Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 603(7899): 95-102, 2022 03.
Article in English | MEDLINE | ID: mdl-35197637

ABSTRACT

Genome-wide association studies (GWAS) have identified thousands of genetic variants linked to the risk of human disease. However, GWAS have so far remained largely underpowered in relation to identifying associations in the rare and low-frequency allelic spectrum and have lacked the resolution to trace causal mechanisms to underlying genes1. Here we combined whole-exome sequencing in 392,814 UK Biobank participants with imputed genotypes from 260,405 FinnGen participants (653,219 total individuals) to conduct association meta-analyses for 744 disease endpoints across the protein-coding allelic frequency spectrum, bridging the gap between common and rare variant studies. We identified 975 associations, with more than one-third being previously unreported. We demonstrate population-level relevance for mutations previously ascribed to causing single-gene disorders, map GWAS associations to likely causal genes, explain disease mechanisms, and systematically relate disease associations to levels of 117 biomarkers and clinical-stage drug targets. Combining sequencing and genotyping in two population biobanks enabled us to benefit from increased power to detect and explain disease associations, validate findings through replication and propose medical actionability for rare genetic variants. Our study provides a compendium of protein-coding variant associations for future insights into disease biology and drug discovery.


Subject(s)
Genome-Wide Association Study , Proteins , Gene Frequency/genetics , Genetic Predisposition to Disease/genetics , Genotype , Humans , Polymorphism, Single Nucleotide/genetics , Proteins/genetics , Exome Sequencing
2.
PLoS Genet ; 12(5): e1006034, 2016 05.
Article in English | MEDLINE | ID: mdl-27149122

ABSTRACT

Failure of the human heart to maintain sufficient output of blood for the demands of the body, heart failure, is a common condition with high mortality even with modern therapeutic alternatives. To identify molecular determinants of mortality in patients with new-onset heart failure, we performed a meta-analysis of genome-wide association studies and follow-up genotyping in independent populations. We identified and replicated an association for a genetic variant on chromosome 5q22 with 36% increased risk of death in subjects with heart failure (rs9885413, P = 2.7x10-9). We provide evidence from reporter gene assays, computational predictions and epigenomic marks that this polymorphism increases activity of an enhancer region active in multiple human tissues. The polymorphism was further reproducibly associated with a DNA methylation signature in whole blood (P = 4.5x10-40) that also associated with allergic sensitization and expression in blood of the cytokine TSLP (P = 1.1x10-4). Knockdown of the transcription factor predicted to bind the enhancer region (NHLH1) in a human cell line (HEK293) expressing NHLH1 resulted in lower TSLP expression. In addition, we observed evidence of recent positive selection acting on the risk allele in populations of African descent. Our findings provide novel genetic leads to factors that influence mortality in patients with heart failure.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , DNA Methylation/genetics , Heart Failure/genetics , Receptors, Cytokine/genetics , Black or African American/genetics , Alleles , Basic Helix-Loop-Helix Transcription Factors/blood , Chromosomes, Human, Pair 5/genetics , Female , Gene Expression Regulation , Gene Knockdown Techniques , Genetic Predisposition to Disease , Genetic Variation , Genome-Wide Association Study , Genotype , HEK293 Cells , Heart Failure/blood , Heart Failure/mortality , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Receptors, Cytokine/blood
3.
Hum Mol Genet ; 24(23): 6836-48, 2015 12 01.
Article in English | MEDLINE | ID: mdl-26395457

ABSTRACT

Chronic respiratory disorders are important contributors to the global burden of disease. Genome-wide association studies (GWASs) of lung function measures have identified several trait-associated loci, but explain only a modest portion of the phenotypic variability. We postulated that integrating pathway-based methods with GWASs of pulmonary function and airflow obstruction would identify a broader repertoire of genes and processes influencing these traits. We performed two independent GWASs of lung function and applied gene set enrichment analysis to one of the studies and validated the results using the second GWAS. We identified 131 significantly enriched gene sets associated with lung function and clustered them into larger biological modules involved in diverse processes including development, immunity, cell signaling, proliferation and arachidonic acid. We found that enrichment of gene sets was not driven by GWAS-significant variants or loci, but instead by those with less stringent association P-values. Next, we applied pathway enrichment analysis to a meta-analyzed GWAS of airflow obstruction. We identified several biologic modules that functionally overlapped with those associated with pulmonary function. However, differences were also noted, including enrichment of extracellular matrix (ECM) processes specifically in the airflow obstruction study. Network analysis of the ECM module implicated a candidate gene, matrix metalloproteinase 10 (MMP10), as a putative disease target. We used a knockout mouse model to functionally validate MMP10's role in influencing lung's susceptibility to cigarette smoke-induced emphysema. By integrating pathway analysis with population-based genomics, we unraveled biologic processes underlying pulmonary function traits and identified a candidate gene for obstructive lung disease.


Subject(s)
Airway Obstruction/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Lung/physiopathology , Polymorphism, Single Nucleotide , Airway Obstruction/physiopathology , Animals , Cell Proliferation , Genomics , Humans , Immune System , Male , Metabolic Networks and Pathways , Mice , Phenotype , Signal Transduction , White People/genetics
4.
PLoS Genet ; 8(12): e1003098, 2012.
Article in English | MEDLINE | ID: mdl-23284291

ABSTRACT

Genome-wide association studies have identified numerous genetic loci for spirometic measures of pulmonary function, forced expiratory volume in one second (FEV(1)), and its ratio to forced vital capacity (FEV(1)/FVC). Given that cigarette smoking adversely affects pulmonary function, we conducted genome-wide joint meta-analyses (JMA) of single nucleotide polymorphism (SNP) and SNP-by-smoking (ever-smoking or pack-years) associations on FEV(1) and FEV(1)/FVC across 19 studies (total N = 50,047). We identified three novel loci not previously associated with pulmonary function. SNPs in or near DNER (smallest P(JMA = )5.00×10(-11)), HLA-DQB1 and HLA-DQA2 (smallest P(JMA = )4.35×10(-9)), and KCNJ2 and SOX9 (smallest P(JMA = )1.28×10(-8)) were associated with FEV(1)/FVC or FEV(1) in meta-analysis models including SNP main effects, smoking main effects, and SNP-by-smoking (ever-smoking or pack-years) interaction. The HLA region has been widely implicated for autoimmune and lung phenotypes, unlike the other novel loci, which have not been widely implicated. We evaluated DNER, KCNJ2, and SOX9 and found them to be expressed in human lung tissue. DNER and SOX9 further showed evidence of differential expression in human airway epithelium in smokers compared to non-smokers. Our findings demonstrated that joint testing of SNP and SNP-by-environment interaction identified novel loci associated with complex traits that are missed when considering only the genetic main effects.


Subject(s)
Forced Expiratory Volume/genetics , Genome-Wide Association Study , Pulmonary Disease, Chronic Obstructive , Smoking , Vital Capacity/genetics , Gene Expression , Genome, Human , HLA-DQ Antigens/genetics , HLA-DQ beta-Chains/genetics , Humans , Lung/metabolism , Lung/physiopathology , Nerve Tissue Proteins/genetics , Polymorphism, Single Nucleotide , Potassium Channels, Inwardly Rectifying/genetics , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/physiopathology , Receptors, Cell Surface/genetics , SOX9 Transcription Factor/genetics , Smoking/genetics , Smoking/physiopathology
5.
Eur Respir J ; 43(4): 1003-17, 2014 Apr.
Article in English | MEDLINE | ID: mdl-23900982

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is linked to cardiovascular disease; however, there are few studies on the associations of cardiovascular genes with COPD. We assessed the association of lung function with 2100 genes selected for cardiovascular diseases among 20 077 European-Americans and 6900 African-Americans. We performed replication of significant loci in the other racial group and an independent consortium of Europeans, tested the associations of significant loci with per cent emphysema and examined gene expression in an independent sample. We then tested the association of a related lipid biomarker with forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) ratio and per cent emphysema. We identified one new polymorphism for FEV1/FVC (rs805301) in European-Americans (p=1.3×10(-6)) and a second (rs707974) in the combined European-American and African-American analysis (p=1.38×10(-7)). Both single-nucleotide polymorphisms (SNPs) flank the gene for apolipoprotein M (APOM), a component of high-density lipoprotein (HDL) cholesterol. Both were replicated in an independent cohort. SNPs in a second gene related to apolipoprotein M and HDL, PCSK9, were associated with FEV1/FVC ratio among African-Americans. rs707974 was associated with per cent emphysema among European-Americans and African-Americans and APOM expression was related to FEV1/FVC ratio and per cent emphysema. Higher HDL levels were associated with lower FEV1/FVC ratio and greater per cent emphysema. These findings suggest a novel role for the apolipoprotein M/HDL pathway in the pathogenesis of COPD and emphysema.


Subject(s)
Apolipoproteins/genetics , Cholesterol, HDL/blood , Emphysema/blood , Lipocalins/genetics , Lung/physiology , Pulmonary Disease, Chronic Obstructive/blood , Adult , Black or African American , Aged , Apolipoproteins M , Cohort Studies , Female , Forced Expiratory Volume , Gene Expression Profiling , Gene Expression Regulation , Genotype , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Spirometry , United States , Vital Capacity , White People
6.
Hum Mol Genet ; 20(8): 1478-87, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21258085

ABSTRACT

Although family history is a well-established risk factor for Parkinson's disease (PD), fewer than 5% of PD cases can be attributed to known genetic mutations. The etiology for the remainder of PD cases is unclear; however, neuronal accumulation of the protein α-synuclein is common to nearly all patients, implicating pathways that influence α-synuclein in PD pathogenesis. We report a genome-wide significant association (P = 3.97 × 10(-8)) between a polymorphism, rs1564282, in the cyclin-G-associated kinase (GAK) gene and increased PD risk, with a meta-analysis odds ratio of 1.48. This association result is based on the meta-analysis of three publicly available PD case-control genome-wide association study and genotyping from a new, independent Italian cohort. Microarray expression analysis of post-mortem frontal cortex from PD and control brains demonstrates a significant association between rs1564282 and higher α-synuclein expression, a known cause of early onset PD. Functional knockdown of GAK in cell culture causes a significant increase in toxicity when α-synuclein is over-expressed. Furthermore, knockdown of GAK in rat primary neurons expressing the A53T mutation of α-synuclein, a well-established model for PD, decreases cell viability. These observations provide evidence that GAK is associated with PD risk and suggest that GAK and α-synuclein interact in a pathway involved in PD pathogenesis. The GAK protein, a serine/threonine kinase, belongs to a family of proteins commonly targeted for drug development. This, combined with GAK's observed relationship to the levels of α-synuclein expression and toxicity, suggests that the protein is an attractive therapeutic target for the treatment of PD.


Subject(s)
Intracellular Signaling Peptides and Proteins/genetics , Parkinson Disease/genetics , Protein Serine-Threonine Kinases/genetics , alpha-Synuclein/genetics , Adenylate Kinase/metabolism , Animals , Cathepsin D/genetics , Cathepsin D/metabolism , Cell Survival , Cells, Cultured , Genome-Wide Association Study , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Mutation, Missense , Neurons/cytology , Neurons/metabolism , Parkinson Disease/metabolism , Parkinson Disease/pathology , Polymorphism, Single Nucleotide , Protein Serine-Threonine Kinases/metabolism , RNA Interference , Rats , Rats, Sprague-Dawley , Recombinant Proteins/metabolism , Transcription, Genetic , alpha-Synuclein/metabolism
7.
BMC Med Genet ; 14: 122, 2013 Nov 25.
Article in English | MEDLINE | ID: mdl-24274704

ABSTRACT

BACKGROUND: Vitamin D is associated with lung health in epidemiologic studies, but mechanisms mediating observed associations are poorly understood. This study explores mechanisms for an effect of vitamin D in lung through an in vivo gene expression study, an expression quantitative trait loci (eQTL) analysis in lung tissue, and a population-based cohort study of sequence variants. METHODS: Microarray analysis investigated the association of gene expression in small airway epithelial cells with serum 25(OH)D in adult non-smokers. Sequence variants in candidate genes identified by the microarray were investigated in a lung tissue eQTL database, and also in relation to cross-sectional pulmonary function in the Health, Aging, and Body Composition (Health ABC) study, stratified by race, with replication in the Framingham Heart Study (FHS). RESULTS: 13 candidate genes had significant differences in expression by serum 25(OH)D (nominal p < 0.05), and a genome-wide significant eQTL association was detected for SGPP2. In Health ABC, SGPP2 SNPs were associated with FEV1 in both European- and African-Americans, and the gene-level association was replicated in European-American FHS participants. SNPs in 5 additional candidate genes (DAPK1, FSTL1, KAL1, KCNS3, and RSAD2) were associated with FEV1 in Health ABC participants. CONCLUSIONS: SGPP2, a sphingosine-1-phosphate phosphatase, is a novel vitamin D-responsive gene associated with lung function. The identified associations will need to be followed up in further studies.


Subject(s)
Lung/metabolism , Membrane Proteins/genetics , Phosphoric Monoester Hydrolases/genetics , Black or African American/genetics , Aged , Aging , Body Composition , Cohort Studies , Epithelial Cells/metabolism , Female , Forced Expiratory Volume/physiology , Humans , Male , Oligonucleotide Array Sequence Analysis , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Respiratory Function Tests , Vitamin D/blood , White People/genetics
8.
Br J Nutr ; 109(11): 2044-9, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23098619

ABSTRACT

Intake of marine-based n-3 fatty acids (EPA, docosapentaenoic acid and DHA) is recommended to prevent CHD. Stearidonic acid (SDA), a plant-based n-3 fatty acid, is a precursor of EPA and may be more readily converted to EPA than a-linolenic acid (ALA). While transgenic soyabeans might supply SDA at low cost, it is unclear whether SDA is associated with CHD risk. Furthermore, associations of other n-3 fatty acids with CHD risk remain inconsistent. The present ancillary study examined the association of erythrocyte SDA as well as other n-3 fatty acids with the risk of CHD. In a prospective nested case-control study of the Physicians' Health Study, we randomly selected 1000 pairs of incident CHD with matching controls. Erythrocyte fatty acids were measured using GC. We used conditional logistic regression to estimate relative risks. Mean age was 68·7 (SD 8·7) years. In a multivariable model controlling for matching factors and established CHD risk factors, OR for CHD for each standard deviation increase of log-SDA was 1·03 (95% CI 0·90, 1·18). Corresponding values for log-ALA and log-marine n-3 fatty acids were 1·04 (95% CI 0·94, 1·16) and 0·97 (95% CI 0·88, 1·07), respectively. In conclusion, the present data did not show an association among erythrocyte SDA, ALA or marine n-3 fatty acids and the risk of CHD in male physicians.


