Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 141
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 121(42): e2409166121, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39388272

ABSTRACT

Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that has been responsible for numerous large-scale outbreaks in the last twenty years. Currently, there are no FDA-approved therapeutics for any alphavirus infection. CHIKV nonstructural protein 2 (nsP2), which contains a cysteine protease domain, is essential for viral replication, making it an attractive target for a drug discovery campaign. Here, we optimized a CHIKV nsP2 protease (nsP2pro) biochemical assay for the screening of a 6,120-compound cysteine-directed covalent fragment library. Using a 50% inhibition threshold, we identified 153 hits (2.5% hit rate). In dose-response follow-up, RA-0002034, a covalent fragment that contains a vinyl sulfone warhead, inhibited CHIKV nsP2pro with an IC50 of 58 ± 17 nM, and further analysis with time-dependent inhibition studies yielded a kinact /KI of 6.4 × 103 M-1s-1. LC-MS/MS analysis determined that RA-0002034 covalently modified the catalytic cysteine in a site-specific manner. Additionally, RA-0002034 showed no significant off-target reactivity in proteomic experiments or against a panel of cysteine proteases. In addition to the potent biochemical inhibition of CHIKV nsP2pro activity and exceptional selectivity, RA-0002034 was tested in cellular models of alphavirus infection and effectively inhibited viral replication of both CHIKV and related alphaviruses. This study highlights the identification and characterization of the chemical probe RA-0002034 as a promising hit compound from covalent fragment-based screening for development toward a CHIKV or pan-alphavirus therapeutic.


Subject(s)
Chikungunya virus , Cysteine Endopeptidases , Chikungunya virus/drug effects , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/chemistry , Virus Replication/drug effects , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Humans , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Sulfones/pharmacology , Sulfones/chemistry , Animals , Chikungunya Fever/virology , Chikungunya Fever/drug therapy
2.
Bioorg Med Chem Lett ; 99: 129617, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38199328

ABSTRACT

We report the synthesis of 2,6-disubstituted pyrazines as potent cell active CSNK2A inhibitors. 4'-Carboxyphenyl was found to be the optimal 2-pyrazine substituent for CSNK2A activity, with little tolerance for additional modification. At the 6-position, modifications of the 6-isopropylaminoindazole substituent were explored to improve selectivity over PIM3 while maintaining potent CSNK2A inhibition. The 6-isopropoxyindole analogue 6c was identified as a nanomolar CSNK2A inhibitor with 30-fold selectivity over PIM3 in cells. Replacement of the 6-isopropoxyindole by isosteric ortho-methoxy anilines, such as 7c, generated analogues with selectivity for CSNK2A over PIM3 and improved the kinome-wide selectivity. The optimized 2,6-disubstituted pyrazines showed inhibition of viral replication consistent with their CSNK2A activity.


Subject(s)
Benzoates , Pyrazines , Structure-Activity Relationship , Pyrazines/pharmacology , Antiviral Agents/pharmacology
3.
J Chem Inf Model ; 64(11): 4387-4391, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38768560

ABSTRACT

We introduce STOPLIGHT, a web portal to assist medicinal chemists in prioritizing hits from screening campaigns and the selection of compounds for optimization. STOPLIGHT incorporates services to assess 6 physiochemical and structural properties, 6 assay liabilities, and 11 pharmacokinetic properties, for any small molecule represented by its SMILES string. We briefly describe each service and illustrate the utility of this portal with a case study. The STOPLIGHT portal provides a user-friendly tool to guide hit selection in early drug discovery campaigns, whereby compounds with unfavorable properties can be quickly recognized and eliminated.


Subject(s)
Drug Discovery , Drug Discovery/methods , Software , Drug Evaluation, Preclinical/methods , Internet , Small Molecule Libraries/chemistry
4.
Molecules ; 29(17)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39275006

ABSTRACT

The host kinase casein kinase 2 (CSNK2) has been proposed to be an antiviral target against ß-coronaviral infection. To pharmacologically validate CSNK2 as a drug target in vivo, potent and selective CSNK2 inhibitors with good pharmacokinetic properties are required. Inhibitors based on the pyrazolo[1,5-a]pyrimidine scaffold possess outstanding potency and selectivity for CSNK2, but bioavailability and metabolic stability are often challenging. By strategically installing a fluorine atom on an electron-rich phenyl ring of a previously characterized inhibitor 1, we discovered compound 2 as a promising lead compound with improved in vivo metabolic stability. Compound 2 maintained excellent cellular potency against CSNK2, submicromolar antiviral potency, and favorable solubility, and was remarkably selective for CSNK2 when screened against 192 kinases across the human kinome. We additionally present a co-crystal structure to support its on-target binding mode. In vivo, compound 2 was orally bioavailable, and demonstrated modest and transient inhibition of CSNK2, although antiviral activity was not observed, possibly attributed to its lack of prolonged CSNK2 inhibition.


