Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
J Allergy Clin Immunol ; 151(2): 345-360, 2023 02.
Article in English | MEDLINE | ID: mdl-36395985

ABSTRACT

Inborn errors of immunity are a heterogeneous group of monogenic immunologic disorders caused by mutations in genes with critical roles in the development, maintenance, or function of the immune system. The genetic basis is frequently a mutation in a gene with restricted expression and/or function in immune cells, leading to an immune disorder. Several classes of inborn errors of immunity, however, result from mutation in genes that are ubiquitously expressed. Despite the genes participating in cellular processes conserved between cell types, immune cells are disproportionally affected, leading to inborn errors of immunity. Mutations in DNA replication, DNA repair, or DNA damage response factors can result in monogenic human disease, some of which are classified as inborn errors of immunity. Genetic defects in the DNA repair machinery are a well-known cause of T-B-NK+ severe combined immunodeficiency. An emerging class of inborn errors of immunity is those caused by mutations in DNA replication factors. Considerable heterogeneity exists within the DNA replication-associated inborn errors of immunity, with diverse immunologic defects and clinical manifestations observed. These differences are suggestive for differential sensitivity of certain leukocyte subsets to deficiencies in specific DNA replication factors. Here, we provide an overview of DNA replication-associated inborn errors of immunity and discuss the emerging mechanistic insights that can explain the observed immunologic heterogeneity.


Subject(s)
Genetic Diseases, Inborn , Immune System Diseases , Humans , Leukocytes , DNA Damage , Mutation
2.
J Allergy Clin Immunol ; 152(1): 266-277, 2023 07.
Article in English | MEDLINE | ID: mdl-36841265

ABSTRACT

BACKGROUND: Severe congenital neutropenia presents with recurrent infections early in life as a result of arrested granulopoiesis. Multiple genetic defects are known to block granulocyte differentiation; however, a genetic cause remains unknown in approximately 40% of cases. OBJECTIVE: We aimed to characterize a patient with severe congenital neutropenia and syndromic features without a genetic diagnosis. METHODS: Whole exome sequencing results were validated using flow cytometry, Western blotting, coimmunoprecipitation, quantitative PCR, cell cycle and proliferation analysis of lymphocytes and fibroblasts and granulocytic differentiation of primary CD34+ and HL-60 cells. RESULTS: We identified a homozygous missense mutation in DBF4 in a patient with mild extra-uterine growth retardation, facial dysmorphism and severe congenital neutropenia. DBF4 is the regulatory subunit of the CDC7 kinase, together known as DBF4-dependent kinase (DDK), the complex essential for DNA replication initiation. The DBF4 variant demonstrated impaired ability to bind CDC7, resulting in decreased DDK-mediated phosphorylation, defective S-phase entry and progression and impaired differentiation of granulocytes associated with activation of the p53-p21 pathway. The introduction of wild-type DBF4 into patient CD34+ cells rescued the promyelocyte differentiation arrest. CONCLUSION: Hypomorphic DBF4 mutation causes autosomal-recessive severe congenital neutropenia with syndromic features.


Subject(s)
Cell Cycle Proteins , Saccharomyces cerevisiae Proteins , Humans , Cell Cycle Proteins/genetics , Protein Serine-Threonine Kinases/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Mutation , Phosphorylation
3.
J Clin Immunol ; 43(6): 1393-1402, 2023 08.
Article in English | MEDLINE | ID: mdl-37156988

ABSTRACT

PURPOSE: FOXP3 deficiency results in severe multisystem autoimmunity in both mice and humans, driven by the absence of functional regulatory T cells. Patients typically present with early and severe autoimmune polyendocrinopathy, dermatitis, and severe inflammation of the gut, leading to villous atrophy and ultimately malabsorption, wasting, and failure to thrive. In the absence of successful treatment, FOXP3-deficient patients usually die within the first 2 years of life. Hematopoietic stem cell transplantation provides a curative option but first requires adequate control over the inflammatory condition. Due to the rarity of the condition, no clinical trials have been conducted, with widely unstandardized therapeutic approaches. We sought to compare the efficacy of lead therapeutic candidates rapamycin, anti-CD4 antibody, and CTLA4-Ig in controlling the physiological and immunological manifestations of Foxp3 deficiency in mice. METHOD: We generated Foxp3-deficient mice and an appropriate clinical scoring system to enable direct comparison of lead therapeutic candidates rapamycin, nondepleting anti-CD4 antibody, and CTLA4-Ig. RESULTS: We found distinct immunosuppressive profiles induced by each treatment, leading to unique protective combinations over distinct clinical manifestations. CTLA4-Ig provided superior breadth of protective outcomes, including highly efficient protection during the transplantation process. CONCLUSION: These results highlight the mechanistic diversity of pathogenic pathways initiated by regulatory T cell loss and suggest CTLA4-Ig as a potentially superior therapeutic option for FOXP3-deficient patients.


Subject(s)
Abatacept , Clinical Deterioration , Immune System Diseases , Animals , Humans , Mice , Abatacept/therapeutic use , CTLA-4 Antigen , Disease Models, Animal , Forkhead Transcription Factors/genetics , Immune System Diseases/therapy , Sirolimus/pharmacology , Sirolimus/therapeutic use , T-Lymphocytes, Regulatory
4.
J Clin Immunol ; 44(1): 2, 2023 12 15.
Article in English | MEDLINE | ID: mdl-38099988

ABSTRACT

The DNA polymerase δ complex (PolD), comprising catalytic subunit POLD1 and accessory subunits POLD2, POLD3, and POLD4, is essential for DNA synthesis and is central to genome integrity. We identified, by whole exome sequencing, a homozygous missense mutation (c.1118A > C; p.K373T) in POLD3 in a patient with Omenn syndrome. The patient exhibited severely decreased numbers of naïve T cells associated with a restricted T-cell receptor repertoire and a defect in the early stages of TCR recombination. The patient received hematopoietic stem cell transplantation at age 6 months. He manifested progressive neurological regression and ultimately died at age 4 years. We performed molecular and functional analysis of the mutant POLD3 and assessed cell cycle progression as well as replication-associated DNA damage. Patient fibroblasts showed a marked defect in S-phase entry and an enhanced number of double-stranded DNA break-associated foci despite normal expression levels of PolD components. The cell cycle defect was rescued by transduction with WT POLD3. This study validates autosomal recessive POLD3 deficiency as a novel cause of profound T-cell deficiency and Omenn syndrome.


Subject(s)
DNA Polymerase III , Severe Combined Immunodeficiency , Male , Humans , Infant , Child, Preschool , Severe Combined Immunodeficiency/diagnosis , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/therapy , Cell Cycle , DNA Damage , Fibroblasts
5.
J Clin Immunol ; 42(8): 1638-1652, 2022 11.
Article in English | MEDLINE | ID: mdl-35829840

ABSTRACT

PURPOSE: Mendelian susceptibility to mycobacterial disease (MSMD) is caused by inborn errors of IFN-γ immunity. The most frequent genetic defects are found in IL12 or a subunit of its receptor. IL23R deficiency in MSMD has only been reported once, in two pediatric patients from the same kindred with isolated disseminated Bacille Calmette-Guérin disease. We evaluated the impact of a homozygous stop mutation in IL23R (R381X), identified by whole exome sequencing, in an adult patient with disseminated non-tuberculous mycobacterial disease. METHODS: We performed functional validation of the R381X mutation by evaluating IL23R expression and IL-23 signaling (STAT3 phosphorylation, IFN-γ production) in primary cells (PBMCs, EBV-B cells) and cell lines (HeLa) with or without back-complementation of wild-type IL23R. RESULTS: We report on a 48-year-old male with disseminated non-tuberculous mycobacterial disease. We identified and characterized a homozygous loss-of-function stop mutation underlying IL23R deficiency, resulting in near absent expression of membrane bound IL23R. IL23R deficiency was characterized by impaired IL-23-mediated IFN-γ secretion in CD4+, CD8+ T, and mucosal-associated invariant T (MAIT) cells, and low frequencies of circulating Th17 (CD3+CD45RA-CCR4+CXCR3-RORγT+), Th1* (CD45RA-CCR4-CXCR3+RORγT+), and MAIT (CD3+CD8+Vα7.2+CD161+) cells. Although the patient did not have a history of recurrent fungal infections, impaired Th17 differentiation and blunted IL-23-mediated IL-17 secretion in PBMCs were observed. CONCLUSION: We demonstrate that impaired IL-23 immunity caused by a homozygous R381X mutation in IL23R underlies MSMD, corroborating earlier findings with a homozygous p.C115Y IL23R mutation. Our report further supports a model of redundant contribution of IL-23- to IL-17-mediated anti-fungal immunity.1.


Subject(s)
Mycobacterium Infections, Nontuberculous , Mycobacterium Infections , Male , Adult , Humans , Child , Middle Aged , Interleukin-17/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Mycobacterium Infections/etiology , Mycobacterium Infections, Nontuberculous/genetics , Mycobacterium Infections, Nontuberculous/complications , Mutation/genetics , Interleukin-23 , Genetic Predisposition to Disease , Receptors, Interleukin/genetics
6.
J Allergy Clin Immunol ; 146(5): 1180-1193, 2020 11.
Article in English | MEDLINE | ID: mdl-32325141

ABSTRACT

BACKGROUND: The molecular cause of severe congenital neutropenia (SCN) is unknown in 30% to 50% of patients. SEC61A1 encodes the α-subunit of the Sec61 complex, which governs endoplasmic reticulum protein transport and passive calcium leakage. Recently, mutations in SEC61A1 were reported to be pathogenic in common variable immunodeficiency and glomerulocystic kidney disease. OBJECTIVE: Our aim was to expand the spectrum of SEC61A1-mediated disease to include autosomal dominant SCN. METHODS: Whole exome sequencing findings were validated, and reported mutations were compared by Western blotting, Ca2+ flux assays, differentiation of transduced HL-60 cells, in vitro differentiation of primary CD34 cells, quantitative PCR for unfolded protein response (UPR) genes, and single-cell RNA sequencing on whole bone marrow. RESULTS: We identified a novel de novo missense mutation in SEC61A1 (c.A275G;p.Q92R) in a patient with SCN who was born to nonconsanguineous Belgian parents. The mutation results in diminished protein expression, disturbed protein translocation, and an increase in calcium leakage from the endoplasmic reticulum. In vitro differentiation of CD34+ cells recapitulated the patient's clinical arrest in granulopoiesis. The impact of Q92R-Sec61α1 on neutrophil maturation was validated by using HL-60 cells, in which transduction reduced differentiation into CD11b+CD16+ cells. A potential mechanism for this defect is the uncontrolled initiation of the unfolded protein stress response, with single-cell analysis of primary bone marrow revealing perturbed UPR in myeloid precursors and in vitro differentiation of primary CD34+ cells revealing upregulation of CCAAT/enhancer-binding protein homologous protein and immunoglobulin heavy chain binding protein UPR-response genes. CONCLUSION: Specific mutations in SEC61A1 cause SCN through dysregulation of the UPR.


Subject(s)
Congenital Bone Marrow Failure Syndromes/genetics , Mutation/genetics , Neutropenia/congenital , Neutrophils/physiology , SEC Translocation Channels/genetics , Antigens, CD34/metabolism , Chromosome Disorders , Female , Genes, Dominant , HL-60 Cells , Humans , Neutropenia/genetics , Pedigree , Single-Cell Analysis , Unfolded Protein Response/genetics , Exome Sequencing , Young Adult
10.
Int J Mol Sci ; 17(2): 239, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26891295

ABSTRACT

In chronic inflammatory diseases the anti-inflammatory effect of glucocorticoids (GCs) is often decreased, leading to GC resistance. Inflammation is related with increased levels of reactive oxygen species (ROS), leading to oxidative stress which is thought to contribute to the development of GC resistance. Plant-derived compounds such as flavonoids are known for their ability to protect against ROS. In this exploratory study we screened a broad range of food-derived bioactives for their antioxidant and anti-inflammatory effects in order to investigate whether their antioxidant effects are associated with the ability to preserve the anti-inflammatory effects of cortisol. The anti-inflammatory potency of the tested compounds was assessed by measuring the oxidative stress-induced GC resistance in human macrophage-like cells. Cells were pre-treated with H2O2 (800 µM) with and without bioactives and then exposed to lipopolysaccharides (LPS) (10 ng/mL) and cortisol (100 nM). The level of inflammation was deducted from the concentration of interleukin-8 (IL-8) in the medium. Intracellular oxidative stress was measured using the fluorescent probe 2',7'-dichlorofluorescein (DCFH). We found that most of the dietary bioactives display antioxidant and anti-inflammatory action through the protection of the cortisol response. All compounds, except for quercetin, revealing antioxidant activity also protect the cortisol response. This indicates that the antioxidant activity of compounds plays an important role in the protection of the GC response. However, next to the antioxidant activity of the bioactives, other mechanisms also seem to be involved in this protective, anti-inflammatory effect.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Dietary Supplements , Hydrocortisone/pharmacology , Cell Line, Tumor , Drug Resistance/drug effects , Flavonoids/metabolism , Flavonoids/pharmacology , Humans , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism
11.
Front Immunol ; 15: 983686, 2024.
Article in English | MEDLINE | ID: mdl-38827742

ABSTRACT

Recently, OTULIN haploinsufficiency was linked to enhanced susceptibility to Staphylococcus aureus infections accompanied by local necrosis and systemic inflammation. The pathogenesis observed in haploinsufficient patients differs from the hyperinflammation seen in classical OTULIN-related autoinflammatory syndrome (ORAS) patients and is characterized by increased susceptibility of dermal fibroblasts to S. aureus alpha toxin-inflicted cytotoxic damage. Immunological abnormalities were not observed in OTULIN haploinsufficient patients, suggesting a non-hematopoietic basis. In this research report, we investigated an Otulin+/- mouse model after in vivo provocation with lipopolysaccharide (LPS) to explore the potential role of hematopoietic-driven inflammation in OTULIN haploinsufficiency. We observed a hyperinflammatory signature in LPS-provoked Otulin+/- mice, which was driven by CD64+ monocytes and macrophages. Bone marrow-derived macrophages (BMDMs) of Otulin+/- mice demonstrated higher proinflammatory cytokine secretion after in vitro stimulation with LPS or polyinosinic:polycytidylic acid (Poly(I:C)). Our experiments in full and mixed bone marrow chimeric mice suggest that, in contrast to humans, the observed inflammation was mainly driven by the hematopoietic compartment with cell-extrinsic effects likely contributing to inflammatory outcomes. Using an OTULIN haploinsufficient mouse model, we validated the role of OTULIN in the regulation of environmentally directed inflammation.


Subject(s)
Haploinsufficiency , Inflammation , Lipopolysaccharides , Macrophages , Animals , Mice , Inflammation/genetics , Macrophages/immunology , Macrophages/metabolism , Disease Models, Animal , Cytokines/metabolism , Poly I-C , Mice, Inbred C57BL , Mice, Knockout , Humans
12.
Cell Mol Immunol ; 20(1): 11-25, 2023 01.
Article in English | MEDLINE | ID: mdl-36302985

ABSTRACT

Calcium signaling is essential for lymphocyte activation, with genetic disruptions of store-operated calcium (Ca2+) entry resulting in severe immunodeficiency. The inositol 1,4,5-trisphosphate receptor (IP3R), a homo- or heterotetramer of the IP3R1-3 isoforms, amplifies lymphocyte signaling by releasing Ca2+ from endoplasmic reticulum stores following antigen stimulation. Although knockout of all IP3R isoforms in mice causes immunodeficiency, the seeming redundancy of the isoforms is thought to explain the absence of variants in human immunodeficiency. In this study, we identified compound heterozygous variants of ITPR3 (a gene encoding IP3R subtype 3) in two unrelated Caucasian patients presenting with immunodeficiency. To determine whether ITPR3 variants act in a nonredundant manner and disrupt human immune responses, we characterized the Ca2+ signaling capacity, the lymphocyte response, and the clinical phenotype of these patients. We observed disrupted Ca2+ signaling in patient-derived fibroblasts and immune cells, with abnormal proliferation and activation responses following T-cell receptor stimulation. Reconstitution of IP3R3 in IP3R knockout cell lines led to the identification of variants as functional hypomorphs that showed reduced ability to discriminate between homeostatic and induced states, validating a genotype-phenotype link. These results demonstrate a functional link between defective endoplasmic reticulum Ca2+ channels and immunodeficiency and identify IP3Rs as diagnostic targets for patients with specific inborn errors of immunity. These results also extend the known cause of Ca2+-associated immunodeficiency from store-operated entry to impaired Ca2+ mobilization from the endoplasmic reticulum, revealing a broad sensitivity of lymphocytes to genetic defects in Ca2+ signaling.


Subject(s)
Calcium Signaling , Calcium , Inositol 1,4,5-Trisphosphate Receptors , Animals , Humans , Mice , Calcium/metabolism , Calcium Signaling/genetics , Calcium Signaling/immunology , Homeostasis , Inositol 1,4,5-Trisphosphate Receptors/genetics , Inositol 1,4,5-Trisphosphate Receptors/immunology , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Protein Isoforms/metabolism , Immune System Diseases/metabolism
13.
J Cachexia Sarcopenia Muscle ; 13(4): 2242-2253, 2022 08.
Article in English | MEDLINE | ID: mdl-35686338

ABSTRACT

BACKGROUND: Cytochrome P450 4F3 (CYP4F3) is an ω-hydroxylase that oxidizes leukotriene B4 (LTB4), prostaglandins, and fatty acid epoxides. LTB4 is synthesized by leukocytes and acts as a chemoattractant for neutrophils, making it an essential component of the innate immune system. Recently, involvement of the LTB4 pathway was reported in various immunological disorders such as asthma, arthritis, and inflammatory bowel disease. We report a 26-year-old female with a complex immune phenotype, mainly marked by exhaustion, muscle weakness, and inflammation-related conditions. The molecular cause is unknown, and symptoms have been aggravating over the years. METHODS: Whole exome sequencing was performed and validated; flow cytometry and enzyme-linked immunosorbent assay were used to describe patient's phenotype. Function and impact of the mutation were investigated using molecular analysis: co-immunoprecipitation, western blot, and enzyme-linked immunosorbent assay. Capillary electrophoresis with ultraviolet detection was used to detect LTB4 and its metabolite and in silico modelling provided structural information. RESULTS: We present the first report of a patient with a heterozygous de novo missense mutation c.C1123 > G;p.L375V in CYP4F3 that severely impairs its activity by 50% (P < 0.0001), leading to reduced metabolization of the pro-inflammatory LTB4. Systemic LTB4 levels (1034.0 ± 75.9 pg/mL) are significantly increased compared with healthy subjects (305.6 ± 57.0 pg/mL, P < 0.001), and immune phenotyping shows increased total CD19+ CD27- naive B cells (25%) and decreased total CD19+ CD27+ IgD- switched memory B cells (19%). The mutant CYP4F3 protein is stable and binding with its electron donors POR and Cytb5 is unaffected (P > 0.9 for both co-immunoprecipitation with POR and Cytb5). In silico modelling of CYP4F3 in complex with POR and Cytb5 suggests that the loss of catalytic activity of the mutant CYP4F3 is explained by a disruption of an α-helix that is crucial for the electron shuffling between the electron carriers and CYP4F3. Interestingly, zileuton still inhibits ex vivo LTB4 production in patient's whole blood to 2% of control (P < 0.0001), while montelukast and fluticasone do not (99% and 114% of control, respectively). CONCLUSIONS: A point mutation in the catalytic domain of CYP4F3 is associated with high leukotriene B4 plasma levels and features of a more naive adaptive immune response. Our data provide evidence for the pathogenicity of the CYP4F3 variant as a cause for the observed clinical features in the patient. Inhibitors of the LTB4 pathway such as zileuton show promising effects in blocking LTB4 production and might be used as a future treatment strategy.


Subject(s)
Leukotriene B4 , Mutation, Missense , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P450 Family 4/genetics , Electrons , Female , Humans , Leukotriene B4/metabolism
14.
Front Immunol ; 13: 973543, 2022.
Article in English | MEDLINE | ID: mdl-36203612

ABSTRACT

NFKB1 haploinsufficiengcy was first described in 2015 in three families with common variable immunodeficiency (CVID), presenting heterogeneously with symptoms of increased infectious susceptibility, skin lesions, malignant lymphoproliferation and autoimmunity. The described mutations all led to a rapid degradation of the mutant protein, resulting in a p50 haploinsufficient state. Since then, more than 50 other mutations have been reported, located throughout different domains of NFKB1 with the majority situated in the N-terminal Rel homology domain (RHD). The clinical spectrum has also expanded with possible disease manifestations in almost any organ system. In silico prediction tools are often used to estimate the pathogenicity of NFKB1 variants but to prove causality between disease and genetic findings, further downstream functional validation is required. In this report, we studied 2 families with CVID and two novel variants in NFKB1 (c.1638-2A>G and c.787G>C). Both mutations affected mRNA and/or protein expression of NFKB1 and resulted in excessive NLRP3 inflammasome activation in patient macrophages and upregulated interferon stimulated gene expression. Protein-protein interaction analysis demonstrated a loss of interaction with NFKB1 interaction partners for the p.V263L mutation. In conclusion, we proved pathogenicity of two novel variants in NFKB1 in two families with CVID characterized by variable and incomplete penetrance.


Subject(s)
Common Variable Immunodeficiency , Common Variable Immunodeficiency/genetics , Humans , Inflammasomes , Interferons/genetics , Mutant Proteins/genetics , Mutation , NF-kappa B p50 Subunit/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Phenotype , RNA, Messenger
15.
Front Immunol ; 12: 753978, 2021.
Article in English | MEDLINE | ID: mdl-34867986

ABSTRACT

Inborn errors of immunity (IEI) are a heterogenous group of disorders driven by genetic defects that functionally impact the development and/or function of the innate and/or adaptive immune system. The majority of these disorders are thought to have polygenic background. However, the use of next-generation sequencing in patients with IEI has led to an increasing identification of monogenic causes, unravelling the exact pathophysiology of the disease and allowing the development of more targeted treatments. Monogenic IEI are not only seen in a pediatric population but also in adulthood, either due to the lack of awareness preventing childhood diagnosis or due to a delayed onset where (epi)genetic or environmental factors can play a role. In this review, we discuss the mechanisms accounting for adult-onset presentations and provide an overview of monogenic causes associated with adult-onset IEI.


Subject(s)
Immunologic Deficiency Syndromes/genetics , Adult , Age of Onset , Autoimmune Diseases/genetics , Common Variable Immunodeficiency/genetics , Epigenesis, Genetic , Female , Gene-Environment Interaction , Genetic Association Studies , Genetic Predisposition to Disease , Hereditary Autoinflammatory Diseases/genetics , High-Throughput Nucleotide Sequencing , Humans , Immunity, Innate/genetics , Immunologic Deficiency Syndromes/classification , Lymphohistiocytosis, Hemophagocytic/genetics , Lymphoproliferative Disorders/genetics , Male , Mosaicism , Mutation , Severe Combined Immunodeficiency/genetics
16.
Front Immunol ; 12: 678927, 2021.
Article in English | MEDLINE | ID: mdl-34046042

ABSTRACT

Recently, a novel disorder coined VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome was identified in patients with adult-onset inflammatory syndromes, often accompanied by myelodysplastic syndrome1. All patients had myeloid lineage-restricted somatic mutations in UBA1 affecting the Met41 residue of the protein and resulting in decreased cellular ubiquitylation activity and hyperinflammation. We here describe the clinical disease course of two VEXAS syndrome patients with somatic UBA1 mutations of which one with a mild phenotype characterized by recurrent rash and symmetric polyarthritis, and another who was initially diagnosed with idiopathic multicentric Castleman disease and developed macrophage activation syndrome as a complication of the VEXAS syndrome. The latter patients was treated with anti-IL6 therapy (siltuximab) leading to a resolution of systemic symptoms and reduction of transfusion requirements.


Subject(s)
Macrophage Activation Syndrome/diagnosis , Macrophage Activation Syndrome/etiology , Aged , Biopsy , DNA Mutational Analysis , Disease Management , Disease Progression , Disease Susceptibility , Genes, X-Linked , Humans , Male , Mutation , Pedigree , Symptom Assessment , Syndrome , Ubiquitin-Activating Enzymes/genetics
17.
Front Immunol ; 11: 575219, 2020.
Article in English | MEDLINE | ID: mdl-33133092

ABSTRACT

STING-associated vasculopathy with onset in infancy (SAVI) is an autosomal dominant disorder due to gain-of-function mutations in STING1, also known as TMEM173, encoding for STING. It was reported as a vasculopathy of infancy. However, since its description a wider spectrum of associated manifestations and disease-onset has been observed. We report a kindred with a heterozygous STING mutation (p.V155M) in which the 19-year-old proband suffered from isolated adult-onset ANCA-associated vasculitis. His father suffered from childhood-onset pulmonary fibrosis and renal failure attributed to ANCA-associated vasculitis, and died at the age of 30 years due to respiratory failure. In addition, an overview of the phenotypic spectrum of SAVI is provided highlighting (a) a high phenotypic variability with in some cases isolated manifestations, (b) the potential of adult-onset disease, and (c) a novel manifestation with ANCA-associated vasculitis.


Subject(s)
Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/genetics , Membrane Proteins/genetics , Mutation , Vascular Diseases/genetics , Age of Onset , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/diagnosis , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/immunology , Genetic Predisposition to Disease , Heredity , Heterozygote , Humans , Male , Pedigree , Phenotype , Prognosis , Vascular Diseases/diagnosis , Vascular Diseases/immunology , Young Adult
18.
Clin Transl Immunology ; 9(11): e1204, 2020.
Article in English | MEDLINE | ID: mdl-33209300

ABSTRACT

OBJECTIVES: The pandemic spread of the coronavirus SARS-CoV-2 is due, in part, to the immunological properties of the host-virus interaction. The clinical presentation varies from individual to individual, with asymptomatic carriers, mild-to-moderate-presenting patients and severely affected patients. Variation in immune response to SARS-CoV-2 may underlie this clinical variation. METHODS: Using a high-dimensional systems immunology platform, we have analysed the peripheral blood compartment of 6 healthy individuals, 23 mild-to-moderate and 20 severe COVID-19 patients. RESULTS: We identify distinct immunological signatures in the peripheral blood of the mild-to-moderate and severe COVID-19 patients, including T-cell lymphopenia, more consistent with peripheral hypo- than hyper-immune activation. Unique to the severe COVID-19 cases was a large increase in the proportion of IL-10-secreting regulatory T cells, a lineage known to possess anti-inflammatory properties in the lung. CONCLUSION: As IL-10-secreting regulatory T cells are known to possess anti-inflammatory properties in the lung, their proportional increase could contribute to a more severe COVID-19 phenotype. We openly provide annotated data (https://flowrepository.org/experiments/2713) with clinical correlates as a systems immunology resource for the COVID-19 research community.

20.
Biomark Res ; 5: 6, 2017.
Article in English | MEDLINE | ID: mdl-28194275

ABSTRACT

Angioimmunoblastic T-cell lymphoma (AITL) is one of the most common subtypes of peripheral T-cell lymphoma. Advances in understanding the mutational landscape of AITL have not resulted in improved prognosis nor consensus regarding optimal first-line and second-line treatment. The recently proposed multistep tumorigenesis model for AITL provides a theoretical framework of AITL oncogenesis. In this model, early mutations in epigenetic modifiers interact with late cooperative mutations to enable malignant transformation. Frequent mutations in epigenetic modifiers suggest that aberrant DNA methylation contributes to AITL oncogenesis. Several research groups have reported findings suggesting that inappropriate costimulation acts as a late cooperative mutation. Drugs targeting inappropriate costimulation have already been approved for the treatment of several malignancies or autoimmune diseases. Additionally, aberrant DNA methylation was recently shown to potentiate inappropriate costimulation in a subset of AITL cases. Therefore, drugs targeting inappropriate costimulation and hypomethylating agents might have synergistic effects. Both offer promising new therapeutic options in AITL treatment. This commentary summarizes the main findings on aberrant DNA methylation and inappropriate costimulation in AITL and proposes several already approved drugs for AITL treatment. Hopefully, these will contribute to improving the still dismal prognosis of AITL patients.

SELECTION OF CITATIONS
SEARCH DETAIL