Subject(s)
Aspirin/pharmacology , Coronary Disease/prevention & control , Erythrocytes/metabolism , Fatty Acids, Omega-3/metabolism , beta Carotene/pharmacology , Aged , Aging , Aspirin/administration & dosage , Case-Control Studies , Double-Blind Method , Erythrocytes/chemistry , Fatty Acids, Omega-3/blood , Fatty Acids, Omega-3/chemistry , Humans , Macular Degeneration/prevention & control , Male , Middle Aged , Neoplasms/prevention & control , Risk Factors , Vitamins/pharmacology , beta Carotene/administration & dosage
9.
Am J Respir Crit Care Med ; 186(7): 622-32, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-22837378

ABSTRACT

RATIONALE: Genome-wide association studies (GWAS) have identified loci influencing lung function, but fewer genes influencing chronic obstructive pulmonary disease (COPD) are known. OBJECTIVES: Perform meta-analyses of GWAS for airflow obstruction, a key pathophysiologic characteristic of COPD assessed by spirometry, in population-based cohorts examining all participants, ever smokers, never smokers, asthma-free participants, and more severe cases. METHODS: Fifteen cohorts were studied for discovery (3,368 affected; 29,507 unaffected), and a population-based family study and a meta-analysis of case-control studies were used for replication and regional follow-up (3,837 cases; 4,479 control subjects). Airflow obstruction was defined as FEV(1) and its ratio to FVC (FEV(1)/FVC) both less than their respective lower limits of normal as determined by published reference equations. MEASUREMENTS AND MAIN RESULTS: The discovery meta-analyses identified one region on chromosome 15q25.1 meeting genome-wide significance in ever smokers that includes AGPHD1, IREB2, and CHRNA5/CHRNA3 genes. The region was also modestly associated among never smokers. Gene expression studies confirmed the presence of CHRNA5/3 in lung, airway smooth muscle, and bronchial epithelial cells. A single-nucleotide polymorphism in HTR4, a gene previously related to FEV(1)/FVC, achieved genome-wide statistical significance in combined meta-analysis. Top single-nucleotide polymorphisms in ADAM19, RARB, PPAP2B, and ADAMTS19 were nominally replicated in the COPD meta-analysis. CONCLUSIONS: These results suggest an important role for the CHRNA5/3 region as a genetic risk factor for airflow obstruction that may be independent of smoking and implicate the HTR4 gene in the etiology of airflow obstruction.


Subject(s)
Genome-Wide Association Study , Nerve Tissue Proteins/genetics , Pulmonary Disease, Chronic Obstructive/genetics , Receptors, Nicotinic/genetics , Receptors, Serotonin, 5-HT4/genetics , Aged , Female , Forced Expiratory Volume/genetics , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Smoking/genetics , Vital Capacity/genetics
10.
J Allergy Clin Immunol ; 129(3): 840-845.e21, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22075330

ABSTRACT

BACKGROUND: Atopy and plasma IgE concentration are genetically complex traits, and the specific genetic risk factors that lead to IgE dysregulation and clinical atopy are an area of active investigation. OBJECTIVE: We sought to ascertain the genetic risk factors that lead to IgE dysregulation. METHODS: A genome-wide association study (GWAS) was performed in 6819 participants from the Framingham Heart Study (FHS). Seventy of the top single nucleotide polymorphisms (SNPs) were selected based on P values and linkage disequilibrium among neighboring SNPs and evaluated in a meta-analysis with 5 independent populations from the Cooperative Health Research in the Region of Augsburg cohort, the British 1958 Birth Cohort, and the Childhood Asthma Management Program cohort. RESULTS: Thirteen SNPs located in the region of 3 genes, FCER1A, signal transducer and activator of transcription 6 (STAT6), and IL13, were found to have genome-wide significance in the FHS cohort GWAS. The most significant SNPs from the 3 regions were rs2251746 (FCER1A, P = 2.11 × 10(-12)), rs1059513 (STAT6, P = 2.87 × 10(-8)), and rs1295686 (IL13, P = 3.55 × 10(-8)). Four additional gene regions, HLA-G, HLA-DQA2, HLA-A, and Duffy blood group, chemokine receptor (DARC), reached genome-wide statistical significance in a meta-analysis combining the FHS and replication cohorts, although the DARC association did not appear independent of SNPs in the nearby FCER1A gene. CONCLUSION: This GWAS of the FHS cohort has identified genetic loci in HLA genes that might have a role in the pathogenesis of IgE dysregulation and atopy. It also confirmed the association of the known susceptibility loci FCER1A, STAT6, and IL13 for the dysregulation of total IgE.