Subject(s)
Antiviral Agents , Casein Kinase II , Halogenation , Protein Kinase Inhibitors , Humans , Casein Kinase II/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/pharmacokinetics , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/pharmacokinetics , Animals , Biological Availability , Administration, Oral , Pyrimidines/chemistry , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Structure-Activity Relationship , SARS-CoV-2/drug effects
5.
J Proteome Res ; 22(10): 3159-3177, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37634194

ABSTRACT

Host kinases play essential roles in the host cell cycle, innate immune signaling, the stress response to viral infection, and inflammation. Previous work has demonstrated that coronaviruses specifically target kinase cascades to subvert host cell responses to infection and rely upon host kinase activity to phosphorylate viral proteins to enhance replication. Given the number of kinase inhibitors that are already FDA approved to treat cancers, fibrosis, and other human disease, they represent an attractive class of compounds to repurpose for host-targeted therapies against emerging coronavirus infections. To further understand the host kinome response to betacoronavirus infection, we employed multiplex inhibitory bead mass spectrometry (MIB-MS) following MERS-CoV and SARS-CoV-2 infection of human lung epithelial cell lines. Our MIB-MS analyses revealed activation of mTOR and MAPK signaling following MERS-CoV and SARS-CoV-2 infection, respectively. SARS-CoV-2 host kinome responses were further characterized using paired phosphoproteomics, which identified activation of MAPK, PI3K, and mTOR signaling. Through chemogenomic screening, we found that clinically relevant PI3K/mTOR inhibitors were able to inhibit coronavirus replication at nanomolar concentrations similar to direct-acting antivirals. This study lays the groundwork for identifying broad-acting, host-targeted therapies to reduce betacoronavirus replication that can be rapidly repurposed during future outbreaks and epidemics. The proteomics, phosphoproteomics, and MIB-MS datasets generated in this study are available in the Proteomics Identification Database (PRIDE) repository under project identifiers PXD040897 and PXD040901.


Subject(s)
COVID-19 , Hepatitis C, Chronic , Middle East Respiratory Syndrome Coronavirus , Humans , Antiviral Agents/pharmacology , MTOR Inhibitors , Phosphatidylinositol 3-Kinases , SARS-CoV-2 , Virus Replication , Middle East Respiratory Syndrome Coronavirus/physiology , TOR Serine-Threonine Kinases
6.
Molecules ; 28(7)2023 Mar 25.
Article in English | MEDLINE | ID: mdl-37049713

ABSTRACT

PLK1 is a protein kinase that regulates mitosis and is both an important oncology drug target and a potential antitarget of drugs for the DNA damage response pathway or anti-infective host kinases. To expand the range of live cell NanoBRET target engagement assays to include PLK1, we developed an energy transfer probe based on the anilino-tetrahydropteridine chemotype found in several selective PLK inhibitors. Probe 11 was used to configure NanoBRET target engagement assays for PLK1, PLK2, and PLK3 and measure the potency of several known PLK inhibitors. In-cell target engagement for PLK1 was in good agreement with the reported cellular potency for the inhibition of cell proliferation. Probe 11 enabled the investigation of the promiscuity of adavosertib, which had been described as a dual PLK1/WEE1 inhibitor in biochemical assays. Live cell target engagement analysis of adavosertib via NanoBRET demonstrated PLK activity at micromolar concentrations but only selective engagement of WEE1 at clinically relevant doses.


Subject(s)
Cell Cycle Proteins , Protein Serine-Threonine Kinases , Cell Cycle Proteins/metabolism , Protein Kinases , Cell Proliferation , Mitosis , Protein Kinase Inhibitors/pharmacology
7.
Int J Mol Sci ; 22(2)2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33429995

ABSTRACT

We describe the assembly and annotation of a chemogenomic set of protein kinase inhibitors as an open science resource for studying kinase biology. The set only includes inhibitors that show potent kinase inhibition and a narrow spectrum of activity when screened across a large panel of kinase biochemical assays. Currently, the set contains 187 inhibitors that cover 215 human kinases. The kinase chemogenomic set (KCGS), current Version 1.0, is the most highly annotated set of selective kinase inhibitors available to researchers for use in cell-based screens.


Subject(s)
Drug Discovery , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/chemistry , Small Molecule Libraries/chemistry , Humans , Protein Kinase Inhibitors/therapeutic use , Protein Serine-Threonine Kinases/antagonists & inhibitors , Small Molecule Libraries/therapeutic use , Structure-Activity Relationship
8.
Tetrahedron Lett ; 61(38)2020 Sep 17.
Article in English | MEDLINE | ID: mdl-33012852

ABSTRACT

A concise 4-step synthesis of furo[2,3-b]pyridines, with handles in the 3- and 5-positions for palladium mediated cross-coupling reactions, is described. The synthetic route has been optimized, with only one step requiring purification by column chromatography. The route is amenable to scale-up, and was successfully executed on a multi-gram scale. Furopyridines are of growing interest in medicinal chemistry, and this route should enable easy access to the core for structure-activity relationship (SAR) studies.

9.
Molecules ; 25(2)2020 Jan 13.
Article in English | MEDLINE | ID: mdl-31941153

ABSTRACT

The calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) activates CAMK1, CAMK4, AMPK, and AKT, leading to numerous physiological responses. The deregulation of CAMKK2 is linked to several diseases, suggesting the utility of CAMKK2 inhibitors for oncological, metabolic and inflammatory indications. In this work, we demonstrate that STO-609, frequently described as a selective inhibitor for CAMKK2, potently inhibits a significant number of other kinases. Through an analysis of literature and public databases, we have identified other potent CAMKK2 inhibitors and verified their activities in differential scanning fluorimetry and enzyme inhibition assays. These inhibitors are potential starting points for the development of selective CAMKK2 inhibitors and will lead to tools that delineate the roles of this kinase in disease biology.


Subject(s)
Benzimidazoles/chemistry , Calcium-Calmodulin-Dependent Protein Kinase Kinase , Naphthalimides/chemistry , Protein Kinase Inhibitors/chemistry , Animals , Calcium-Calmodulin-Dependent Protein Kinase Kinase/antagonists & inhibitors , Calcium-Calmodulin-Dependent Protein Kinase Kinase/chemistry , Humans
10.
Molecules ; 24(22)2019 Nov 06.
Article in English | MEDLINE | ID: mdl-31698822

ABSTRACT

SGC-GAK-1 (1) is a potent, selective, cell-active chemical probe for cyclin G-associated kinase (GAK). However, 1 was rapidly metabolized in mouse liver microsomes by cytochrome P450-mediated oxidation, displaying rapid clearance in liver microsomes and in mice, which limited its utility in in vivo studies. Chemical modifications of 1 that improved metabolic stability, generally resulted in decreased GAK potency. The best analog in terms of GAK activity in cells was 6-bromo-N-(1H-indazol-6-yl)quinolin-4-amine (35) (IC50 = 1.4 µM), showing improved stability in liver microsomes while still maintaining a narrow spectrum activity across the kinome. As an alternative to scaffold modifications we also explored the use of the broad-spectrum cytochrome P450 inhibitor 1-aminobenzotriazole (ABT) to decrease intrinsic clearance of aminoquinoline GAK inhibitors. Taken together, these approaches point towards the development of an in vivo chemical probe for the dark kinase GAK.


Subject(s)
Cyclic GMP-Dependent Protein Kinases/chemistry , Cluster Analysis , Cyclic GMP-Dependent Protein Kinases/antagonists & inhibitors , Models, Molecular , Molecular Structure , Protein Conformation , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Structure-Activity Relationship
11.
Molecules ; 23(5)2018 May 19.
Article in English | MEDLINE | ID: mdl-29783765

ABSTRACT

We demonstrate for the first time that 4H-1,2,6-thiadiazin-4-one (TDZ) can function as a chemotype for the design of ATP-competitive kinase inhibitors. Using insights from a co-crystal structure of a 3,5-bis(arylamino)-4H-1,2,6-thiadiazin-4-one bound to calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2), several analogues were identified with micromolar activity through targeted displacement of bound water molecules in the active site. Since the TDZ analogues showed reduced promiscuity compared to their 2,4-dianilinopyrimidine counter parts, they represent starting points for development of highly selective kinase inhibitors.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Kinase/antagonists & inhibitors , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Thiadiazoles/chemical synthesis , Thiadiazoles/pharmacology , Calcium-Calmodulin-Dependent Protein Kinase Kinase/chemistry , Catalytic Domain , Crystallography, X-Ray , Humans , Models, Molecular , Molecular Docking Simulation , Molecular Structure , Protein Kinase Inhibitors/chemistry , Thiadiazoles/chemistry , Water/chemistry
12.
Pharmaceuticals (Basel) ; 17(7)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39065687

ABSTRACT

Optimized syntheses of (E)-5-(2-ethoxyphenyl)-N-(3-(methylsulfonyl)allyl)-1H-pyrazole-3-carboxamide (RA-0002034, 1), a promising antiviral covalent cysteine protease inhibitor lead, were developed. The syntheses avoid the contamination of 1 with the inactive cyclic dihydropyrazolo[1,5-a]pyrazin-4(5H)-one 2, which is formed by the intramolecular aza-Michael reaction of the vinyl sulfone warhead under basic conditions and slowly at pH 7.4 in phosphate buffer. The pure cysteine protease inhibitor 1 could be synthesized using either modified amide coupling conditions or through the introduction of a MOM-protecting group and was stable as a TFA or HCl salt. Although acyclic 1 demonstrated poor pharmacokinetics with high in vivo clearance in mice, inactive cyclic 2 showed improved plasma exposure. The potential use of cyclic dihydropyrazolo[1,5-a]pyrazin-4(5H)-ones as prodrugs for the acyclic ß-amidomethyl vinyl sulfone warhead was demonstrated by GSH capture experiments with an analog of 2.

13.
Drug Discov Today ; 29(3): 103881, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38218213

ABSTRACT

The human kinome, with more than 500 proteins, is crucial for cell signaling and disease. Yet, about one-third of kinases lack in-depth study. The Data and Resource Generating Center for Understudied Kinases has developed multiple resources to address this challenge including creation of a heavy amino acid peptide library for parallel reaction monitoring and quantitation of protein kinase expression, use of understudied kinases tagged with a miniTurbo-biotin ligase to determine interaction networks by proximity-dependent protein biotinylation, NanoBRET probe development for screening chemical tool target specificity in live cells, characterization of small molecule chemical tools inhibiting understudied kinases, and computational tools for defining kinome architecture. These resources are available through the Dark Kinase Knowledgebase, supporting further research into these understudied protein kinases.


Subject(s)
Protein Kinases , Proteins , Humans , Protein Kinases/metabolism , Proteomics
14.
bioRxiv ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39026851

ABSTRACT

Helicases have emerged as promising targets for the development of antiviral drugs; however, the family remains largely undrugged. To support the focused development of viral helicase inhibitors we identified, collected, and integrated all chemogenomics data for all available helicases from the ChEMBL database. After thoroughly curating and enriching the data with relevant annotations we have created a derivative database of helicase inhibitors which we dubbed Heli-SMACC (Helicase-targeting SMAll Molecule Compound Collection). The current version of Heli-SMACC contains 20,432 bioactivity entries for viral, human, and bacterial helicases. We have selected 30 compounds with promising viral helicase activity and tested them in a SARS-CoV-2 NSP13 ATPase assay. Twelve compounds demonstrated ATPase inhibition and a consistent dose-response curve. The Heli-SMACC database may serve as a reference for virologists and medicinal chemists working on the development of novel helicase inhibitors. Heli-SMACC is publicly available at https://smacc.mml.unc.edu.

15.
Pharmaceuticals (Basel) ; 17(3)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38543092

ABSTRACT

A series of 5-benzylamine-substituted pyrimido[4,5-c]quinoline derivatives of the CSNK2A chemical probe SGC-CK2-2 were synthesized with the goal of improving kinase inhibitor cellular potency and antiviral phenotypic activity while maintaining aqueous solubility. Among the range of analogs, those bearing electron-withdrawing (4c and 4g) or donating (4f) substituents on the benzyl ring as well as introduction of non-aromatic groups such as the cyclohexylmethyl (4t) were shown to maintain CSNK2A activity. The CSNK2A activity was also retained with N-methylation of SGC-CK2-2, but α-methyl substitution of the benzyl substituent led to a 10-fold reduction in potency. CSNK2A inhibition potency was restored with indene-based compound 4af, with activity residing in the S-enantiomer (4ag). Analogs with the highest CSNK2A potency showed good activity for inhibition of Mouse Hepatitis Virus (MHV) replication. Conformational analysis indicated that analogs with the best CSNK2A inhibition (4t, 4ac, and 4af) exhibited smaller differences between their ground state conformation and their predicted binding pose. Analogs with reduced activity (4ad, 4ae, and 4ai) required more substantial conformational changes from their ground state within the CSNK2A protein pocket.

16.
bioRxiv ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38915519

ABSTRACT

Despite their widespread impact on human health there are no approved drugs for combating alphavirus infections. The heterocyclic ß-aminomethyl vinyl sulfone RA-0002034 (1a) is a potent irreversible covalent inhibitor of the alphavirus nsP2 cysteine protease with broad spectrum antiviral activity. Analogs of 1a that varied each of three regions of the molecule were synthesized to establish structure-activity relationships for inhibition of Chikungunya (CHIKV) nsP2 protease and viral replication. The covalent warhead was highly sensitive to modifications of the sulfone or vinyl substituents. However, numerous alterations to the core 5-membered heterocycle and its aryl substituent were well tolerated and several analogs were identified that enhanced CHIKV nsP2 binding. For example, the 4-cyanopyrazole analog 8d exhibited a kinact /Ki ratio >10,000 M-1s-1. 3-Arylisoxazole was identified an isosteric replacement for the 5-membered heterocycle, which circumvented the intramolecular cyclization that complicated the synthesis of pyrazole-based inhibitors like 1a. The accumulated structure-activity data was used to build a ligand-based model of the enzyme active site, which can be used to guide the design of covalent nsP2 protease inhibitors as potential therapeutics against alphaviruses.

17.
Eur J Med Chem ; 271: 116357, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38636130

ABSTRACT

The oxindole scaffold has been the center of several kinase drug discovery programs, some of which have led to approved medicines. A series of two oxindole matched pairs from the literature were identified where TLK2 was potently inhibited as an off-target kinase. The oxindole has long been considered a promiscuous kinase inhibitor template, but across these four specific literature oxindoles TLK2 activity was consistent, while the kinome profile was radically different ranging from narrow to broad spectrum kinome coverage. We synthesized a large series of analogues, utilizing quantitative structure-activity relationship (QSAR) analysis, water mapping of the kinase ATP binding sites, kinome profiling, and small-molecule x-ray structural analysis to optimize TLK2 inhibition and kinome selectivity. This resulted in the identification of several narrow spectrum, sub-family selective, chemical tool compounds including 128 (UNC-CA2-103) that could enable elucidation of TLK2 biology.


Subject(s)
Drug Discovery , Protein Kinase Inhibitors , Quantitative Structure-Activity Relationship , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Humans , Molecular Structure , Oxindoles/pharmacology , Oxindoles/chemistry , Oxindoles/chemical synthesis , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Dose-Response Relationship, Drug , Models, Molecular
18.
J Med Chem ; 67(14): 12261-12313, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38959455

ABSTRACT

The pyrazolo[1,5-a]pyrimidine scaffold is a promising scaffold to develop potent and selective CSNK2 inhibitors with antiviral activity against ß-coronaviruses. Herein, we describe the discovery of a 1,2,4-triazole group to substitute a key amide group for CSNK2 binding present in many potent pyrazolo[1,5-a]pyrimidine inhibitors. Crystallographic evidence demonstrates that the 1,2,4-triazole replaces the amide in forming key hydrogen bonds with Lys68 and a water molecule buried in the ATP-binding pocket. This isosteric replacement improves potency and metabolic stability at a cost of solubility. Optimization for potency, solubility, and metabolic stability led to the discovery of the potent and selective CSNK2 inhibitor 53. Despite excellent in vitro metabolic stability, rapid decline in plasma concentration of 53 in vivo was observed and may be attributed to lung accumulation, although in vivo pharmacological effect was not observed. Further optimization of this novel chemotype may validate CSNK2 as an antiviral target in vivo.


Subject(s)
Antiviral Agents , Casein Kinase II , Pyrimidines , Triazoles , Virus Replication , Triazoles/pharmacology , Triazoles/chemistry , Triazoles/chemical synthesis , Pyrimidines/pharmacology , Pyrimidines/chemistry , Pyrimidines/chemical synthesis , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Animals , Humans , Virus Replication/drug effects , Casein Kinase II/antagonists & inhibitors , Casein Kinase II/metabolism , Pyrazoles/pharmacology , Pyrazoles/chemistry , Pyrazoles/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Amides/chemistry , Amides/pharmacology , Amides/chemical synthesis , Structure-Activity Relationship , Mice , Rats , SARS-CoV-2/drug effects , Drug Discovery , Male
19.
J Med Chem ; 67(18): 16505-16532, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39235978

ABSTRACT

Despite their widespread impact on human health, there are no approved drugs for combating alphavirus infections. The heterocyclic ß-aminomethyl vinyl sulfone RA-0002034 (1a) is a potent irreversible covalent inhibitor of the alphavirus nsP2 cysteine protease with broad-spectrum antiviral activity. Analogs of 1a that varied each of the three regions of the molecule were synthesized to establish structure-activity relationships for the inhibition of Chikungunya (CHIKV) nsP2 protease and viral replication. The vinyl sulfone covalent warhead was highly sensitive to modifications. However, alterations to the core five-membered heterocycle and aryl substituent were well tolerated. The 5-(2,5-dimethoxyphenyl)pyrazole (1o) and 4-cyanopyrazole (8d) analogs exhibited kinact/Ki ratios >9000 M-1 s-1. 3-Arylisoxazole (10) was identified as an isosteric replacement for the five-membered heterocycle, which circumvented the intramolecular cyclization of pyrazole-based inhibitors like 1a. A ligand-based model of the enzyme active site was developed to aid the design of nsP2 protease inhibitors as potential therapeutics against alphaviruses.


Subject(s)
Antiviral Agents , Chikungunya virus , Cysteine Endopeptidases , Sulfones , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Structure-Activity Relationship , Sulfones/pharmacology , Sulfones/chemistry , Sulfones/chemical synthesis , Chikungunya virus/drug effects , Chikungunya virus/enzymology , Cysteine Endopeptidases/metabolism , Cysteine Proteinase Inhibitors/pharmacology , Cysteine Proteinase Inhibitors/chemical synthesis , Cysteine Proteinase Inhibitors/chemistry , Humans , Animals , Virus Replication/drug effects
20.
Nat Commun ; 15(1): 5640, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38965235

ABSTRACT

The Structural Genomics Consortium is an international open science research organization with a focus on accelerating early-stage drug discovery, namely hit discovery and optimization. We, as many others, believe that artificial intelligence (AI) is poised to be a main accelerator in the field. The question is then how to best benefit from recent advances in AI and how to generate, format and disseminate data to enable future breakthroughs in AI-guided drug discovery. We present here the recommendations of a working group composed of experts from both the public and private sectors. Robust data management requires precise ontologies and standardized vocabulary while a centralized database architecture across laboratories facilitates data integration into high-value datasets. Lab automation and opening electronic lab notebooks to data mining push the boundaries of data sharing and data modeling. Important considerations for building robust machine-learning models include transparent and reproducible data processing, choosing the most relevant data representation, defining the right training and test sets, and estimating prediction uncertainty. Beyond data-sharing, cloud-based computing can be harnessed to build and disseminate machine-learning models. Important vectors of acceleration for hit and chemical probe discovery will be (1) the real-time integration of experimental data generation and modeling workflows within design-make-test-analyze (DMTA) cycles openly, and at scale and (2) the adoption of a mindset where data scientists and experimentalists work as a unified team, and where data science is incorporated into the experimental design.


Subject(s)
Data Science , Drug Discovery , Machine Learning , Drug Discovery/methods , Data Science/methods , Humans , Artificial Intelligence , Information Dissemination/methods , Data Mining/methods , Cloud Computing , Databases, Factual
SELECTION OF CITATIONS
SEARCH DETAIL