Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
Add more filters

Publication year range
1.
Scand J Med Sci Sports ; 33(6): 1021-1033, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36703247

ABSTRACT

PURPOSE: To (1) identify neuromuscular and biomechanical injury risk factors in elite youth soccer players and (2) assess the predictive ability of a machine learning approach. MATERIAL AND METHODS: Fifty-six elite male youth soccer players (age: 17.2 ± 1.1 years; height: 179 ± 8 cm; mass: 70.4 ± 9.2 kg) performed a 3D motion analysis, postural control testing, and strength testing. Non-contact lower extremities injuries were documented throughout 10 months. A least absolute shrinkage and selection operator (LASSO) regression model was used to identify the most important injury predictors. Predictive performance of the LASSO model was determined in a leave-one-out (LOO) prediction competition. RESULTS: Twenty-three non-contact injuries were registered. The LASSO model identified concentric knee extensor peak torque, hip transversal plane moment in the single-leg drop landing task and center of pressure sway in the single-leg stance test as the three most important predictors for injury in that order. The LASSO model was able to predict injury outcomes with a likelihood of 58% and an area under the ROC curve of 0.63 (sensitivity = 35%; specificity = 79%). CONCLUSION: The three most important variables for predicting the injury outcome suggest the importance of neuromuscular and biomechanical performance measures in elite youth soccer. These preliminary results may have practical implications for future directions in injury risk screening and planning, as well as for the development of customized training programs to counteract intrinsic injury risk factors. However, the poor predictive performance of the final model confirms the challenge of predicting sports injuries, and the model must therefore be evaluated in larger samples.


Subject(s)
Athletic Injuries , Knee Injuries , Soccer , Humans , Male , Adolescent , Soccer/injuries , Lower Extremity/injuries , Knee Injuries/prevention & control , Risk Factors , Athletic Injuries/epidemiology , Athletic Injuries/diagnosis
2.
Eur Spine J ; 32(9): 2991-3001, 2023 09.
Article in English | MEDLINE | ID: mdl-37166549

ABSTRACT

PURPOSE: To summarize the mechanical loading of the spine in different activities of daily living and sports. METHODS: Since the direct measurement is not feasible in sports activities, a mathematical model was applied to quantify spinal loading of more than 600 physical tasks in more than 200 athletes from several sports disciplines. The outcome is compression and torque (normalized to body weight/mass) at L4/L5. RESULTS: The data demonstrate high compressive forces on the lumbar spine in sport-related activities, which are much higher than forces reported in normal daily activities and work tasks. Especially ballistic jumping and landing skills yield high estimated compression at L4/L5 of more than ten times body weight. Jumping, landing, heavy lifting and weight training in sports demonstrate compression forces significantly higher than guideline recommendations for working tasks. CONCLUSION: These results may help to identify acute and long-term risks of low back pain and, thus, may guide the development of preventive interventions for low back pain or injury in athletes.


Subject(s)
Low Back Pain , Humans , Activities of Daily Living , Lifting , Spine , Lumbar Vertebrae , Exercise , Weight-Bearing , Biomechanical Phenomena , Body Weight
3.
Sensors (Basel) ; 23(2)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36679623

ABSTRACT

Micro electro-mechanical systems (MEMS) are used to record training and match play of intermittent team sport athletes. Paired with estimates of internal responses or adaptations to exercise, practitioners gain insight into players' dose-response relationship which facilitates the prescription of the training stimuli to optimize performance, prevent injuries, and to guide rehabilitation processes. A systematic review on the relationship between external, wearable-based, and internal parameters in team sport athletes, compliant with the PRISMA guidelines, was conducted. The literature research was performed from earliest record to 1 September 2020 using the databases PubMed, Web of Science, CINAHL, and SportDISCUS. A total of 66 full-text articles were reviewed encompassing 1541 athletes. About 109 different relationships between variables have been reviewed. The most investigated relationship across sports was found between (session) rating of perceived exertion ((session-)RPE) and PlayerLoad™ (PL) with, predominantly, moderate to strong associations (r = 0.49-0.84). Relationships between internal parameters and highly dynamic, anaerobic movements were heterogenous. Relationships between average heart rate (HR), Edward's and Banister's training impulse (TRIMP) seem to be reflected in parameters of overall activity such as PL and TD for running-intensive team sports. PL may further be suitable to estimate the overall subjective perception. To identify high fine-structured loading-relative to a certain type of sport-more specific measures and devices are needed. Individualization of parameters could be helpful to enhance practicality.


Subject(s)
Running , Wearable Electronic Devices , Humans , Physical Exertion/physiology , Athletes , Running/physiology , Team Sports
4.
Sensors (Basel) ; 23(1)2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36616946

ABSTRACT

Running stability is the ability to withstand naturally occurring minor perturbations during running. It is susceptible to external and internal running conditions such as footwear or fatigue. However, both its reliable measurability and the extent to which laboratory measurements reflect outdoor running remain unclear. This study aimed to evaluate the intra- and inter-day reliability of the running stability as well as the comparability of different laboratory and outdoor conditions. Competitive runners completed runs on a motorized treadmill in a research laboratory and overground both indoors and outdoors. Running stability was determined as the maximum short-term divergence exponent from the raw gyroscope signals of wearable sensors mounted to four different body locations (sternum, sacrum, tibia, and foot). Sacrum sensor measurements demonstrated the highest reliabilities (good to excellent; ICC = 0.85 to 0.91), while those of the tibia measurements showed the lowest (moderate to good; ICC = 0.55 to 0.89). Treadmill measurements depicted systematically lower values than both overground conditions for all sensor locations (relative bias = -9.8% to -2.9%). The two overground conditions, however, showed high agreement (relative bias = -0.3% to 0.5%; relative limits of agreement = 9.2% to 15.4%). Our results imply moderate to excellent reliability for both overground and treadmill running, which is the foundation of further research on running stability.


Subject(s)
Foot , Tibia , Humans , Reproducibility of Results , Biomechanical Phenomena , Fatigue , Exercise Test/methods , Gait
5.
J Strength Cond Res ; 36(1): 82-89, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-32028460

ABSTRACT

ABSTRACT: Willwacher, S, Fischer, KM, Rohr, E, Trudeau, MB, Hamill, J, and Brüggemann, G-P. Surface stiffness and footwear affect the loading stimulus for lower extremity muscles when running. J Strength Cond Res 36(1): 82-89, 2022-Running in minimal footwear or barefoot can improve foot muscle strength. Muscles spanning the foot and ankle joints have the potential to improve performance and to reduce overuse injury risk. Surface stiffness or footwear use could modify the intensity of training stimuli acting on lower extremity joints during running. The purpose of this study was to systematically investigate external ankle, knee, and hip joint moments during shod and barefoot running while considering the stiffness of the running surface. Two footwear conditions (barefoot and neutral running shoe) and 4 surface conditions (Tartan, Tartan + Ethylene Vinyl Acetate [EVA] foam, Tartan + artificial turf, Tartan + EVA foam + artificial turf) were tested at 3.5 m·s-1. Repeated measures analysis of variance revealed that barefoot running in general and running barefoot on harder surfaces increased and decreased ankle (between +5 and +26%) and knee (between 0 and -11%) joint moments, respectively. Averaged over all surfaces, running barefoot was characterized by a 6.8° more plantarflexed foot strike pattern compared with running shod. Foot strike patterns were more plantarflexed on harder surfaces; the effects, however, were less than 3°. Most surface effects were stronger in barefoot compared with shod running. Surface stiffness may be used to modulate the loading intensity of lower extremity muscles (in particular extrinsic and intrinsic foot muscles) during running. These results need to be considered when coaches advise barefoot running as a method to improve the strength of extrinsic and intrinsic foot muscles or when trying to reduce knee joint loading.


Subject(s)
Ankle , Shoes , Biomechanical Phenomena , Humans , Lower Extremity , Muscles
6.
Scand J Med Sci Sports ; 31(7): 1471-1480, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33749906

ABSTRACT

The compliant nature of distal limb muscle-tendon units is traditionally considered suboptimal in explosive movements when positive joint work is required. However, during accelerative running, ankle joint net mechanical work is positive. Therefore, this study aims to investigate how plantar flexor muscle-tendon behavior is modulated during fast accelerations. Eleven female sprinters performed maximum sprint accelerations from starting blocks, while gastrocnemius muscle fascicle lengths were estimated using ultrasonography. We combined motion analysis and ground reaction force measurements to assess lower limb joint kinematics and kinetics, and to estimate gastrocnemius muscle-tendon unit length during the first two acceleration steps. Outcome variables were resampled to the stance phase and averaged across three to five trials. Relevant scalars were extracted and analyzed using one-sample and two-sample t-tests, and vector trajectories were compared using statistical parametric mapping. We found that an uncoupling of muscle fascicle behavior from muscle-tendon unit behavior is effectively used to produce net positive mechanical work at the joint during maximum sprint acceleration. Muscle fascicles shortened throughout the first and second steps, while shortening occurred earlier during the first step, where negative joint work was lower compared with the second step. Elastic strain energy may be stored during dorsiflexion after touchdown since fascicles did not lengthen at the same time to dissipate energy. Thus, net positive work generation is accommodated by the reuse of elastic strain energy along with positive gastrocnemius fascicle work. Our results show a mechanism of how muscles with high in-series compliance can contribute to net positive joint work.


Subject(s)
Acceleration , Ankle Joint/physiology , Fasciculation/physiopathology , Muscle, Skeletal/physiology , Running/physiology , Tendons/physiology , Biomechanical Phenomena/physiology , Female , Humans , Movement/physiology , Muscle, Skeletal/diagnostic imaging , Ultrasonography , Young Adult
7.
J Sports Sci ; 39(21): 2444-2453, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34261421

ABSTRACT

Uphill training is applied to induce specific overload on the musculoskeletal system to improve sprinting mechanics. This study aimed to identify unique kinematic features of uphill sprinting at different slopes and to suggest practical implications based on comparisons we early stance phase. At take-off, steeper slopes induced significantly more extended joint angles and higher ROMs during the late stance phase. Compared with moderate slopes, more anti-phase coordination patterns were detected at steeper slopes. Thus, uphill sprinting at steeper slopes shares essential kinematic features with the early acceleration phase of level sprinting. Moderate inclinations induce biomechanical adaptations similar to those in the late acceleration phase of level sprinting. Hence, the specific transfer of uphill sprinting to acceleration depends on the slope inclinations.


Subject(s)
Lower Extremity/physiology , Physical Conditioning, Human/methods , Running/physiology , Acceleration , Ankle Joint/physiology , Biomechanical Phenomena , Environment , Hip Joint/physiology , Humans , Knee Joint/physiology , Male , Range of Motion, Articular , Torso/physiology , Young Adult
8.
Scand J Med Sci Sports ; 30(2): 332-338, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31605631

ABSTRACT

The aim of this study was to investigate knee intra-articular cartilage volume changes after a prolonged running bout in three footwear conditions. Twelve participants performed 75-minute running bouts in the three footwear conditions. Before and after each running bout, magnetic resonance imaging (MRI) scans were obtained using a high-resolution 3.0 Tesla MRI. Three-dimensional reconstruction of the cartilage plates of the patella, the femur, and the tibia was created to quantify cartilage volume change due to the 75-minute running bout. Three-dimensional biomechanical data were also collected using an integrated motion capture and force treadmill system. There were no statistically significant differences among shoe conditions for all anatomical regions. However, significant cartilage volume reductions at all anatomical sites were observed after the 75-minute running bout in each footwear condition. These data suggest that the intra-articular knee cartilage undergoes a significant reduction in cartilage volume during a prolonged run that may indicate an increase in joint loading. There was a considerable variation in cartilage volume between participants across footwear conditions indicating an individual cartilage volume response to footwear. An individualistic approach to footwear recommendations may help in minimizing this change in cartilage.


Subject(s)
Cartilage, Articular/diagnostic imaging , Knee Joint/diagnostic imaging , Running/physiology , Shoes , Adult , Biomechanical Phenomena , Cartilage, Articular/anatomy & histology , Female , Femur , Humans , Knee Joint/anatomy & histology , Magnetic Resonance Imaging , Male , Patella , Tibia
9.
J Sports Sci ; 38(5): 518-527, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31900052

ABSTRACT

The purpose of this study was to investigate the effects of slope on three-dimensional running kinematics at high speed. Thirteen male sprinters ran at high speed (7.5 m/s) on a motorised treadmill in each a level and a 5.0% slope condition. Three-dimensional motion analysis was conducted to compare centre of mass (CoM) energetics, pelvis segment and lower limb joints kinematics. We found that contact time was not affected by the slope, whereas flight time and step length were significantly shorter in uphill compared to level running. Uphill running reduced negative CoM work and increased positive CoM work compared to level running. Ankle, knee and hip joints were more flexed at initial ground contact, but only the knee was more extended at the end of stance in uphill compared to level running. Additionally, the hip joint was more abducted, and the free leg side of the pelvis was more elevated at the end of stance in uphill running. Our results demonstrate that joint motion must be developed from a more flexed/adducted position at initial contact through a greater range of motion compared to level running in order to meet the greater positive CoM work requirements in uphill running at high speed.


Subject(s)
Ankle Joint/physiology , Hip Joint/physiology , Knee Joint/physiology , Running/physiology , Biomechanical Phenomena/physiology , Exercise Test , Fiducial Markers , Gait , Humans , Imaging, Three-Dimensional , Male , Movement/physiology , Range of Motion, Articular/physiology , Young Adult
10.
J Anat ; 233(1): 64-72, 2018 07.
Article in English | MEDLINE | ID: mdl-29582433

ABSTRACT

The purpose of this study was to quantify isolated coupling mechanisms of calcaneal adduction/abduction and calcaneal eversion/inversion to proximal bones in vitro. The in vitro approach is necessary because in vivo both movements appear together, making it impossible to determine the extent of their individual contribution to overall ankle joint coupling. Eight fresh frozen foot-leg specimens were tested. Data describing bone orientation and coupling mechanisms between segments were obtained using bone pin marker triads. The bone movement was described in a global coordinate system to examine the coupling between the calcaneus, talus and tibia. The strength of coupling was determined by means of the slope of a linear least squares fit to an angle-angle plot. The coupling coefficients in the present study indicate that not only calcaneal eversion/inversion (coupling coefficient: 0.68 ± 0.15) but to an even greater extent calcaneal adduction/abduction (coupling coefficient: 0.99 ± 0.10) was transferred into talus and tibial rotation, highlighting the relevance of calcaneal adduction for the overall ankle joint coupling. The results of this study present the possibility that controlling calcaneal adduction/abduction can affect talus and tibial rotation and therefore the possible genesis of overuse knee injuries.


Subject(s)
Calcaneus/physiology , Movement/physiology , Range of Motion, Articular/physiology , Talus/physiology , Tibia/physiology , Aged , Calcaneus/anatomy & histology , Female , Humans , Male , Middle Aged , Rotation , Talus/anatomy & histology , Tibia/anatomy & histology
11.
J Sports Sci ; 36(14): 1656-1662, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29173043

ABSTRACT

The aim of this study was to explore the relationships between lower limb joint kinetics, external force production and starting block performance (normalised average horizontal power, NAHP). Seventeen male sprinters (100 m PB, 10.67 ± 0.32 s) performed maximal block starts from instrumented starting blocks (1000 Hz) whilst 3D kinematics (250 Hz) were also recorded during the block phase. Ankle, knee and hip resultant joint moment and power were calculated at the rear and front leg using inverse dynamics. Average horizontal force applied to the front (r = 0.46) and rear (r = 0.44) block explained 86% of the variance in NAHP. At the joint level, many "very likely" to "almost certain" relationships (r = 0.57 to 0.83) were found between joint kinetic data and the magnitude of horizontal force applied to each block although stepwise multiple regression revealed that 55% of the variance in NAHP was accounted for by rear ankle moment, front hip moment and front knee power. The current study provides novel insight into starting block performance and the relationships between lower limb joint kinetic and external kinetic data that can help inform physical and technical training practices for this skill.


Subject(s)
Ankle Joint/physiology , Athletic Performance/physiology , Hip Joint/physiology , Knee Joint/physiology , Running/physiology , Biomechanical Phenomena , Humans , Male , Regression Analysis , Time and Motion Studies , Young Adult
12.
Neuromodulation ; 21(8): 809-814, 2018 Dec.
Article in English | MEDLINE | ID: mdl-27641444

ABSTRACT

OBJECTIVE: A low cramp threshold frequency (CTF) is associated with an increased cramp susceptibility. Recent data indicate that the CTF can be substantially increased by a cramp training consisting of electrically induced muscle cramps (EIMCs). This study investigated if four cramp training sessions induce sustained effects on the CTF. METHODS: In ten healthy male subjects, EIMCs were induced in the gastrocnemius medialis of one leg (intervention leg, IL) twice a week, while the opposite leg served as control leg (CL). The stimulation protocol consisted of three sets of six bipolar rectangular wave pulsed currents (5 sec on, 10 sec off) at 30 Hz above the individual CTF. RESULTS: After four cramp training sessions (2 weeks) the CTF differed (p < 0.001) from pre-values in the IL (pre: 19.2 ± 1.4 Hz post 29.8 ± 8.0 Hz) but not in the CL (pre: 18.2 ± 1.5 Hz post 19.6 ± 2.8 Hz; p > 0.05). Thereafter, the CTF remained elevated in the IL for 22 days (22 days post: 22.2 ± 3.2 Hz; p < 0.05) when compared to pre and was significantly (p < 0.05) higher than that of the CL 5, 10, and 14 days after the intervention. CONCLUSION: The applied cramp training induced a long-term CTF increase of 14 days.


Subject(s)
Muscle Cramp/prevention & control , Muscle Cramp/physiopathology , Muscle, Skeletal/physiology , Electric Stimulation , Healthy Volunteers , Humans , Male , Muscle Contraction/physiology , Young Adult
13.
J Sports Sci ; 35(16): 1629-1635, 2017 Aug.
Article in English | MEDLINE | ID: mdl-27598715

ABSTRACT

The aim of this study was to examine lower limb joint kinetics during the block and first stance phases in athletic sprinting. Ten male sprinters (100 m PB, 10.50 ± 0.27 s) performed maximal sprint starts from blocks. External force (1000 Hz) and three-dimensional kinematics (250 Hz) were recorded in both the block (utilising instrumented starting blocks) and subsequent first stance phases. Ankle, knee and hip resultant joint moment, power and work were calculated at the rear and front leg during the block phase and during first stance using inverse dynamics. Significantly (P < 0.05) greater peak moment, power and work were evident at the knee joint in the front block and during stance compared with the rear block. Ankle joint kinetic data significantly increased during stance compared with the front and rear block. The hip joint dominated leg extensor energy generation in the block phase (rear leg, 61 ± 10%; front leg, 64 ± 8%) but significantly reduced during stance (32 ± 9%), where the ankle contributed most (42 ± 6%). The current study provides novel insight into sprint start biomechanics and the contribution of the lower limb joints towards leg extensor energy generation.


Subject(s)
Ankle Joint/physiology , Athletic Performance/physiology , Hip Joint/physiology , Knee Joint/physiology , Running/physiology , Track and Field/physiology , Acceleration , Biomechanical Phenomena , Cross-Sectional Studies , Humans , Male , Posture/physiology , Time and Motion Studies , Young Adult
14.
Clin Biomech (Bristol, Avon) ; 111: 106150, 2024 01.
Article in English | MEDLINE | ID: mdl-37979246

ABSTRACT

BACKGROUND: To assess the in-field walking mechanics during downhill hiking of patients with total knee arthroplasty five to 14 months after surgery and an age-matched healthy control group and relate them to the knee flexor and extensor muscle strength. METHODS: Participants walked on a predetermined hiking trail at a self-selected, comfortable pace wearing an inertial sensor system for recording the whole-body 3D kinematics. Sagittal plane hip, knee, and ankle joint angles were evaluated over the gait cycle at level walking and two different negative slopes. The concentric and eccentric lower extremity muscle strength of the knee flexors and extensors isokinetically at 50 and 120°/s were measured. FINDINGS: Less knee flexion angles during stance have been measured in patients in the operated limb compared to healthy controls in all conditions (level walking, moderate downhill, steep downhill). The differences increased with steepness. Muscle strength was lower in patients for both muscle groups and all measured conditions. The functional hamstrings to quadriceps ratio at 120°/sec correlated with knee angle during level and downhill walking at the moderate slope in patients, showing higher ratios with lower peak knee flexion angles. INTERPRETATION: The study shows that even if rehabilitation has been completed successfully and complication-free, five to 14 months after surgery, the muscular condition was still insufficient to display a normal gait pattern during downhill hiking. The muscle balance between quadriceps and hamstring muscles seems related to the persistence of a stiff knee gait pattern after knee arthroplasty. LoE: III.


Subject(s)
Arthroplasty, Replacement, Knee , Humans , Knee Joint , Gait/physiology , Knee/physiology , Walking/physiology , Lower Extremity/surgery , Muscle, Skeletal/physiology , Biomechanical Phenomena
15.
Sports Med Open ; 10(1): 14, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38332220

ABSTRACT

Advanced footwear technology (AFT) is currently being debated in sports. There is a direct evidence that distance running in AFT improves running economy. In addition, there is indirect evidence from competition performance for improved running performance from using AFTs in middle- and long-distance running and sprinting events. However, the extent to which world-class performance is affected across the full range of track and road racing events between genders has not been systematically analyzed. This study examined publicly available performance datasets of annual best track and road performances for evidence of potential systematic performance effects following the introduction of AFT. The analysis was based on the 100 best performances per year for men and women in outdoor events from 2010 to 2022, provided by the world governing body of athletics (World Athletics). We found evidence of progressing improvements in track and road running performances after the introduction of AFT for road races in 2016 and AFT for track racing in 2019. This evidence is more pronounced for distances longer than 1500 m in women and longer than 5000 m in men. Women seem to benefit more from AFT in distance running events than men. For the sprint events (100 m to 400 m hurdles), the peak performance gains in 2021 and 2022 compared to the pre-AFT period ranged from 0.6 to 1.1% and from 0.4 to 0.7% for women and men, respectively. For middle-distance events (400 m to 3000 m steeplechase), peak performance gains ranged from 0.6 to 1.9% and from 0.6 to 0.7% for women and men, respectively. For distances from 5000 m to the marathon, performance gains ranged from 2.2% to 3.5% and 0.7% to 1.4% for women and men, respectively. While the observational study design limits causal inference, this study provides a database on potential systematic performance effects after introducing advanced shoes/spikes in track and road running events in world-class athletes. Further research is needed to examine the underlying mechanisms and, in particular, potential gender differences in the performance effects of AFT.

16.
J Sport Health Sci ; 13(1): 118-124, 2024 Jan.
Article in English | MEDLINE | ID: mdl-36931595

ABSTRACT

BACKGROUND: Internal tibial loading is influenced by modifiable factors with implications for the risk of stress injury. Runners encounter varied surface steepness (gradients) when running outdoors and may adapt their speed according to the gradient. This study aimed to quantify tibial bending moments and stress at the anterior and posterior peripheries when running at different speeds on surfaces of different gradients. METHODS: Twenty recreational runners ran on a treadmill at 3 different speeds (2.5 m/s, 3.0 m/s, and 3.5 m/s) and gradients (level: 0%; uphill: +5%, +10%, and +15%; downhill: -5%, -10%, and -15%). Force and marker data were collected synchronously throughout. Bending moments were estimated at the distal third centroid of the tibia about the medial-lateral axis by ensuring static equilibrium at each 1% of stance. Stress was derived from bending moments at the anterior and posterior peripheries by modeling the tibia as a hollow ellipse. Two-way repeated-measures analysis of variance were conducted using both functional and discrete statistical analyses. RESULTS: There were significant main effects for running speed and gradient on peak bending moments and peak anterior and posterior stress. Higher running speeds resulted in greater tibial loading. Running uphill at +10% and +15% resulted in greater tibial loading than level running. Running downhill at -10% and -15% resulted in reduced tibial loading compared to level running. There was no difference between +5% or -5% and level running. CONCLUSION: Running at faster speeds and uphill on gradients ≥+10% increased internal tibial loading, whereas slower running and downhill running on gradients ≥-10% reduced internal loading. Adapting running speed according to the gradient could be a protective mechanism, providing runners with a strategy to minimize the risk of tibial stress injuries.


Subject(s)
Running , Tibia , Tibia/injuries , Biomechanical Phenomena , Running/injuries , Exercise Test , Nerve Tissue Proteins
17.
Front Sports Act Living ; 6: 1340154, 2024.
Article in English | MEDLINE | ID: mdl-38645727

ABSTRACT

In a randomized controlled cross-over study ten male runners (26.7 ± 4.9 years; recent 5-km time: 18:37 ± 1:07 min:s) performed an incremental treadmill test (ITT) and a 3-km time trial (3-km TT) on a treadmill while wearing either carbon fiber insoles with downwards curvature or insoles made of butyl rubber (control condition) in light road racing shoes (Saucony Fastwitch 9). Oxygen uptake, respiratory exchange ratio, heart rate, blood lactate concentration, stride frequency, stride length and time to exhaustion were assessed during ITT. After ITT, all runners rated their perceived exertion, perceived shoe comfort and perceived shoe performance. Running time, heart rate, blood lactate levels, stride frequency and stride length were recorded during, and shoe comfort and shoe performance after, the 3-km TT. All parameters obtained during or after the ITT did not differ between the two conditions [range: p = 0.188 to 0.948 (alpha value: 0.05); Cohen's d = 0.021 to 0.479] despite the rating of shoe comfort showing better scores for the control insoles (p = 0.001; d = -1.646). All parameters during and after the 3-km TT showed no differences (p = 0.200 to 1.000; d = 0.000 to 0.501) between both conditions except for shoe comfort showing better scores for control insoles (p = 0.017; d = -0.919). Running with carbon fiber insoles with downwards curvature did not change running performance or any submaximal or maximal physiological or biomechanical parameter and perceived exertion compared to control condition. Shoe comfort is impaired while running with carbon fiber insoles. Wearing carbon fiber insoles with downwards curvature during treadmill running is not beneficial when compared to running with control insoles.

18.
Sports Med ; 54(1): 203-211, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37632664

ABSTRACT

BACKGROUND: Video analysis (VA) is commonly used in the assessment of sports injuries and has received considerable research interest. Until now, no tool has been available for the assessment of study quality. Therefore, the objective of this study was to develop and evaluate a valid instrument that reliably assesses the methodological quality of VA studies. METHODS: The Quality Appraisal for Sports Injury Video Analysis Studies (QA-SIVAS) scale was developed using a modified Delphi approach including expert consensus and pilot testing. Reliability was examined through intraclass correlation coefficient (ICC3,1) and free-marginal kappa statistics by three independent raters. Construct validity was investigated by comparing QA-SIVAS with expert ratings by using Kendall's tau analysis. Rating time was studied by applying the scale to 21 studies and computing the mean time for rating per study article. RESULTS: The QA-SIVAS scale consists of an 18-item checklist addressing the study design, data source, conduct, report, and discussion of VA studies in sports injury research. Inter- and intra-rater reliability were excellent with ICCs > 0.97. Expert ratings revealed a high construct validity (0.71; p < 0.001). Mean rating time was 10 ± 2 min per article. CONCLUSION: QA-SIVAS is a reliable and valid instrument that can be easily applied to sports injury research. Future studies in the field of VA should adhere to standardized methodological criteria and strict quality guidelines.


Subject(s)
Athletic Injuries , Humans , Reproducibility of Results , Checklist , Research Design
19.
J Sports Sci ; 31(4): 424-33, 2013.
Article in English | MEDLINE | ID: mdl-23106289

ABSTRACT

The metatarsal phalangeal joint (MPJ) and its crossing toe flexor muscles (TFM) represent the link between the large energy generating leg extensor muscles and the ground. The purpose of this study was to examine the functional adaptability of TFM to increased mechanical stimuli and the effects on walking, running and jumping performance. Fifteen men performed a heavy resistance TFM strength training with 90% of the maximal voluntary isometric contraction (MVIC) for 7 weeks (560 contractions) for the left and right foot. Maximal MPJ and ankle plantar flexion moments during MVICs were measured in dynamometers before and after the intervention. Motion analyses (inverse dynamics) were performed during barefoot walking, running, and vertical and horizontal jumping. Athletic performance was determined by measuring jump height and distance. Left (0.21 to 0.38 Nm · kg(-1); P < 0.001) and right (0.24 to 0.40 Nm · kg(-1); P < 0.001) MPJ plantar flexion moments in the dynamometer, external MPJ dorsiflexion moments (0.69 to 0.75 Nm · kg(-1); P = 0.012) and jump distance (2.25 to 2.31 m; P = 0.006) in horizontal jumping increased significantly. TFM responded highly to increased loading within a few weeks. The increased force potential made a contribution to an athlete's performance enhancement.


Subject(s)
Athletic Performance/physiology , Foot/physiology , Joints/physiology , Movement/physiology , Muscle, Skeletal/physiology , Resistance Training , Toes/physiology , Adult , Humans , Isometric Contraction/physiology , Male , Running , Task Performance and Analysis , Walking , Young Adult
20.
J Appl Biomech ; 29(6): 740-8, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23434878

ABSTRACT

The purpose of this study was to investigate the effect of heel construction on ankle joint mechanics during the early stance phase of running. Kinematic and kinetic parameters (ankle joint angles, angular velocities and joint moments, lever arms of ground reaction force, triceps surae muscle tendon unit lengths, and rates of muscle tendon unit length change) were calculated from 19 male subjects running at 3.3 m/s in shoes with different heel constructions. Increasing heel height and posterior wedging amplified initial plantar flexion velocity and range. The potential for a muscle to control the movement of a joint depends upon its ability to produce joint moments. Runners in this study showed decreased external eversion moments and an increase in eversion range. Maximum eversion angles were not significantly affected by shoe conditions. Without considerable tendon prestretch, joint moment generation potentials of triceps surae and deep plantar flexors might be inhibited due to rapid plantar flexion based on the force-velocity relationship. It could be speculated that increasing ankle inversion at heel strike could be a strategy to keep maximum eversion angles inside an adequate range, if joint moment generation potentials of deep plantar flexors are inhibited due to rapid plantar flexion.


Subject(s)
Ankle Joint/physiology , Heel/physiology , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Range of Motion, Articular/physiology , Running/physiology , Shoes , Adult , Computer Simulation , Humans , Male , Models, Biological , Sports Equipment , Torque
SELECTION OF CITATIONS
SEARCH DETAIL