Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Lasers Surg Med ; 56(5): 508-522, 2024 07.
Article in English | MEDLINE | ID: mdl-38576388

ABSTRACT

OBJECTIVES: Knowledge of the physical effects of pulsed dye laser (PDL) treatment of psoriatic lesions is essential in unraveling the remedial mechanisms of this treatment and hence also in maximizing in its disease-modifying potential. Therefore, the main objective of this study was to provide estimates of these physical effects (for laser wavelengths of 585 and 595 nm), with the aim of identifying pathogenic processes that may be affected by these conditions. METHODS: We modeled the laser light propagation and subsequent photothermal heating by numerically solving the transient diffusion and heat equations simultaneously. To this end, we used the finite element method in conjunction with an image-derived psoriatic lesion morphology (which was defined by segmenting blood vessels from a confocal microscopy image of a fluorescently labeled section of a 3 mm punch biopsy of a psoriatic lesion). The resulting predictions of the generated temperature field within the lesion were then used to assess the possibility of stalling or arresting some suspected pathogenic processes. RESULTS: According to our results, it is conceivable that perivascular nerves are thermally denatured, as almost all locations that reach 60°C were found to be within 18 µm (at 585 nm) and 11 µm (at 595 nm) of a blood vessel wall. Furthermore, activation of TRPV1 and TRPV2 channels in perivascular neuronal and immune cells is highly likely, since a critical temperature of 43°C is generated at locations within up to 350 µm of a vessel wall (at both wavelengths) and sustained for up to 700 ms (at 585 nm) and 40 ms (at 595 nm), while a critical temperature of 52°C is reached by locations within 80 µm (at 585 nm) and 30 µm (at 595 nm) of a vessel wall and sustained for up to 100 ms (at 585 nm) and 30 ms (at 595 nm). Finally, we found that the blood vessel coagulation-inducing temperature of 70°C is sustained in the vascular epithelium for up to 19 and 5 ms at 585 and 595 nm, respectively, rendering partial or total loss of vascular functionality a distinct possibility. CONCLUSIONS: The presented approach constitutes a useful tool to provide realistic estimates of the photothermal effects of PDL treatment of psoriatic plaques (as well as other selective photothermolysis-based treatments), yielding information that is essential in guiding future experimental studies toward unraveling the remedial mechanisms of these treatments.


Subject(s)
Lasers, Dye , Psoriasis , Humans , Lasers, Dye/therapeutic use , Psoriasis/radiotherapy , Psoriasis/pathology , Psoriasis/diagnostic imaging , Microscopy, Confocal , Finite Element Analysis , Models, Biological
2.
Anal Chem ; 91(5): 3204-3208, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30739446

ABSTRACT

In the forensic field, knowledge about the time of deposition of semen traces is extremely valuable to law enforcement agencies to assess the relevance of the traces and the validity of witness testimonies. However, currently, no method exists that is able to estimate the time of deposition of semen stains, due to the complex chemistry of the constituents and variation in degradation patterns. Here, we demonstrate a non-contact age estimation method to assess the time of deposition of semen stains using fluorescence spectroscopy. Protein-lipid oxidation reactions were monitored in semen stains over time using protein fluorescence and fluorescent oxidation product signatures to reveal distinctive aging patterns. On the basis of the relative amounts of these fluorescent products and the rate at which they are converted, successful age estimation was achieved up to a value of 16 days, with a median absolute error of 1.7 days. We demonstrate here a new tool that can fill the current gap in intelligence about the age of semen traces that has been challenging the forensic community worldwide.


Subject(s)
Lipids/chemistry , Proteins/chemistry , Semen/chemistry , Spectrometry, Fluorescence/methods , Chromatography, Thin Layer , Humans , Male , Oxidation-Reduction , Time Factors
3.
Anal Chem ; 90(3): 1795-1804, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29281263

ABSTRACT

The hematocrit (Hct) effect is one of the most important hurdles currently preventing more widespread implementation of quantitative dried blood spot (DBS) analysis in a routine context. Indeed, the Hct may affect both the accuracy of DBS methods as well as the interpretation of DBS-based results. We previously developed a method to determine the Hct of a DBS based on its hemoglobin content using noncontact diffuse reflectance spectroscopy. Despite the ease with which the analysis can be performed (i.e., mere scanning of the DBS) and the good results that were obtained, the method did require a complicated algorithm to derive the total hemoglobin content from the DBS's reflectance spectrum. As the total hemoglobin was calculated as the sum of oxyhemoglobin, methemoglobin, and hemichrome, the three main hemoglobin derivatives formed in DBS upon aging, the reflectance spectrum needed to be unmixed to determine the quantity of each of these derivatives. We now simplified the method by only using the reflectance at a single wavelength, located at a quasi-isosbestic point in the reflectance curve. At this wavelength, assuming 1-to-1 stoichiometry of the aging reaction, the reflectance is insensitive to the hemoglobin degradation and only scales with the total amount of hemoglobin and, hence, the Hct. This simplified method was successfully validated. At each quality control level as well as at the limits of quantitation (i.e., 0.20 and 0.67) bias, intra- and interday imprecision were within 10%. Method reproducibility was excellent based on incurred sample reanalysis and surpassed the reproducibility of the original method. Furthermore, the influence of the volume spotted, the measurement location within the spot, as well as storage time and temperature were evaluated, showing no relevant impact of these parameters. Application to 233 patient samples revealed a good correlation between the Hct determined on whole blood and the predicted Hct determined on venous DBS. The bias obtained with Bland and Altman analysis was -0.015 and the limits of agreement were -0.061 and 0.031, indicating that the simplified, noncontact Hct prediction method even outperforms the original method. In addition, using caffeine as a model compound, it was demonstrated that this simplified Hct prediction method can effectively be used to implement a Hct-dependent correction factor to DBS-based results to alleviate the Hct bias.


Subject(s)
Dried Blood Spot Testing/methods , Hematocrit , Spectrophotometry/methods , Adult , Algorithms , Humans , Linear Models , Reproducibility of Results
4.
Sensors (Basel) ; 18(5)2018 Apr 25.
Article in English | MEDLINE | ID: mdl-29693606

ABSTRACT

In this study; an OCT-based intra-operative imaging method for blood flow detection during esophagectomy with gastric tube reconstruction is investigated. Change in perfusion of the gastric tube tissue can lead to ischemia; with a high morbidity and mortality as a result. Anastomotic leakage (incidence 5⁻20%) is one of the most severe complications after esophagectomy with gastric tube reconstruction. Optical imaging techniques provide for minimal-invasive and real-time visualization tools that can be used in intraoperative settings. By implementing an optical technique for blood flow detection during surgery; perfusion can be imaged and quantified and; if needed; perfusion can be improved by either a surgical intervention or the administration of medication. The feasibility of imaging gastric microcirculation in vivo using optical coherence tomography (OCT) during surgery of patients with esophageal cancer by visualizing blood flow based on the speckle contrast from M-mode OCT images is studied. The percentage of pixels exhibiting a speckle contrast value indicative of flow was quantified to serve as an objective parameter to assess blood flow at 4 locations on the reconstructed gastric tube. Here; it was shown that OCT can be used for direct blood flow imaging during surgery and may therefore aid in improving surgical outcomes for patients.


Subject(s)
Tomography, Optical Coherence , Esophageal Neoplasms , Esophagectomy , Humans , Microcirculation , Stomach
5.
Int J Legal Med ; 131(4): 1165-1177, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28233101

ABSTRACT

Literature on luminescent properties of thermally altered human remains is scarce and contradictory. Therefore, the luminescence of heated bone was systemically reinvestigated. A heating experiment was conducted on fresh human bone, in two different media, and cremated human remains were recovered from a modern crematory. Luminescence was excited with light sources within the range of 350 to 560 nm. The excitation light was filtered out by using different long pass filters, and the luminescence was analysed by means of a scoring method. The results show that temperature, duration and surrounding medium determine the observed emission intensity and bandwidth. It is concluded that the luminescent characteristic of bone can be useful for identifying thermally altered human remains in a difficult context as well as yield information on the perimortem and postmortem events.


Subject(s)
Arm Bones/pathology , Cremation , Luminescence , Aged , Body Remains , Female , Forensic Anthropology , Hot Temperature , Humans , Light , Male
6.
Anal Chem ; 88(12): 6538-46, 2016 06 21.
Article in English | MEDLINE | ID: mdl-27206105

ABSTRACT

Dried blood spot (DBS) sampling is recognized as a valuable alternative sampling strategy both in research and in clinical routine. Although many advantages are associated with DBS sampling, its more widespread use is hampered by several issues, of which the hematocrit effect on DBS-based quantitation remains undoubtedly the most widely discussed one. Previously, we developed a method to derive the approximate hematocrit from a nonvolumetrically applied DBS based on its potassium content. Although this method yielded good results and was straightforward to perform, it was also destructive and required sample preparation. Therefore, we now developed a nondestructive method which allows to predict the hematocrit of a DBS based on its hemoglobin content, measured via noncontact diffuse reflectance spectroscopy. The developed method was thoroughly validated. A linear calibration curve was established after log/log transformation. The bias, intraday and interday imprecision of quality controls at three hematocrit levels and at the lower and upper limit of quantitation (0.20 and 0.67, respectively) were less than 11%. In addition, the influence of storage and the volume spotted was evaluated, as well as DBS homogeneity. Application of the method to venous DBSs prepared from whole blood patient samples (n = 233) revealed a good correlation between the actual and the predicted hematocrit. Limits of agreement obtained after Bland and Altman analysis were -0.076 and +0.018. Incurred sample reanalysis demonstrated good method reproducibility. In conclusion, mere scanning of a DBS suffices to derive its approximate hematocrit, one of the most important variables in DBS analysis.


Subject(s)
Dried Blood Spot Testing/instrumentation , Hematocrit/instrumentation , Analysis of Variance , Calibration , Equipment Design , Humans , Reproducibility of Results , Sensitivity and Specificity , Spectrum Analysis/instrumentation
7.
R Soc Open Sci ; 9(7): 220162, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35911202

ABSTRACT

The postmortem interval (PMI), i.e. the time since death, plays a key role in forensic investigations, as it aids in the reconstruction of the timeline of events. Currently, the standard method for PMI estimation empirically correlates rectal temperatures and PMIs, frequently necessitating subjective correction factors. To address this shortcoming, numerical thermodynamic algorithms have recently been developed, providing rigorous methods to simulate postmortem body temperatures. Comparing these with measured body temperatures then allows non-subjective PMI determination. This approach, however, hinges on knowledge of two thermodynamic input parameters, which are often irretrievable in forensic practice: the ambient temperature prior to discovery of the body and the body temperature at the time of death (perimortem). Here, we overcome this critical limitation by combining numerical thermodynamic modelling with surrogate model-based parameter optimization. This hybrid computational framework predicts the two unknown parameters directly from the measured postmortem body temperatures. Moreover, by substantially reducing computation times (compared with conventional optimization algorithms), this powerful approach is uniquely suited for use directly at the crime scene. Crucially, we validated this method on deceased human bodies and achieved the lowest PMI estimation errors to date (0.18 h ± 0.77 h). Together, these aspects fundamentally expand the applicability of numerical thermodynamic PMI estimation.

8.
Life (Basel) ; 12(2)2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35207536

ABSTRACT

This study tests fluorescence imaging-derived quantitative parameters for perfusion evaluation of the gastric tube during surgery and correlates these parameters with patient outcomes in terms of anastomotic leakage. Poor fundus perfusion is seen as a major factor for the development of anastomotic leakage and strictures. Fluorescence perfusion imaging may reduce the incidence of complications. Parameters for the quantification of the fluorescence signal are still lacking. Quantitative parameters in terms of maximal intensity, mean slope and influx timepoint were tested for significant differences between four perfusion areas of the gastric tube in 22 patients with a repeated ANOVA test. These parameters were compared with patient outcomes. Maximal intensity, mean slope and influx timepoint were significantly different between the base of the gastric tube and the fundus (p < 0.0001). Patients who developed anastomotic leakage showed a mean slope of almost 0 in Location 4. The distance of the demarcation of ICG to the fundus was significantly higher in the three patients who developed anastomotic leakage (p < 0.0001). This study presents quantitative intra-operative perfusion imaging with fluorescence. Quantification of the fluorescence signal allows for early risk stratification of necrosis.

9.
Nat Commun ; 12(1): 5997, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34650046

ABSTRACT

Determining the time since death, i.e., post-mortem interval (PMI), often plays a key role in forensic investigations. The current standard PMI-estimation method empirically correlates rectal temperatures and PMIs, frequently necessitating subjective correction factors. To overcome this, we previously developed a thermodynamic finite-difference (TFD) algorithm, providing a rigorous method to simulate post-mortem temperatures of bodies assuming a straight posture. However, in forensic practice, bodies are often found in non-straight postures, potentially limiting applicability of this algorithm in these cases. Here, we develop an individualised approach, enabling PMI reconstruction for bodies in arbitrary postures, by combining photogrammetry and TFD modelling. Utilising thermal photogrammetry, this approach also represents the first non-contact method for PMI reconstruction. The performed lab and crime scene validations reveal PMI reconstruction accuracies of 0.26 h ± 1.38 h for true PMIs between 2 h and 35 h and total procedural durations of ~15 min. Together, these findings broaden the potential applicability of TFD-based PMI reconstruction.


Subject(s)
Autopsy/methods , Human Body , Imaging, Three-Dimensional/methods , Aged , Aged, 80 and over , Algorithms , Biomedical Engineering , Diagnostic Tests, Routine , Female , Humans , Male , Postmortem Changes
10.
Sci Adv ; 6(22): eaba4243, 2020 05.
Article in English | MEDLINE | ID: mdl-32523999

ABSTRACT

The early postmortem interval (PMI), i.e., the time shortly after death, can aid in the temporal reconstruction of a suspected crime and therefore provides crucial information in forensic investigations. Currently, this information is often derived from an empirical model (Henssge's nomogram) describing posthumous body cooling under standard conditions. However, nonstandard conditions necessitate the use of subjective correction factors or preclude the use of Henssge's nomogram altogether. To address this, we developed a powerful method for early PMI reconstruction using skin thermometry in conjunction with a comprehensive thermodynamic finite-difference model, which we validated using deceased human bodies. PMIs reconstructed using this approach, on average, deviated no more than ±38 minutes from their corresponding true PMIs (which ranged from 5 to 50 hours), significantly improving on the ±3 to ±7 hours uncertainty of the gold standard. Together, these aspects render this approach a widely applicable, i.e., forensically relevant, method for thermometric early PMI reconstruction.

11.
J Biophotonics ; 13(6): e201960105, 2020 06.
Article in English | MEDLINE | ID: mdl-32049426

ABSTRACT

The increase histopathological evaluation of prostatectomy specimens rises the workload on pathologists. Automated histopathology systems, preferably directly on unstained specimens, would accelerate the pathology workflow. In this study, we investigate the potential of quantitative analysis of optical coherence tomography (OCT) to separate benign from malignant prostate tissue automatically. Twenty fixated prostates were cut, from which 54 slices were scanned by OCT. Quantitative OCT metrics (attenuation coefficient, residue, goodness-of-fit) were compared for different tissue types, annotated on the histology slides. To avoid misclassification, the poor-quality slides, and edges of annotations were excluded. Accurate registration of OCT data with histology was achieved in 31 slices. After removing outliers, 56% of the OCT data was compared with histopathology. The quantitative data could not separate malignant from benign tissue. Logistic regression resulted in malignant detection with a sensitivity of 0.80 and a specificity of 0.34. Quantitative OCT analysis should be improved before clinical use.


Subject(s)
Prostatic Neoplasms , Tomography, Optical Coherence , Face , Humans , Male , Prostatectomy , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/surgery
12.
Forensic Sci Int ; 317: 110483, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32947241

ABSTRACT

A taphonomic research facility for the study of human remains was recently realized in Amsterdam, the Netherlands, to systematically investigate the decomposition of the human body under known conditions. Governmental authorization was obtained to make use of the body donation program of the Amsterdam University Medical Centers, location Academic Medical Center, for this specific purpose. In contrast to the small number of comparable initiatives elsewhere, this facility specifically allows for the study of buried bodies e.g. with the use of telemetry and remote sensing. Here, we discuss the concept of body donation in the Netherlands, its role in taphonomic research, and the sequence of events that preceded the realization of this facility, which is the first of its kind in Europe. In addition to offering novel research options to the scientific community, we hope that it will also pave the way for the successful realization of similar initiatives in other locations.


Subject(s)
Cadaver , Forensic Sciences/methods , Postmortem Changes , Directed Tissue Donation , Facility Design and Construction , Human Experimentation , Humans , Netherlands
13.
J Biophotonics ; 12(10): e201900037, 2019 10.
Article in English | MEDLINE | ID: mdl-31245913

ABSTRACT

This study investigates the feasibility of in vivo quantitative optical coherence tomography (OCT) of human brain tissue during glioma resection surgery in six patients. High-resolution detection of glioma tissue may allow precise and thorough tumor resection while preserving functional brain areas, and improving overall survival. In this study, in vivo 3D OCT datasets were collected during standard surgical procedure, before and after partial resection of the tumor, both from glioma tissue and normal parenchyma. Subsequently, the attenuation coefficient was extracted from the OCT datasets using an automated and validated algorithm. The cortical measurements yield a mean attenuation coefficient of 3.8 ± 1.2 mm-1 for normal brain tissue and 3.6 ± 1.1 mm-1 for glioma tissue. The subcortical measurements yield a mean attenuation coefficient of 5.7 ± 2.1 and 4.5 ± 1.6 mm-1 for, respectively, normal brain tissue and glioma. Although the results are inconclusive with respect to trends in attenuation coefficient between normal and glioma tissue due to the small sample size, the results are in the range of previously reported values. Therefore, we conclude that the proposed method for quantitative in vivo OCT of human brain tissue is feasible during glioma resection surgery.


Subject(s)
Brain Neoplasms/surgery , Brain/diagnostic imaging , Brain/surgery , Glioma/surgery , Intraoperative Period , Tomography, Optical Coherence , Brain Neoplasms/diagnostic imaging , Feasibility Studies , Glioma/diagnostic imaging , Humans , Image Processing, Computer-Assisted , Pilot Projects , Software
14.
J Biophotonics ; 12(4): e201800274, 2019 04.
Article in English | MEDLINE | ID: mdl-30565879

ABSTRACT

Optical coherence tomography (OCT), enables high-resolution 3D imaging of the morphology of light scattering tissues. From the OCT signal, parameters can be extracted and related to tissue structures. One of the quantitative parameters is the attenuation coefficient; the rate at which the intensity of detected light decays in depth. To couple the quantitative parameters with the histology one-to-one registration is needed. The primary aim of this study is to validate a registration method of quantitative OCT parameters to histological tissue outcome through one-to-one registration of OCT with histology. We matched OCT images of unstained fixated prostate tissue slices with corresponding histology slides, wherein different histologic types were demarcated. Attenuation coefficients were determined by a supervised automated exponential fit (corrected for point spread function and sensitivity roll-off related signal losses) over a depth of 0.32 mm starting from 0.10 mm below the automatically detected tissue edge. Finally, the attenuation coefficients corresponding to the different tissue types of the prostate were compared. From the attenuation coefficients, we produced the squared relative residue and goodness-of-fit metric R2 . This article explains the method to perform supervised automated quantitative analysis of OCT data, and the one-to-one registration of OCT extracted quantitative data with histopathological outcomes.


Subject(s)
Prostate/diagnostic imaging , Prostate/pathology , Prostatectomy , Tomography, Optical Coherence , Aged , Humans , Image Processing, Computer-Assisted , Male , Prostate/surgery , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Prostatic Neoplasms/surgery
15.
J Biomed Opt ; 23(8): 1-11, 2018 08.
Article in English | MEDLINE | ID: mdl-30094972

ABSTRACT

Diagnostic accuracy of needle-based optical coherence tomography (OCT) for prostate cancer detection by visual and quantitative analysis is defined. 106 three-dimensional (3-D)-OCT data sets were acquired in 20 prostates after radical prostatectomy and precisely matched with pathology. OCT images were grouped per histological category. Two reviewers performed blind assessments of the OCT images. Sensitivity and specificity for malignancy detection were calculated. Quantitative analyses by automated optical attenuation coefficient calculation were performed. OCT can reliably differentiate between fat, cystic, and regular atrophy and benign glands. The overall sensitivity and specificity for malignancy detection was 79% and 88% for reviewer 1 and 88% and 81% for reviewer 2. Quantitative analysis for differentiation between stroma and malignancy showed a significant difference (4.6 mm - 1 versus 5.0 mm - 1 Mann-Whitney U-test p < 0.0001). A Kruskal-Wallis test showed a significant difference in median attenuation coefficient between stroma, inflammation, Gleason 3, and Gleason 4 (4.6, 4.1, 5.9, and 5.0 mm - 1, respectively). However, attenuation coefficient varied per patient and a related-samples Wilcoxon signed-rank test showed no significant difference per patient (p = 0.17). This study confirmed the one to one correlation of histopathology and OCT. Precise matching showed that most histological tissues categories in the prostate could be distinguished by their unique pattern in OCT images. In addition, the optical attenuation coefficient can play a role in the differentiation between stroma and malignancy; however, a per patient analysis of the optical attenuation coefficient did not show a significant difference.


Subject(s)
Image Interpretation, Computer-Assisted/methods , Prostate/diagnostic imaging , Prostatic Neoplasms/diagnostic imaging , Tomography, Optical Coherence/methods , Adult , Humans , Male , Needles , Prospective Studies , Prostate/pathology , Prostatic Neoplasms/pathology , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL