Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Cryobiology ; 99: 78-87, 2021 04.
Article in English | MEDLINE | ID: mdl-33485898

ABSTRACT

Clinical applications of gamma delta (γδ) T cells have advanced from initial interest in expanding γδ T cells in vivo to the development of a manufacturing process for the ex vivo expansion. To develop an "off-the-shelf" allogeneic γδ T cell product, the cell manufacturing process must be optimized to include cryopreservation. It is known that cryopreservation can dramatically reduce viability of primary cells and other cell types after thawing, although the exact effects of cryopreservation on γδ T cell health and functionality have not yet been characterized. Our aim was to characterize the effects of a freeze/thaw cycle on γδ T cells and to develop an optimized protocol for cryopreservation. γδ T cells were expanded under serum-free conditions, using a good manufacturing practice (GMP) compliant protocol developed by our lab. We observed that cryopreservation reduced cell survival and increased the percentage of apoptotic cells, two measures that could not be improved through the use of 5 GMP compliant freezing media. The choice of thawing medium, specifically human albumin (HSA), improved γδ T cell viability and in addition, chromatin condensation prior to freezing increased cell viability after thawing, which could not be further improved with the use of a general caspase inhibitor. Finally, we found that cryopreserved cells had depolarized mitochondrial membranes and reduced cytotoxicity when tested against a range of leukemia cell lines. These studies provide a detailed analysis of the effects of cryopreservation on γδ T cells and provide methods for improving viability in the post-thaw period.


Subject(s)
Chromatin , Cryopreservation , Cell Survival , Cryopreservation/methods , Freezing , Humans , Serum Albumin, Human , T-Lymphocytes
2.
Blood ; 125(20): 3128-32, 2015 May 14.
Article in English | MEDLINE | ID: mdl-25838351

ABSTRACT

Despite the therapeutic efficacy of ibrutinib in chronic lymphocytic leukemia (CLL), complete responses are infrequent, and acquired resistance to Bruton agammaglobulinemia tyrosine kinase (BTK) inhibition is being observed in an increasing number of patients. Combination regimens that increase frequency of complete remissions, accelerate time to remission, and overcome single agent resistance are of considerable interest. We previously showed that the XPO1 inhibitor selinexor is proapoptotic in CLL cells and disrupts B-cell receptor signaling via BTK depletion. Herein we show the combination of selinexor and ibrutinib elicits a synergistic cytotoxic effect in primary CLL cells and increases overall survival compared with ibrutinib alone in a mouse model of CLL. Selinexor is effective in cells isolated from patients with prolonged lymphocytosis following ibrutinib therapy. Finally, selinexor is effective in ibrutinib-refractory mice and in a cell line harboring the BTK C481S mutation. This is the first report describing the combined activity of ibrutinib and selinexor in CLL, which represents a new treatment paradigm and warrants further evaluation in clinical trials of CLL patients including those with acquired ibrutinib resistance.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm , Hydrazines/pharmacology , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Triazoles/pharmacology , Adenine/analogs & derivatives , Animals , Antineoplastic Agents/administration & dosage , Cell Line, Tumor , Cell Survival/drug effects , Disease Models, Animal , Drug Synergism , Humans , Hydrazines/administration & dosage , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , Mice , Piperidines , Pyrazoles/administration & dosage , Pyrimidines/administration & dosage , Triazoles/administration & dosage , Xenograft Model Antitumor Assays
3.
Blood ; 124(9): 1481-91, 2014 Aug 28.
Article in English | MEDLINE | ID: mdl-25001469

ABSTRACT

Targeting B-cell receptor (BCR) signaling in chronic lymphocytic leukemia (CLL) has been successful with durable remissions observed with several targeted therapeutics. Protein kinase C-ß (PKC-ß) is immediately downstream of BCR and has been shown to be essential to CLL cell survival and proliferation in vivo. We therefore evaluated sotrastaurin (AEB071), an orally administered potent PKC inhibitor, on CLL cell survival both in vitro and in vivo. AEB071 shows selective cytotoxicity against B-CLL cells in a dose-dependent manner. Additionally, AEB071 attenuates BCR-mediated survival pathways, inhibits CpG-induced survival and proliferation of CLL cells in vitro, and effectively blocks microenvironment-mediated survival signaling pathways in primary CLL cells. Furthermore, AEB071 alters ß-catenin expression, resulting in decreased downstream transcriptional genes as c-Myc, Cyclin D1, and CD44. Lastly, our preliminary in vivo studies indicate beneficial antitumor properties of AEB071 in CLL. Taken together, our results indicate that targeting PKC-ß has the potential to disrupt signaling from the microenvironment contributing to CLL cell survival and potentially drug resistance. Future efforts targeting PKC with the PKC inhibitor AEB071 as monotherapy in clinical trials of relapsed and refractory CLL patients are warranted.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/enzymology , Protein Kinase C beta/antagonists & inhibitors , Protein Kinase Inhibitors/therapeutic use , Pyrroles/therapeutic use , Quinazolines/therapeutic use , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Receptors, Antigen, B-Cell/metabolism , Tetradecanoylphorbol Acetate/pharmacology , Tumor Cells, Cultured , Tumor Microenvironment/drug effects , Wnt Signaling Pathway/drug effects , beta Catenin/metabolism
4.
Blood Adv ; 5(16): 3152-3162, 2021 08 24.
Article in English | MEDLINE | ID: mdl-34424320

ABSTRACT

Antibody-drug conjugates directed against tumor-specific targets have allowed targeted delivery of highly potent chemotherapy to malignant cells while sparing normal cells. Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is an oncofetal protein with limited expression on normal adult tissues and is overexpressed on the surface of malignant cells in mantle cell lymphoma, acute lymphocytic leukemia with t(1;19)(q23;p13) translocation, and chronic lymphocytic leukemia. This differential expression makes ROR1 an attractive target for antibody-drug conjugate therapy, especially in malignancies such as mantle cell lymphoma and acute lymphocytic leukemia, in which systemic chemotherapy remains the gold standard. Several preclinical and phase 1 clinical studies have established the safety and effectiveness of anti-ROR1 monoclonal antibody-based therapies. Herein we describe a humanized, first-in-class anti-ROR1 antibody-drug conjugate, huXBR1-402-G5-PNU, which links a novel anti-ROR1 antibody (huXBR1-402) to a highly potent anthracycline derivative (PNU). We found that huXBR1-402-G5-PNU is cytotoxic to proliferating ROR1+ malignant cells in vitro and suppressed leukemia proliferation and extended survival in multiple models of mice engrafted with human ROR1+ leukemia. Lastly, we show that the B-cell lymphoma 2 (BCL2)-dependent cytotoxicity of huXBR1-402-G5-PNU can be leveraged by combined treatment strategies with the BCL2 inhibitor venetoclax. Together, our data present compelling preclinical evidence for the efficacy of huXBR1-402-G5-PNU in treating ROR1+ hematologic malignancies.


Subject(s)
Hematologic Neoplasms , Immunoconjugates , Leukemia, Lymphocytic, Chronic, B-Cell , Lymphoma, Mantle-Cell , Animals , Antibodies, Monoclonal , Lymphoma, Mantle-Cell/drug therapy , Lymphoma, Mantle-Cell/genetics , Mice
5.
Front Med (Lausanne) ; 7: 588453, 2020.
Article in English | MEDLINE | ID: mdl-33282892

ABSTRACT

Gamma delta (γδ) T cells recently emerged as an attractive candidate for cancer immunotherapy treatments due to their inherent cytotoxicity against both hematological and solid tumors. Moreover, γδ T cells provide a platform for the development of allogeneic cell therapies, as they can recognize antigens independent of MHC recognition and without the requirement for a chimeric antigen receptor. However, γδ T cell adoptive cell therapy depends on ex vivo expansion to manufacture sufficient cell product numbers, which remains challenging and limited by inter-donor variability. In the current study, we characterize the differences in expansion of γδ T cells from various donors that expand (EX) and donors that fail to expand, i.e., non-expanders (NE). Further, we demonstrate that IL-21 can be used to increase the expansion potential of NE. In order to reduce the risk of graft vs. host disease (GVHD) induced by an allogeneic T cell product, αß T cell depletions must be considered due to the potential for HLA mismatch. Typically, αß T cell depletions are performed at the end of expansion, prior to infusion. We show that γδ T cell cultures can be successfully αß depleted on day 6 of expansion, providing a better environment for the γδ T cells to expand, and that the αß T cell population remains below clinically acceptable standards for T cell-depleted allogeneic stem cell products. Finally, we assess the potential for a mixed donor γδ T cell therapy and characterize the effects of cryopreservation on γδ T cells. Collectively, these studies support the development of an improved allogeneic γδ T cell product and suggest the possibility of using mixed donor γδ T cell immunotherapies.

SELECTION OF CITATIONS
SEARCH DETAIL