , Activities of Daily Living , Treatment Outcome , Antibodies, Monoclonal/therapeutic use , Double-Blind Method
8.
J Alzheimers Dis ; 85(1): 415-429, 2022.
Article in English | MEDLINE | ID: mdl-34806603

ABSTRACT

BACKGROUND: Understanding patterns of association between CSF phosphorylated tau (p-tau) species and clinical disease severity will aid Alzheimer's disease (AD) diagnosis and treatment. OBJECTIVE: To evaluate changes in tau phosphorylation ratios to brain imaging (amyloid PET, [18F]GTP1 PET, and MRI) and cognition across clinical stages of AD in two different cohorts. METHODS: A mass spectrometry (MS)-based method was used to evaluate the relationship between p-tau/tau phosphorylation ratios on 11 sites in CSF and AD pathology measured by tau PET ([18F]GTP1) and amyloid PET ([18F]florbetapir or [18F]florbetaben). Cohort A included cognitively normal amyloid negative (n = 6) and positive (n = 5) individuals, and amyloid positive prodromal (n = 13), mild (n = 12), and moderate AD patients (n = 10); and Cohort B included amyloid positive prodromal (n = 24) and mild (n = 40) AD patients. RESULTS: In this cross-sectional analysis, we identified clusters of phosphosites with different profiles of phosphorylation ratios across stages of disease. Eight of 11 investigated sites were hyperphosphorylated and associated with SUVR measures from [18F]GTP1 and amyloid PET. Novel sites 111, 153, and 208 may be relevant biomarkers for AD diagnosis to complement tau hyperphosphorylation measures on previously established sites 181, 205, 217, and 231. Hypophosphorylation was detected on residues 175, 199, and 202, and was inversely associated with [18F]GTP1 and amyloid PET. CONCLUSION: Hyperphosphorylated and hypophosphorylated forms of tau are associated with AD pathologies, and due to their different site-specific profiles, they may be used in combination to assist with staging of disease.


Subject(s)
Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/pathology , Brain/pathology , Positron-Emission Tomography , tau Proteins/cerebrospinal fluid , Aged , Alzheimer Disease/diagnostic imaging , Biomarkers/cerebrospinal fluid , Brain/diagnostic imaging , Cognition , Cross-Sectional Studies , Female , Fluorine Radioisotopes/metabolism , Humans , Male , Mass Spectrometry , Middle Aged , Radiopharmaceuticals/metabolism
9.
Clin Pharmacol Ther ; 111(4): 826-834, 2022 04.
Article in English | MEDLINE | ID: mdl-35064573

ABSTRACT

Delivery of biologics via cerebrospinal fluid (CSF) has demonstrated potential to access the tissues of the central nervous system (CNS) by circumventing the blood-brain barrier and blood-CSF barrier. Developing an effective CSF drug delivery strategy requires optimization of multiple parameters, including choice of CSF access point, delivery device technology, and delivery kinetics to achieve effective therapeutic concentrations in the target brain region, whereas also considering the biologic modality, mechanism of action, disease indication, and patient population. This review discusses key preclinical and clinical examples of CSF delivery for different biologic modalities (antibodies, nucleic acid-based therapeutics, and gene therapy) to the brain via CSF or CNS access routes (intracerebroventricular, intrathecal-cisterna magna, intrathecal-lumbar, intraparenchymal, and intranasal), including the use of novel device technologies. This review also discusses quantitative models of CSF flow that provide insight into the effect of fluid dynamics in CSF on drug delivery and CNS distribution. Such models can facilitate delivery device design and pharmacokinetic/pharmacodynamic translation from preclinical species to humans in order to optimize CSF drug delivery to brain regions of interest.


Subject(s)
Biological Products , Brain , Biological Transport/physiology , Blood-Brain Barrier , Central Nervous System , Humans
10.
JAMA Neurol ; 79(8): 758-767, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35696185

ABSTRACT

Importance: Neurofibrillary tangles composed of aggregated tau protein are one of the neuropathological hallmarks of Alzheimer disease (AD) and correlate with clinical disease severity. Monoclonal antibodies targeting tau may have the potential to ameliorate AD progression by slowing or stopping the spread and/or accumulation of pathological tau. Objective: To evaluate the safety and efficacy of the monoclonal anti-tau antibody semorinemab in prodromal to mild AD. Design, Setting, and Participants: This phase 2 randomized, double-blind, placebo-controlled, parallel-group clinical trial was conducted between October 18, 2017, and July 16, 2020, at 97 sites in North America, Europe, and Australia. Individuals aged 50 to 80 years (inclusive) with prodromal to mild AD, Mini-Mental State Examination scores between 20 and 30 (inclusive), and confirmed ß-amyloid pathology (by positron emission tomography or cerebrospinal fluid) were included. Interventions: During the 73-week blinded study period, participants received intravenous infusions of placebo or semorinemab (1500 mg, 4500 mg, or 8100 mg) every 2 weeks for the first 3 infusions and every 4 weeks thereafter. Main Outcomes and Measures: The primary outcomes were change from baseline on the Clinical Dementia Rating-Sum of Boxes score from baseline to week 73 and assessments of the safety and tolerability for semorinemab compared with placebo. Results: In the modified intent-to-treat cohort (n = 422; mean [SD] age, 69.6 [7.0] years; 235 women [55.7%]), similar increases were seen on the Clinical Dementia Rating-Sum of Boxes score in the placebo (n = 126; Δ = 2.19 [95% CI, 1.74-2.63]) and semorinemab (1500 mg: n = 86; Δ = 2.36 [95% CI, 1.83-2.89]; 4500 mg: n = 126; Δ = 2.36 [95% CI, 1.92-2.79]; 8100 mg: n = 84; Δ = 2.41 [95% CI, 1.88-2.94]) arms. In the safety-evaluable cohort (n = 441), similar proportions of participants experienced adverse events in the placebo (130 [93.1%]) and semorinemab (1500 mg: 89 [88.8%]; 4500 mg: 132 [94.7%]; 8100 mg: 90 [92.2%]) arms. Conclusions and Relevance: In participants with prodromal to mild AD in this randomized clinical trial, semorinemab did not slow clinical AD progression compared with placebo throughout the 73-week study period but did demonstrate an acceptable and well-tolerated safety profile. Additional studies of anti-tau antibodies may be needed to determine the clinical utility of this therapeutic approach. Trial Registration: ClinicalTrials.gov Identifier: NCT03289143.


Subject(s)
Alzheimer Disease , Aged , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/drug therapy , Amyloid beta-Peptides , Antibodies, Monoclonal/therapeutic use , Double-Blind Method , Female , Humans , Male , Treatment Outcome
11.
J Neurosci ; 30(19): 6743-50, 2010 May 12.
Article in English | MEDLINE | ID: mdl-20463236

ABSTRACT

The accumulation of amyloid beta (Abeta) in Alzheimer's disease is caused by an imbalance of production and clearance, which leads to increased soluble Abeta species and extracellular plaque formation in the brain. Multiple Abeta-lowering therapies are currently in development: an important goal is to characterize the molecular mechanisms of action and effects on physiological processing of Abeta, as well as other amyloid precursor protein (APP) metabolites, in models which approximate human Abeta physiology. To this end, we report the translation of the human in vivo stable-isotope-labeling kinetics (SILK) method to a rhesus monkey cisterna magna ported (CMP) nonhuman primate model, and use the model to test the mechanisms of action of a gamma-secretase inhibitor (GSI). A major concern of inhibiting the enzymes which produce Abeta (beta- and gamma-secretase) is that precursors of Abeta may accumulate and cause a rapid increase in Abeta production when enzyme inhibition discontinues. In this study, the GSI MK-0752 was administered to conscious CMP rhesus monkeys in conjunction with in vivo stable-isotope-labeling, and dose-dependently reduced newly generated CNS Abeta. In contrast to systemic Abeta metabolism, CNS Abeta production was not increased after the GSI was cleared. These results indicate that most of the CNS APP was metabolized to products other than Abeta, including C-terminal truncated forms of Abeta: 1-14, 1-15 and 1-16; this demonstrates an alternative degradation pathway for CNS amyloid precursor protein during gamma-secretase inhibition.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Brain/metabolism , Spinal Cord/metabolism , Amyloid beta-Peptides/blood , Amyloid beta-Peptides/cerebrospinal fluid , Amyloid beta-Protein Precursor/blood , Amyloid beta-Protein Precursor/cerebrospinal fluid , Animals , Brain/enzymology , Carbon Radioisotopes , Cross-Over Studies , Humans , Isotope Labeling/methods , Kinetics , Macaca mulatta , Male , Models, Animal , Species Specificity , Spinal Cord/enzymology , Time Factors
12.
Alzheimers Res Ther ; 13(1): 196, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34852837

ABSTRACT

BACKGROUND: The role and implementation of tau PET imaging for predicting subsequent cognitive decline in Alzheimer's disease (AD) remains uncertain. This study was designed to evaluate the relationship between baseline [18F]GTP1 tau PET and subsequent longitudinal change across multiple cognitive measures over 18 months. METHODS: Our analyses incorporated data from 67 participants, including cognitively normal controls (n = 10) and ß-amyloid (Aß)-positive individuals ([18F] florbetapir Aß PET) with prodromal (n = 26), mild (n = 16), or moderate (n = 15) AD. Baseline measurements included cortical volume (MRI), tau burden ([18F]GTP1 tau PET), and cognitive assessments [Mini-Mental State Examination (MMSE), Clinical Dementia Rating (CDR), 13-item version of the Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog13), and Repeatable Battery for the Assessment of Neuropsychological Status (RBANS)]. Cognitive assessments were repeated at 6-month intervals over an 18-month period. Associations between baseline [18F]GTP1 tau PET indices and longitudinal cognitive performance were assessed via univariate (Spearman correlations) and multivariate (linear mixed effects models) approaches. The utility of potential prognostic tau PET cut points was assessed with ROC curves. RESULTS: Univariate analyses indicated that greater baseline [18F]GTP1 tau PET signal was associated with faster rates of subsequent decline on the MMSE, CDR, and ADAS-Cog13 across regions of interest (ROIs). In multivariate analyses adjusted for baseline age, cognitive performance, cortical volume, and Aß PET SUVR, the prognostic performance of [18F]GTP1 SUVR was most robust in the whole cortical gray ROI. When AD participants were dichotomized into low versus high tau subgroups based on baseline [18F]GTP1 PET standardized uptake value ratios (SUVR) in the temporal (cutoff = 1.325) or whole cortical gray (cutoff = 1.245) ROIs, high tau subgroups demonstrated significantly more decline on the MMSE, CDR, and ADAS-Cog13. CONCLUSIONS: Our results suggest that [18F]GTP1 tau PET represents a prognostic biomarker in AD and are consistent with data from other tau PET tracers. Tau PET imaging may have utility for identifying AD patients at risk for more rapid cognitive decline and for stratification and/or enrichment of participant selection in AD clinical trials. Trial registration ClinicalTrials.gov NCT02640092 . Registered on December 28, 2015.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/psychology , Amyloid beta-Peptides , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/psychology , Humans , Positron-Emission Tomography/methods , tau Proteins
13.
Sci Transl Med ; 13(593)2021 05 12.
Article in English | MEDLINE | ID: mdl-33980574

ABSTRACT

Tau has become an attractive alternative target for passive immunotherapy efforts for Alzheimer's disease (AD). The anatomical distribution and extent of tau pathology correlate with disease course and severity better than other disease markers to date. We describe here the generation, preclinical characterization, and phase 1 clinical characterization of semorinemab, a humanized anti-tau monoclonal antibody with an immunoglobulin G4 (igG4) isotype backbone. Semorinemab binds all six human tau isoforms and protects neurons against tau oligomer neurotoxicity in cocultures of neurons and microglia. In addition, when administered intraperitoneally once weekly for 13 weeks, murine versions of semorinemab reduced the accumulation of tau pathology in a transgenic mouse model of tauopathy, independent of antibody effector function status. Semorinemab also showed clear evidence of target engagement in vivo, with increases in systemic tau concentrations observed in tau transgenic mice, nonhuman primates, and humans. Higher concentrations of systemic tau were observed after dosing in AD participants compared to healthy control participants. No concerning safety signals were observed in the phase 1 clinical trial at single doses up to 16,800 mg and multiple doses totaling 33,600 mg in a month.


Subject(s)
Alzheimer Disease , Tauopathies , Alzheimer Disease/drug therapy , Animals , Brain/metabolism , Disease Models, Animal , Humans , Immunization, Passive , Mice , Mice, Transgenic , Tauopathies/drug therapy , tau Proteins/metabolism
14.
Anal Biochem ; 395(1): 116-8, 2009 Dec 01.
Article in English | MEDLINE | ID: mdl-19653990

ABSTRACT

Using apolipoprotein E (ApoE) as a model protein, we developed a protein isoform analysis method utilizing stable isotope labeling tandem mass spectrometry (SILT MS). ApoE isoforms are quantitated using the intensities of the b and y ions of the (13)C-labeled tryptic isoform-specific peptides versus unlabeled tryptic isoform-specific peptides. The ApoE protein isoform analysis using SILT allows for the simultaneous detection and relative quantitation of different ApoE isoforms from the same sample. This method provides a less biased assessment of ApoE isoforms compared to antibody-dependent methods, and may lead to a better understanding of the biological differences between isoforms.


Subject(s)
Apolipoproteins E/analysis , Peptide Fragments/analysis , Protein Isoforms/analysis , Tandem Mass Spectrometry/methods , Alzheimer Disease , Animals , Apolipoprotein E2/analysis , Apolipoprotein E2/genetics , Apolipoprotein E4/analysis , Apolipoprotein E4/genetics , Astrocytes , Carbon Isotopes , Cell Line, Transformed , Gene Knock-In Techniques , Indicator Dilution Techniques , Lipoproteins/isolation & purification , Mice , Risk Factors , Trypsin
15.
Neurobiol Aging ; 81: 138-145, 2019 09.
Article in English | MEDLINE | ID: mdl-31280117

ABSTRACT

The regional relationships between tau positron emission tomography (PET) imaging and cognitive impairment in Alzheimer's disease (AD) remain uncertain. We examined cross-sectional associations between cognitive performance, cerebral uptake of the novel tau PET tracer [18F]GTP1, and other neuroimaging indices ([18F]florbetapir amyloid PET, magnetic resonance imaging) in 71 participants with normal cognition, prodromal AD, or AD dementia. Greater [18F]GTP1 uptake was seen with increasing clinical severity and correlated with poorer cognition. [18F]GTP1 uptake and cortical volume (but not [18F]florbetapir uptake) were independently associated with cognitive performance, particularly within the temporal lobe. Delayed memory was more specifically associated with temporal [18F]GTP1 uptake; other domains correlated with a broader range of regional [18F]GTP1 uptake. These data confirm that [18F]GTP1 tau PET uptake significantly correlates with cognitive performance in AD, but regional correlations between performance in non-memory cognitive domains were less specific than reported by tau PET imaging studies that included participants with atypical focal cortical AD syndromes. Tau PET imaging may have utility as a surrogate biomarker for clinical AD progression in therapeutic trials of disease-modifying interventions.


Subject(s)
Alzheimer Disease/diagnostic imaging , Brain/diagnostic imaging , Brain/metabolism , Cognition , Cognitive Dysfunction/diagnostic imaging , Fluorine Radioisotopes/metabolism , Positron-Emission Tomography , Radiopharmaceuticals/metabolism , tau Proteins/metabolism , Aged , Aged, 80 and over , Alzheimer Disease/psychology , Cognitive Dysfunction/psychology , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Neuroimaging , Severity of Illness Index
16.
Alzheimers Res Ther ; 10(1): 118, 2018 11 28.
Article in English | MEDLINE | ID: mdl-30486870

ABSTRACT

BACKGROUND: Amyloid-ß 1-42 (Aß1-42) peptide is a well-established cerebrospinal fluid (CSF) biomarker for Alzheimer's disease (AD). Reduced levels of Aß1-42 are indicative of AD, but significant variation in the absolute concentrations of this analyte has been described for both healthy and diseased populations. Preanalytical factors such as storage tube type are reported to impact Aß recovery and quantification accuracy. Using complementary immunological and mass spectrometry-based approaches, we identified and characterized preanalytical factors that influence measured concentrations of CSF Aß peptides in stored samples. METHODS: CSF from healthy control subjects and patients with AD was aliquoted into polypropylene tubes at volumes of 0.1 ml and 0.5 ml. CSF Aß1-42 concentrations were initially measured by immunoassay; subsequent determinations of CSF Aß1-42, Aß1-40, Aß1-38, Aß1-37, and Aß1-34 concentrations were made with an absolute quantitative mass spectrometry assay. In a second study, CSF from healthy control subjects and patients with dementia was denatured with guanidine hydrochloride (GuHCl) at different stages of the CSF collection and aliquoting process and then measured with the mass spectrometry assay. RESULTS: Two distinct immunoassays demonstrated that CSF Aß1-42 concentrations measured from 0.5-ml aliquots were higher than those from 0.1-ml aliquots. Tween-20 surfactant supplementation increased Aß1-42 recovery but did not effectively resolve measured concentration differences associated with aliquot size. A CSF Aß peptide mass spectrometry assay confirmed that Aß peptide recovery was linked to sample volume. Unlike the immunoassay experiments, measured differences were consistently eliminated when aliquots were denatured in the original sample tube. Recovery from a panel of low-retention polypropylene tubes was assessed, and 1.5-ml Eppendorf LoBind® tubes were determined to be the least absorptive for Aß1-42. A comparison of CSF collection and processing methods suggested that Aß peptide recovery was improved by denaturing CSF earlier in the collection/aliquoting process and that the Aß1-42/Aß1-40 ratio was a useful method to reduce variability. CONCLUSIONS: Analyte loss due to nonspecific sample tube adsorption is a significant preanalytical factor that can compromise the accuracy of CSF Aß1-42 measurements. Sample denaturation during aliquoting increases recovery of Aß peptides and improves measurement accuracy. The Aß1-42/Aß1-40 ratio can overcome some of the quantitative variability precipitated by preanalytical factors affecting recovery.


Subject(s)
Alzheimer Disease/cerebrospinal fluid , Amyloid beta-Peptides/analysis , Amyloid beta-Peptides/cerebrospinal fluid , Pre-Analytical Phase/methods , Adult , Aged , Alzheimer Disease/diagnosis , Biomarkers/cerebrospinal fluid , Female , Humans , Immunoassay/methods , Male , Mass Spectrometry/methods , Middle Aged
17.
Sci Rep ; 8(1): 16725, 2018 11 13.
Article in English | MEDLINE | ID: mdl-30425303

ABSTRACT

The aggregation of intracellular tau protein is a major hallmark of Alzheimer's disease (AD). The extent and the stereotypical spread of tau pathology in the AD brain are correlated with cognitive decline during disease progression. Here we present an in-depth analysis of endogenous tau fragmentation in a well-characterized cohort of AD and age-matched control subjects. Using protein mass spectrometry and Edman degradation to interrogate endogenous tau fragments in the human brain, we identified two novel proteolytic sites, G323 and G326, as major tau cleavage events in both normal and AD cortex. These sites are located within the sequence recently identified as the structural core of tau protofilaments, suggesting an inhibitory mechanism of fibril formation. In contrast, a different set of novel cleavages showed a distinct increase in late stage AD. These disease-associated sites are located outside of the protofilament core sequence. We demonstrate that calpain 1 specifically cleaves at both the normal and diseased sites in vitro, and the site selection is conformation-dependent. Monomeric tau is predominantly cleaved at G323/G326 (normal sites), whereas oligomerization increases cleavages at the late-AD-associated sites. The fragmentation patterns specific to disease and healthy states suggest novel regulatory mechanisms of tau aggregation in the human brain.


Subject(s)
Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Calpain/metabolism , Disease Progression , tau Proteins/chemistry , tau Proteins/metabolism , Aged, 80 and over , Brain/metabolism , Female , Humans , Male , Proteolysis
18.
Alzheimers Res Ther ; 10(1): 96, 2018 09 19.
Article in English | MEDLINE | ID: mdl-30231896

ABSTRACT

BACKGROUND: We investigated the effect of crenezumab, a humanized anti-amyloid-beta (Aß) immunoglobulin (Ig)G4 monoclonal antibody, on biomarkers of amyloid pathology, neurodegeneration, and disease progression in patients with mild-to-moderate Alzheimer's disease (AD). METHODS: This double-blind, placebo-controlled, randomized phase II study enrolled patients with mild-to-moderate AD and a Mini-Mental State Examination (MMSE) score of 18-26. In part 1 of the study, patients were 2:1 randomized to receive low-dose subcutaneous (SC) 300 mg crenezumab every 2 weeks (q2w) or placebo for 68 weeks; in part 2, patients were 2:1 randomized to receive high-dose intravenous (IV) 15 mg/kg crenezumab every 4 weeks (q4w) or placebo for 68 weeks. The primary endpoint was change in amyloid burden from baseline to week 69 assessed by florbetapir positron emission tomography (PET) in the modified intent-to-treat population. Secondary endpoints were change from baseline to week 69 in cerebrospinal fluid (CSF) biomarkers and fluorodeoxyglucose PET, and change from baseline to week 73 in 12-point Alzheimer's Disease Assessment Scale cognitive subscale (ADAS-Cog12) and Clinical Dementia Rating Sum of Boxes (CDR-SB). Safety was assessed in patients who received at least one dose of study treatment. RESULTS: From August 2011 to September 2012, 91 patients were enrolled and randomized (low-dose SC cohort: crenezumab (n = 26) or placebo (n = 13); high-dose IV cohort: crenezumab (n = 36) or placebo (n = 16)). The primary endpoint was not met using a prespecified cerebellar reference region to calculate standard uptake value ratios (SUVRs) from florbetapir PET. Exploratory analyses using subcortical white matter reference regions showed nonsignificant trends toward slower accumulation of plaque amyloid in the high-dose IV cohort. In both cohorts, a significant mean increase from baseline in CSF Aß(1-42) levels versus placebo was observed. Nonsignificant trends toward ADAS-Cog12 and CDR-SB benefits were identified in a mild (MMSE 20-26) subset of the high-dose IV cohort. No amyloid-related imaging abnormalities due to edema/effusion were observed. CONCLUSION: The primary endpoint was not met. Exploratory findings suggest potential Aß target engagement with crenezumab and possible slower accumulation of plaque amyloid. Studies investigating the effects of higher doses of crenezumab on amyloid load and disease progression are ongoing. TRIAL REGISTRATION: ClinicalTrials.gov, NCT01397578 . Registered on 18 July 2011.


Subject(s)
Alzheimer Disease/drug therapy , Amyloid beta-Peptides/cerebrospinal fluid , Antibodies, Monoclonal/therapeutic use , Brain/diagnostic imaging , Aged , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/diagnostic imaging , Amyloid beta-Peptides/immunology , Antibodies, Monoclonal, Humanized/therapeutic use , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Double-Blind Method , Female , Humans , Magnetic Resonance Imaging , Male , Positron-Emission Tomography , Treatment Outcome
19.
Br J Pharmacol ; 174(22): 4173-4185, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28859225

ABSTRACT

BACKGROUND AND PURPOSE: The potential for therapeutic antibody treatment of neurological diseases is limited by poor penetration across the blood-brain barrier. I.c.v. delivery is a promising route to the brain; however, it is unclear how efficiently antibodies delivered i.c.v. penetrate the cerebrospinal spinal fluid (CSF)-brain barrier and distribute throughout the brain parenchyma. EXPERIMENTAL APPROACH: We evaluated the pharmacokinetics and pharmacodynamics of an inhibitory monoclonal antibody against ß-secretase 1 (anti-BACE1) following continuous infusion into the left lateral ventricle of healthy adult cynomolgus monkeys. KEY RESULTS: Animals infused with anti-BACE1 i.c.v. showed a robust and sustained reduction (~70%) of CSF amyloid-ß (Aß) peptides. Antibody distribution was near uniform across the brain parenchyma, ranging from 20 to 40 nM, resulting in a ~50% reduction of Aß in the cortical parenchyma. In contrast, animals administered anti-BACE1 i.v. showed no significant change in CSF or cortical Aß levels and had a low (~0.6 nM) antibody concentration in the brain. CONCLUSION AND IMPLICATIONS: I.c.v. administration of anti-BACE1 resulted in enhanced BACE1 target engagement and inhibition, with a corresponding dramatic reduction in CNS Aß concentrations, due to enhanced brain exposure to antibody.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/pharmacokinetics , Aspartic Acid Endopeptidases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/immunology , Amyloid beta-Peptides/blood , Amyloid beta-Peptides/cerebrospinal fluid , Animals , Antibodies, Monoclonal/blood , Antibodies, Monoclonal/cerebrospinal fluid , Aspartic Acid Endopeptidases/immunology , Brain/metabolism , Female , Infusions, Intraventricular , Macaca fascicularis
20.
Chem Phys Lipids ; 139(2): 157-70, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16417904

ABSTRACT

Numerous studies have suggested relationships between myeloperoxidase, inflammation, and atherosclerosis. MPO-derived reactive chlorinating species (RCS) attack membrane plasmalogens releasing alpha-chloro-fatty aldehydes (alpha-Cl-FALDs) including 2-chlorohexadecanal (2-ClHDA). The molecular targets of alpha-Cl-FALDs are not known. The current study demonstrates 2-ClHDA adducts with ethanolamine glycerophospholipids and Fmoc-lysine. Utilizing electrospray ionization mass spectrometry, chlorinated adducts were observed that are apparent Schiff base adducts. Reduction of these Schiff base adducts with sodium cyanoborohydride resulted in a novel, stable adduct produced by the elimination of HCl. NMR further confirmed this structure. 2-ClHDA adducts with ethanolamine glycerophospholipids were also substrates for phospholipase D (PLD). The hydrolysis products were derivatized to pentafluorobenzoyl esters, and further structurally confirmed by GC-MS. Multiple molecular species of 2-ClHDA-N-modified ethanolamine glycerophospholipids were observed in endothelial cells treated with 2-ClHDA. These results show novel Schiff base adducts of alpha-Cl-FALDs with primary amines, which may represent an important fate of alpha-Cl-FALDs.


Subject(s)
Aldehydes/chemistry , Amines/chemistry , Lysine/chemistry , Peroxidase/chemistry , Phosphatidylethanolamines/chemistry , Aldehydes/pharmacology , Chemical Phenomena , Chemistry, Physical , Coronary Vessels/chemistry , Endothelial Cells/chemistry , Endothelial Cells/drug effects , Humans , Hydrolysis , Molecular Structure , Phosphatidylethanolamines/antagonists & inhibitors , Schiff Bases/chemical synthesis , Schiff Bases/chemistry , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL