Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
J Lipid Res ; 61(5): 767-777, 2020 05.
Article in English | MEDLINE | ID: mdl-32127396

ABSTRACT

Many clinical studies and epidemiological investigations have clearly demonstrated that women are twice as likely to develop cholesterol gallstones as men, and oral contraceptives and other estrogen therapies dramatically increase that risk. Further, animal studies have revealed that estrogen promotes cholesterol gallstone formation through the estrogen receptor (ER) α, but not ERß, pathway. More importantly, some genetic and pathophysiological studies have found that G protein-coupled estrogen receptor (GPER) 1 is a new gallstone gene, Lith18, on chromosome 5 in mice and produces additional lithogenic actions, working independently of ERα, to markedly increase cholelithogenesis in female mice. Based on computational modeling of GPER, a novel series of GPER-selective antagonists were designed, synthesized, and subsequently assessed for their therapeutic effects via calcium mobilization, cAMP, and ERα and ERß fluorescence polarization binding assays. From this series of compounds, one new compound, 2-cyclohexyl-4-isopropyl-N-(4-methoxybenzyl)aniline (CIMBA), exhibits superior antagonism and selectivity exclusively for GPER. Furthermore, CIMBA reduces the formation of 17ß-estradiol-induced gallstones in a dose-dependent manner in ovariectomized mice fed a lithogenic diet for 8 weeks. At 32 µg/day/kg CIMBA, no gallstones are found, even in ovariectomized ERα (-/-) mice treated with 6 µg/day 17ß-estradiol and fed the lithogenic diet for 8 weeks. In conclusion, CIMBA treatment protects against the formation of estrogen-induced cholesterol gallstones by inhibiting the GPER signaling pathway in female mice. CIMBA may thus be a new agent for effectively treating cholesterol gallstone disease in women.


Subject(s)
Cholesterol/metabolism , Estrogens/pharmacology , Gallstones/chemically induced , Gallstones/prevention & control , Receptors, Estrogen/antagonists & inhibitors , Receptors, G-Protein-Coupled/antagonists & inhibitors , Animals , Calcium/metabolism , Cyclic AMP/metabolism , Female , Gallstones/metabolism , HL-60 Cells , Humans , Mice , Receptors, Estrogen/metabolism , Signal Transduction/drug effects
2.
Cell Chem Biol ; 27(10): 1272-1284.e4, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32763139

ABSTRACT

TLX is an orphan nuclear receptor that plays a critical role in both embryonic and adult neurogenesis, as well in the pathogenesis of glioblastomas. TLX functions predominately as a transcriptional repressor, but no natural ligands or high-affinity synthetic ligands have been identified. Here, we describe the identification of natural and synthetic retinoids as functional ligands for TLX. We identified potent synthetic retinoids that directly bind to TLX and either activate or inhibit its transcriptional repressor activity. Furthermore, we identified all-trans and 11-cis retinaldehyde (retinal), retinoids that play an essential role in the visual cycle, as the preferential natural retinoids that bind to and modulate the function of TLX. Molecular dynamics simulations followed by mutational analysis provided insight into the molecular basis of retinoid binding to TLX. Our data support the validity of TLX as a target for development of therapeutics to treat cognitive disorders and/or glioblastomas.


Subject(s)
Biological Products/chemistry , Receptors, Cytoplasmic and Nuclear/chemistry , Retinoids/chemistry , Binding Sites/drug effects , Biological Products/chemical synthesis , Biological Products/pharmacology , Cells, Cultured , Dose-Response Relationship, Drug , Humans , Ligands , Male , Molecular Dynamics Simulation , Molecular Structure , Orphan Nuclear Receptors , Receptors, Cytoplasmic and Nuclear/agonists , Retinoids/chemical synthesis , Retinoids/pharmacology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL