Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Brain Behav Immun ; 61: 236-243, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27940259

ABSTRACT

Systemic inflammation evokes an array of brain-mediated responses including fever, anorexia and taste aversion. Both fever and anorexia are prostaglandin dependent but it has been unclear if the cell-type that synthesizes the critical prostaglandins is the same. Here we show that pharmacological inhibition or genetic deletion of cyclooxygenase (COX)-2, but not of COX-1, attenuates inflammation-induced anorexia. Mice with deletions of COX-2 selectively in brain endothelial cells displayed attenuated fever, as demonstrated previously, but intact anorexia in response to peripherally injected lipopolysaccharide (10µg/kg). Whereas intracerebroventricular injection of a cyclooxygenase inhibitor markedly reduced anorexia, deletion of COX-2 selectively in neural cells, in myeloid cells or in both brain endothelial and neural cells had no effect on LPS-induced anorexia. In addition, COX-2 in myeloid and neural cells was dispensable for the fever response. Inflammation-induced conditioned taste aversion did not involve prostaglandin signaling at all. These findings collectively show that anorexia, fever and taste aversion are triggered by distinct routes of immune-to-brain signaling.


Subject(s)
Anorexia/metabolism , Avoidance Learning/physiology , Cyclooxygenase 2/genetics , Fever/metabolism , Inflammation/metabolism , Taste/physiology , Animals , Anorexia/chemically induced , Anorexia/genetics , Avoidance Learning/drug effects , Cyclooxygenase 2/metabolism , Cyclooxygenase 2 Inhibitors , Fever/chemically induced , Fever/genetics , Inflammation/chemically induced , Inflammation/genetics , Lipopolysaccharides , Mice , Taste/drug effects
2.
J Neurosci ; 34(35): 11684-90, 2014 Aug 27.
Article in English | MEDLINE | ID: mdl-25164664

ABSTRACT

Fever is a hallmark of inflammatory and infectious diseases. The febrile response is triggered by prostaglandin E2 synthesis mediated by induced expression of the enzymes cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase 1 (mPGES-1). The cellular source for pyrogenic PGE2 remains a subject of debate; several hypotheses have been forwarded, including immune cells in the periphery and in the brain, as well as the brain endothelium. Here we generated mice with selective deletion of COX-2 and mPGES1 in brain endothelial cells. These mice displayed strongly attenuated febrile responses to peripheral immune challenge. In contrast, inflammation-induced hypoactivity was unaffected, demonstrating the physiological selectivity of the response to the targeted gene deletions. These findings demonstrate that PGE2 synthesis in brain endothelial cells is critical for inflammation-induced fever.


Subject(s)
Dinoprostone/biosynthesis , Endothelial Cells/metabolism , Fever/metabolism , Inflammation/metabolism , Animals , Cyclooxygenase 2/metabolism , Enzyme-Linked Immunosorbent Assay , Fever/etiology , Immunohistochemistry , Inflammation/complications , Intramolecular Oxidoreductases/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Polymerase Chain Reaction , Prostaglandin-E Synthases
3.
FASEB J ; 27(5): 1973-80, 2013 May.
Article in English | MEDLINE | ID: mdl-23395911

ABSTRACT

Loss of appetite is a hallmark of inflammatory diseases. The underlying mechanisms remain undefined, but it is known that myeloid differentiation primary response gene 88 (MyD88), an adaptor protein critical for Toll-like and IL-1 receptor family signaling, is involved. Here we addressed the question of determining in which cells the MyD88 signaling that results in anorexia development occurs by using chimeric mice and animals with cell-specific deletions. We found that MyD88-knockout mice, which are resistant to bacterial lipopolysaccharide (LPS)-induced anorexia, displayed anorexia when transplanted with wild-type bone marrow cells. Furthermore, mice with a targeted deletion of MyD88 in hematopoietic or myeloid cells were largely protected against LPS-induced anorexia and displayed attenuated weight loss, whereas mice with MyD88 deletion in hepatocytes or in neural cells or the cerebrovascular endothelium developed anorexia and weight loss of similar magnitude as wild-type mice. Furthermore, in a model for cancer-induced anorexia-cachexia, deletion of MyD88 in hematopoietic cells attenuated the anorexia and protected against body weight loss. These findings demonstrate that MyD88-dependent signaling within the brain is not required for eliciting inflammation-induced anorexia. Instead, we identify MyD88 signaling in hematopoietic/myeloid cells as a critical component for acute inflammatory-driven anorexia, as well as for chronic anorexia and weight loss associated with malignant disease.


Subject(s)
Anorexia/physiopathology , Brain/cytology , Cachexia/physiopathology , Endothelial Cells/physiology , Inflammation/physiopathology , Myeloid Cells/metabolism , Myeloid Differentiation Factor 88/genetics , Sarcoma, Experimental/physiopathology , Animals , Chimera/physiology , Methylcholanthrene , Mice , Mice, Knockout , Neurons/cytology , Sarcoma, Experimental/chemically induced , Signal Transduction/physiology , Weight Loss/physiology
4.
Sci Rep ; 10(1): 4073, 2020 03 05.
Article in English | MEDLINE | ID: mdl-32139801

ABSTRACT

Lipopolysaccharide (LPS) induces fever through cytokines like receptor-activator of nuclear factor κB ligand (RANKL), triggering mediators like prostaglandins (PG), endothelin-1 (ET-1), corticotrophin-releasing factor (CRF), substance P (SP) and endogenous opioids. LPS-induced fever is reduced in females compared with males except in ovariectomized (OVX) females which show increased fever mediated by PG. The present study aimed to identify the mediators involved in fever in intact and OVX female rats. Fever was induced with LPS (50 µg/kg) intraperitoneally or CRF (2.5 µg), ET-1 (1 pg), morphine (10 µg) and SP (500 ng) intracerebroventricularly in sham-operated and OVX rats. The role of RANKL was evaluated with osteoprotegerin (OPG, 1 µg, intracerebroventricularly). Expression of RANK, CRFI/II, ETB, µ-opioid (MOR) and NK1 receptors was evaluated by confocal microscopy. Besides LPS, only morphine induced fever in OVX rats while all mediators induced fever in sham-operated animals. OPG abolished LPS-induced fever in OVX but not sham-operated animals. Overall, fever involves similar central mediators in cycling females and males but only morphine induced fever in OVX females. Importantly, RANK/RANKL participates in LPS-induced fever in OVX females, as in males but not in cycling females.


Subject(s)
Cytokines/metabolism , Fever/etiology , Hypothalamus/immunology , Hypothalamus/metabolism , Lipopolysaccharides/toxicity , Ovariectomy/adverse effects , Analgesics, Opioid/metabolism , Animals , Corticotropin-Releasing Hormone/metabolism , Endothelin-1/metabolism , Female , Fever/metabolism , Fever/pathology , Hypothalamus/drug effects , Prostaglandins/metabolism , RANK Ligand/metabolism , Rats , Rats, Wistar , Substance P/metabolism
5.
J Clin Invest ; 126(2): 695-705, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26690700

ABSTRACT

Systemic inflammation causes malaise and general feelings of discomfort. This fundamental aspect of the sickness response reduces the quality of life for people suffering from chronic inflammatory diseases and is a nuisance during mild infections like common colds or the flu. To investigate how inflammation is perceived as unpleasant and causes negative affect, we used a behavioral test in which mice avoid an environment that they have learned to associate with inflammation-induced discomfort. Using a combination of cell-type­specific gene deletions, pharmacology, and chemogenetics, we found that systemic inflammation triggered aversion through MyD88-dependent activation of the brain endothelium followed by COX1-mediated cerebral prostaglandin E2 (PGE2) synthesis. Further, we showed that inflammation-induced PGE2 targeted EP1 receptors on striatal dopamine D1 receptor­expressing neurons and that this signaling sequence induced aversion through GABA-mediated inhibition of dopaminergic cells. Finally, we demonstrated that inflammation-induced aversion was not an indirect consequence of fever or anorexia but that it constituted an independent inflammatory symptom triggered by a unique molecular mechanism. Collectively, these findings demonstrate that PGE2-mediated modulation of the dopaminergic motivational circuitry is a key mechanism underlying the negative affect induced by inflammation.


Subject(s)
Brain Diseases/metabolism , Brain/metabolism , Dinoprostone/metabolism , Dopaminergic Neurons/metabolism , Endothelium, Vascular/metabolism , Synaptic Transmission , Animals , Brain/pathology , Brain Diseases/genetics , Brain Diseases/pathology , Cell Line , Cyclooxygenase 1/genetics , Cyclooxygenase 1/metabolism , Dinoprostone/genetics , Dopaminergic Neurons/pathology , Endothelium, Vascular/pathology , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Knockout , Receptors, Dopamine D1/genetics , Receptors, Dopamine D1/metabolism
6.
Neuropharmacology ; 71: 124-9, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23545161

ABSTRACT

Acetaminophen is one of the world's most commonly used drugs to treat fever and pain, yet its mechanism of action has remained unclear. Here we tested the hypothesis that acetaminophen blocks fever through inhibition of cyclooxygenase-2 (Cox-2), by monitoring lipopolysaccharide induced fever in mice with genetic manipulations of enzymes in the prostaglandin cascade. We exploited the fact that lowered levels of a specific enzyme make the system more sensitive to any further inhibition of the same enzyme. Mice were immune challenged by an intraperitoneal injection of bacterial wall lipopolysaccharide and their body temperature recorded by telemetry. We found that mice heterozygous for Cox-2, but not for microsomal prostaglandin E synthase-1 (mPGES-1), displayed attenuated fever, indicating a rate limiting role of Cox-2. We then titrated a dose of acetaminophen that did not inhibit the lipopolysaccharide-induced fever in wild-type mice. However, when the same dose of acetaminophen was given to Cox-2 heterozygous mice, the febrile response to lipopolysaccharide was strongly attenuated, resulting in an almost normalized temperature curve, whereas no difference was seen between wild-type and heterozygous mPGES-1 mice. Furthermore, the fever to intracerebrally injected prostaglandin E2 was unaffected by acetaminophen treatment. These findings reveal that acetaminophen, similar to aspirin and other non-steroidal anti-inflammatory drugs, is antipyretic by inhibiting cyclooxygenase-2, and not by inhibiting mPGES-1 or signaling cascades downstream of prostaglandin E2.


Subject(s)
Acetaminophen/therapeutic use , Antipyretics/therapeutic use , Cyclooxygenase 2 Inhibitors/therapeutic use , Cyclooxygenase 2/metabolism , Fever/drug therapy , Hypothalamus/drug effects , Prosencephalon/drug effects , Acetaminophen/administration & dosage , Animals , Antipyretics/administration & dosage , Cyclooxygenase 2/chemistry , Cyclooxygenase 2/genetics , Cyclooxygenase 2 Inhibitors/administration & dosage , Dinoprostone/administration & dosage , Dinoprostone/adverse effects , Dose-Response Relationship, Drug , Fever/chemically induced , Fever/enzymology , Fever/metabolism , Gene Expression Regulation, Enzymologic/drug effects , Heterozygote , Hypothalamus/enzymology , Hypothalamus/metabolism , Injections, Intraventricular , Intramolecular Oxidoreductases/genetics , Intramolecular Oxidoreductases/metabolism , Lipopolysaccharides , Mice , Mice, Inbred DBA , Mice, Knockout , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/drug effects , Neurons/enzymology , Neurons/metabolism , Prosencephalon/enzymology , Prosencephalon/metabolism , Prostaglandin-E Synthases
SELECTION OF CITATIONS
SEARCH DETAIL