Subject(s)
Cardiovascular Diseases/immunology , Hypersensitivity/genetics , Immunoglobulin E/blood , Interleukin-13/genetics , Receptors, IgE/genetics , STAT6 Transcription Factor/genetics , Adult , Cardiovascular Diseases/blood , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/genetics , Cohort Studies , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , HLA Antigens/genetics , Humans , Hypersensitivity/blood , Hypersensitivity/epidemiology , Hypersensitivity/immunology , Linkage Disequilibrium , Male , Middle Aged , Polymorphism, Single Nucleotide , Risk Factors , United Kingdom , United States
11.
J Allergy Clin Immunol ; 129(5): 1218-28, 2012 May.
Article in English | MEDLINE | ID: mdl-22424883

ABSTRACT

BACKGROUND: Genome-wide association studies have identified determinants of chronic obstructive pulmonary disease, asthma, and lung function level; however, none have addressed decline in lung function. OBJECTIVE: We conducted the first genome-wide association study on the age-related decrease in FEV(1) and its ratio to forced vital capacity (FVC) stratified a priori by asthma status. METHODS: Discovery cohorts included adults of European ancestry (1,441 asthmatic and 2,677 nonasthmatic participants: the Epidemiological Study on the Genetics and Environment of Asthma, the Swiss Cohort Study on Air Pollution and Lung and Heart Disease in Adults, and the European Community Respiratory Health Survey). The associations of FEV(1) and FEV(1)/FVC ratio decrease with 2.5 million single nucleotide polymorphisms (SNPs) were estimated. Thirty loci were followed up by in silico replication (1,160 asthmatic and 10,858 nonasthmatic participants: Atherosclerosis Risk in Communities, the Framingham Heart Study, the British 1958 Birth Cohort, and the Dutch Asthma Study). RESULTS: Main signals identified differed between asthmatic and nonasthmatic participants. None of the SNPs reached genome-wide significance. The association between the height-related gene DLEU7 and FEV(1) decrease suggested for nonasthmatic participants in the discovery phase was replicated (discovery, P = 4.8 × 10(-6); replication, P = .03), and additional sensitivity analyses point to a relation to growth. The top ranking signal, TUSC3, which is associated with FEV(1)/FVC ratio decrease in asthmatic participants (P = 5.3 × 10(-8)), did not replicate. SNPs previously associated with cross-sectional lung function were not prominently associated with decline. CONCLUSIONS: Genetic heterogeneity of lung function might be extensive. Our results suggest that genetic determinants of longitudinal and cross-sectional lung function differ and vary by asthma status.


Subject(s)
Asthma/epidemiology , Asthma/genetics , Chromosomes, Human, Pair 13/genetics , Genome-Wide Association Study , Lung/metabolism , Adult , Asthma/diagnosis , Asthma/physiopathology , Europe , Female , Follow-Up Studies , Forced Expiratory Volume , Humans , Lung/pathology , Male , Membrane Proteins/genetics , Middle Aged , Neoplasm Proteins , Polymorphism, Single Nucleotide , Tumor Suppressor Proteins/genetics , Vital Capacity , Young Adult
12.
Am J Hum Genet ; 84(5): 581-93, 2009 May.
Article in English | MEDLINE | ID: mdl-19426955

ABSTRACT

Asthma, a chronic airway disease with known heritability, affects more than 300 million people around the world. A genome-wide association (GWA) study of asthma with 359 cases from the Childhood Asthma Management Program (CAMP) and 846 genetically matched controls from the Illumina ICONdb public resource was performed. The strongest region of association seen was on chromosome 5q12 in PDE4D. The phosphodiesterase 4D, cAMP-specific (phosphodiesterase E3 dunce homolog, Drosophila) gene (PDE4D) is a regulator of airway smooth-muscle contractility, and PDE4 inhibitors have been developed as medications for asthma. Allelic p values for top SNPs in this region were 4.3 x 10(-07) for rs1588265 and 9.7 x 10(-07) for rs1544791. Replications were investigated in ten independent populations with different ethnicities, study designs, and definitions of asthma. In seven white and Hispanic replication populations, two PDE4D SNPs had significant results with p values less than 0.05, and five had results in the same direction as the original population but had p values greater than 0.05. Combined p values for 18,891 white and Hispanic individuals (4,342 cases) in our replication populations were 4.1 x 10(-04) for rs1588265 and 9.2 x 10(-04) for rs1544791. In three black replication populations, which had different linkage disequilibrium patterns than the other populations, original findings were not replicated. Further study of PDE4D variants might lead to improved understanding of the role of PDE4D in asthma pathophysiology and the efficacy of PDE4 inhibitor medications.


Subject(s)
Asthma/genetics , Cyclic Nucleotide Phosphodiesterases, Type 4/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Adolescent , Adult , Asthma/ethnology , Child , Cohort Studies , Genetics, Population , Genotype , Humans , Linkage Disequilibrium , Middle Aged , Young Adult
13.
PLoS Genet ; 5(11): e1000741, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19956679

ABSTRACT

For genome-wide association studies in family-based designs, we propose a new, universally applicable approach. The new test statistic exploits all available information about the association, while, by virtue of its design, it maintains the same robustness against population admixture as traditional family-based approaches that are based exclusively on the within-family information. The approach is suitable for the analysis of almost any trait type, e.g. binary, continuous, time-to-onset, multivariate, etc., and combinations of those. We use simulation studies to verify all theoretically derived properties of the approach, estimate its power, and compare it with other standard approaches. We illustrate the practical implications of the new analysis method by an application to a lung-function phenotype, forced expiratory volume in one second (FEV1) in 4 genome-wide association studies.


Subject(s)
Computer Simulation , Family , Genome-Wide Association Study/methods , Models, Statistical , Forced Expiratory Volume/genetics , Genome, Human , Humans , Lung/physiology , Models, Theoretical , Phenotype
14.
PLoS Genet ; 5(3): e1000429, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19300500

ABSTRACT

The ratio of forced expiratory volume in one second to forced vital capacity (FEV(1)/FVC) is a measure used to diagnose airflow obstruction and is highly heritable. We performed a genome-wide association study in 7,691 Framingham Heart Study participants to identify single-nucleotide polymorphisms (SNPs) associated with the FEV(1)/FVC ratio, analyzed as a percent of the predicted value. Identified SNPs were examined in an independent set of 835 Family Heart Study participants enriched for airflow obstruction. Four SNPs in tight linkage disequilibrium on chromosome 4q31 were associated with the percent predicted FEV(1)/FVC ratio with p-values of genome-wide significance in the Framingham sample (best p-value = 3.6e-09). One of the four chromosome 4q31 SNPs (rs13147758; p-value 2.3e-08 in Framingham) was genotyped in the Family Heart Study and produced evidence of association with the same phenotype, percent predicted FEV(1)/FVC (p-value = 2.0e-04). The effect estimates for association in the Framingham and Family Heart studies were in the same direction, with the minor allele (G) associated with higher FEV(1)/FVC ratio levels. Results from the Family Heart Study demonstrated that the association extended to FEV(1) and dichotomous airflow obstruction phenotypes, particularly among smokers. The SNP rs13147758 was associated with the percent predicted FEV(1)/FVC ratio in independent samples from the Framingham and Family Heart Studies producing a combined p-value of 8.3e-11, and this region of chromosome 4 around 145.68 megabases was associated with COPD in three additional populations reported in the accompanying manuscript. The associated SNPs do not lie within a gene transcript but are near the hedgehog-interacting protein (HHIP) gene and several expressed sequence tags cloned from fetal lung. Though it is unclear what gene or regulatory effect explains the association, the region warrants further investigation.


Subject(s)
Genome, Human , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/genetics , Carrier Proteins/genetics , Chromosomes, Human, Pair 4 , Forced Expiratory Volume , Genetic Predisposition to Disease/epidemiology , Genomics/methods , Humans , Linkage Disequilibrium , Lung/physiopathology , Membrane Glycoproteins/genetics , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/physiopathology , Respiratory Function Tests , Vital Capacity
15.
Mov Disord ; 26(11): 2039-44, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21661047

ABSTRACT

Mutations in the leucine-rich repeat kinase 2 gene, located at 12q12, are the most common known genetic causes of Parkinson's disease. Studies of leucine-rich repeat kinase 2 mutation carriers have shown incomplete and age-dependent penetrance, and previous studies have suggested that inherited susceptibility factors may modify the penetrance of leucine-rich repeat kinase 2 mutations. Genomewide linkage to age of onset of leucine-rich repeat kinase 2-related Parkinson's disease was evaluated in a sample of 113 leucine-rich repeat kinase 2 mutation carriers from 64 families using single-nucleotide polymorphism data from the Illumina HumanCNV370 genotyping array. Association between onset age and single-nucleotide polymorphisms under suggestive linkage peaks was also evaluated. The top logarithmic odds score for onset age (logarithmic odds score = 2.43) was in the chromosome 1q32.1 region. Moderate linkage to onset was also identified at 16q12.1 (logarithmic odds score = 1.58). Examination of single-nucleotide polymorphism association to Parkinson's disease onset under the linkage peaks revealed no statistically significant single-nucleotide polymorphism associations. The 2 novel genomic regions identified may harbor modifiers of leucine-rich repeat kinase 2-related Parkinson's disease onset age or penetrance, and further study of these regions may provide important insight into leucine-rich repeat kinase 2-related Parkinson's disease.


Subject(s)
Genetic Predisposition to Disease , Parkinson Disease/genetics , Polymorphism, Single Nucleotide/genetics , Protein Serine-Threonine Kinases/genetics , Aged , DNA Mutational Analysis , Family Health , Female , Genetic Linkage , Genotype , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Male , Middle Aged , Principal Component Analysis
16.
Clin Mol Allergy ; 9: 1, 2011 Jan 18.
Article in English | MEDLINE | ID: mdl-21244681

ABSTRACT

BACKGROUND: Allergic rhinitis (AR) affects up to 80% of children with asthma and increases asthma severity. Thymic stromal lymphopoietin (TSLP) is a key mediator of allergic inflammation. The role of the TSLP gene (TSLP) in the pathogenesis of AR has not been studied. OBJECTIVE: To test for associations between variants in TSLP, TSLP-related genes, and AR in children with asthma. METHODS: We genotyped 15 single nucleotide polymorphisms (SNPs) in TSLP, OX40L, IL7R, and RXRα in three independent cohorts: 592 asthmatic Costa Rican children and their parents, 422 nuclear families of North American children with asthma, and 239 Swedish children with asthma. We tested for associations between these SNPs and AR. As we previously reported sex-specific effects for TSLP, we performed overall and sex-stratified analyses. We additionally performed secondary analyses for gene-by-gene interactions. RESULTS: Across the three cohorts, the T allele of TSLP SNP rs1837253 was undertransmitted in boys with AR and asthma as compared to boys with asthma alone. The SNP was associated with reduced odds for AR (odds ratios ranging from 0.56 to 0.63, with corresponding Fisher's combined P value of 1.2 × 10-4). Our findings were significant after accounting for multiple comparisons. SNPs in OX40L, IL7R, and RXRα were not consistently associated with AR in children with asthma. There were nominally significant interactions between gene pairs. CONCLUSIONS: TSLP SNP rs1837253 is associated with reduced odds for AR in boys with asthma. Our findings support a role for TSLP in the pathogenesis of AR in children with asthma.

17.
BMC Med Genet ; 11: 122, 2010 Aug 10.
Article in English | MEDLINE | ID: mdl-20698975

ABSTRACT

BACKGROUND: Asthma is a chronic respiratory disease whose genetic basis has been explored for over two decades, most recently via genome-wide association studies. We sought to find asthma-susceptibility variants by using probands from a single population in both family-based and case-control association designs. METHODS: We used probands from the Childhood Asthma Management Program (CAMP) in two primary genome-wide association study designs: (1) probands were combined with publicly available population controls in a case-control design, and (2) probands and their parents were used in a family-based design. We followed a two-stage replication process utilizing three independent populations to validate our primary findings. RESULTS: We found that single nucleotide polymorphisms with similar case-control and family-based association results were more likely to replicate in the independent populations, than those with the smallest p-values in either the case-control or family-based design alone. The single nucleotide polymorphism that showed the strongest evidence for association to asthma was rs17572584, which replicated in 2/3 independent populations with an overall p-value among replication populations of 3.5E-05. This variant is near a gene that encodes an enzyme that has been implicated to act coordinately with modulators of Th2 cell differentiation and is expressed in human lung. CONCLUSIONS: Our results suggest that using probands from family-based studies in case-control designs, and combining results of both family-based and case-control approaches, may be a way to augment our ability to find SNPs associated with asthma and other complex diseases.


Subject(s)
Asthma/genetics , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Case-Control Studies , Child , Family , Female , Genetic Variation , Genome-Wide Association Study , Humans , Male , Research Design
18.
Nat Commun ; 11(1): 163, 2020 01 09.
Article in English | MEDLINE | ID: mdl-31919418

ABSTRACT

Heart failure (HF) is a leading cause of morbidity and mortality worldwide. A small proportion of HF cases are attributable to monogenic cardiomyopathies and existing genome-wide association studies (GWAS) have yielded only limited insights, leaving the observed heritability of HF largely unexplained. We report results from a GWAS meta-analysis of HF comprising 47,309 cases and 930,014 controls. Twelve independent variants at 11 genomic loci are associated with HF, all of which demonstrate one or more associations with coronary artery disease (CAD), atrial fibrillation, or reduced left ventricular function, suggesting shared genetic aetiology. Functional analysis of non-CAD-associated loci implicate genes involved in cardiac development (MYOZ1, SYNPO2L), protein homoeostasis (BAG3), and cellular senescence (CDKN1A). Mendelian randomisation analysis supports causal roles for several HF risk factors, and demonstrates CAD-independent effects for atrial fibrillation, body mass index, and hypertension. These findings extend our knowledge of the pathways underlying HF and may inform new therapeutic strategies.


Subject(s)
Atrial Fibrillation/genetics , Cardiomyopathies/genetics , Coronary Artery Disease/genetics , Heart Failure/genetics , Heart Failure/pathology , Ventricular Function, Left/genetics , Adaptor Proteins, Signal Transducing/genetics , Apoptosis Regulatory Proteins/genetics , Cardiomyopathies/pathology , Carrier Proteins/genetics , Case-Control Studies , Cyclin-Dependent Kinase Inhibitor p21/genetics , Genome-Wide Association Study , Humans , Mendelian Randomization Analysis , Microfilament Proteins/genetics , Muscle Proteins/genetics , Risk Factors
19.
Hum Genet ; 124(6): 593-605, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18985386

ABSTRACT

Five genes have been identified that contribute to Mendelian forms of Parkinson disease (PD); however, mutations have been found in fewer than 5% of patients, suggesting that additional genes contribute to disease risk. Unlike previous studies that focused primarily on sporadic PD, we have performed the first genomewide association study (GWAS) in familial PD. Genotyping was performed with the Illumina HumanCNV370Duo array in 857 familial PD cases and 867 controls. A logistic model was employed to test for association under additive and recessive modes of inheritance after adjusting for gender and age. No result met genomewide significance based on a conservative Bonferroni correction. The strongest association result was with SNPs in the GAK/DGKQ region on chromosome 4 (additive model: p = 3.4 x 10(-6); OR = 1.69). Consistent evidence of association was also observed to the chromosomal regions containing SNCA (additive model: p = 5.5 x 10(-5); OR = 1.35) and MAPT (recessive model: p = 2.0 x 10(-5); OR = 0.56). Both of these genes have been implicated previously in PD susceptibility; however, neither was identified in previous GWAS studies of PD. Meta-analysis was performed using data from a previous case-control GWAS, and yielded improved p values for several regions, including GAK/DGKQ (additive model: p = 2.5 x 10(-7)) and the MAPT region (recessive model: p = 9.8 x 10(-6); additive model: p = 4.8 x 10(-5)). These data suggest the identification of new susceptibility alleles for PD in the GAK/DGKQ region, and also provide further support for the role of SNCA and MAPT in PD susceptibility.


Subject(s)
Parkinson Disease/genetics , Adult , Aged , Case-Control Studies , Diacylglycerol Kinase/genetics , Female , Genes, Recessive , Genetic Predisposition to Disease , Humans , Intracellular Signaling Peptides and Proteins/genetics , Logistic Models , Male , Middle Aged , Models, Genetic , Polymorphism, Single Nucleotide , Protein Serine-Threonine Kinases/genetics , alpha-Synuclein/genetics , tau Proteins/genetics
20.
BMC Med Genet ; 10: 98, 2009 Sep 22.
Article in English | MEDLINE | ID: mdl-19772629

ABSTRACT

BACKGROUND: Age at onset in Parkinson disease (PD) is a highly heritable quantitative trait for which a significant genetic influence is supported by multiple segregation analyses. Because genes associated with onset age may represent invaluable therapeutic targets to delay the disease, we sought to identify such genetic modifiers using a genomewide association study in familial PD. There have been previous genomewide association studies (GWAS) to identify genes influencing PD susceptibility, but this is the first to identify genes contributing to the variation in onset age. METHODS: Initial analyses were performed using genotypes generated with the Illumina HumanCNV370Duo array in a sample of 857 unrelated, familial PD cases. Subsequently, a meta-analysis of imputed SNPs was performed combining the familial PD data with that from a previous GWAS of 440 idiopathic PD cases. The SNPs from the meta-analysis with the lowest p-values and consistency in the direction of effect for onset age were then genotyped in a replication sample of 747 idiopathic PD cases from the Parkinson Institute Biobank of Milan, Italy. RESULTS: Meta-analysis across the three studies detected consistent association (p < 1 x 10(-5)) with five SNPs, none of which reached genomewide significance. On chromosome 11, the SNP with the lowest p-value (rs10767971; p = 5.4 x 10(-7)) lies between the genes QSER1 and PRRG4. Near the PARK3 linkage region on chromosome 2p13, association was observed with a SNP (rs7577851; p = 8.7 x 10(-6)) which lies in an intron of the AAK1 gene. This gene is closely related to GAK, identified as a possible PD susceptibility gene in the GWAS of the familial PD cases. CONCLUSION: Taken together, these results suggest an influence of genes involved in endocytosis and lysosomal sorting in PD pathogenesis.


Subject(s)
Genome-Wide Association Study , Parkinson Disease/genetics , Adult , Age of Onset , Aged , Aged, 80 and over , Female , Humans , Linear Models , Male , Middle Aged , Polymorphism, Single Nucleotide , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL